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ABSTRACT Although deep learning and computer vision-based approaches have demonstrated success in
the field of cell counting and detection in microscopic images, they continue to have certain limitations.
More specifically, they experience an overall increase in false positives when dealing with cell populations
that show high density and heterogeneity. Existing approaches require the reselection of parameters for each
new data set to improve the accuracy of cell counting. Therefore, it is necessary to revise the fundamental
models for each new microscopic image. This study introduces a novel neural network-based method that
eliminates the need for retraining by combining the pretrained Cellpose and Stardist models. The accuracy of
our proposed approach was evaluated on a variety of microscopic images. Despite variations in cell densities,
our proposed approach demonstrated a notably improved cell counting performance in comparison to solely

utilizing the Cellpose and Stardist models.

INDEX TERMS cell counting, cell detection, deep learning, ensemble learning

I. INTRODUCTION

HE traditional way of cell analysis in clinical practice
Tinvolves microscopic observation of a tissue sample.
The process allows us to precisely classify different cellular
characteristics and evaluate cellular structure. The initial step
of such analysis usually requires cell segmentation [1]-[9],
cell detection [10], [11], or cell counting [12]. Although ex-
perts can extract limited information through counting cells,
it is still an acceptable approach in clinical practice due to
its practicality [13]. As one might expect, manual counting
of cells is a very time-consuming and labor-intensive task
with several potential drawbacks, including (i) risk of human
error, (ii) lack of objectivity, (iii) poor reproducibility, and
(iv) low throughput. In terms of human error, the issues
include misidentification and missed cells due to fatigue or
distraction. Moreover, it is subjective and dependent on the
expertise of the observer, resulting in differences between ob-
servers [14]. Reproducibility is another problem that leads to
variability between observers and differences across different
laboratories or studies. It is one of the critical concerns in
research, and several studies have highlighted the variability

VOLUME 11, 2023

in manual cell counting results [15]. Moreover, manual cell
counting may not be practical for studies on a large scale or
experiments requiring high throughput. Due to these signifi-
cant limitations, semi-or fully-autonomous techniques based
on image processing and neural networks for automated cell
counting have been developed. The development of com-
puterized cell counting software will significantly impact
biological research and clinical practice, as it will facilitate
faster, more objective, and more standardized cell counting
than manual methods [16].

Il. RELATED WORK

Conventional image processing-based techniques are straight-
forward methodologies that do not require labeled data and
can resolve a specific problem with fewer lines of code
compared to neural network-based methods [8], [9]. Nev-
ertheless, they are susceptible to hyperparameter settings
and necessitate manual adjustments when applied to diverse
datasets. Furthermore, when confronted with cell populations
exhibiting high density and heterogeneity, these methods gen-
erally tend to have a decline in precision or an increase in false
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positives [8], [17], [18]. Unlike traditional methods, state-of-
the-art cell detection techniques rely on training deep neural
networks [4]-[6], [11]. Achieving a high level of accuracy in
cell counting using neural network-based models demands
extensive and data-intensive training. Despite the need for
a substantial amount of data and comprehensive annotation,
Cellpose [4], [5] and Stardist [6] have demonstrated partic-
ularly promising outcomes and have garnered considerable
attention recently. Their popularity is primarily due to their
remarkable accuracy on specific datasets. Nevertheless, they
are resistant to interpretability, and the performance highly
depends on the quality and appropriateness of the training
data set.

Despite being popular, Cellpose and Stardist are still sus-
ceptible to variations in cell density, shape, and size. For in-
stance, Kleinberg et al. [19] revealed that the Stardist trained
model showed greater precision in estimating cell counts,
particularly in regions where cells were in close proximity
or even over-clumped, in comparison to Cellpose. However,
in situations where the cell distribution was sparse, Stardist
had a higher likelihood of producing inaccurately detected
cells, whereas Cellpose appeared to exhibit greater resilience
under such conditions. These findings suggest that utilizing
an ensembling technique can harness the strengths of indi-
vidual methods, leading to a substantial improvement in cell
detection performance.

Ensemble approaches are a sophisticated method for con-
structing multiple models with the goal of achieving im-
proved results [20]. There exists only a limited number of
studies on the subject of cell counting through an ensembling
approach [21]-[26]. For instance, [25] ensembles the output
of three models, where each model utilized the same archi-
tecture but trained on different image batches. As another
example, [26] uses an ensembling methodology to combine
the outputs of five models to segment cells from 3D volume.
Each model was trained with a different number of frames,
i.e., a model seeing one frame, a model seeing three frames,
etc. This way of ensembling helps eliminate low-confidence
markers and merge overlapping segmentations to detect and
count mimicked circulating tumor cells (mCTC). On the other
hand, all of these studies necessitate training or fine-tuning of
every model to enhance predictive accuracy, which is time-
consuming and laborious. Due to the challenges associated
with training, there exists a significant demand for a novel
approach, particularly in the context of ensemble approaches.

There are two main highlights of this study:

« We introduce a novel guided-ensembling technique that
leverages two state-of-the-art cell detection methods,
which have been trained with billions of cell images,
with no additional retraining or fine-tuning. Experiments
on three different cell counting datasets have shown
that the guided-ensembling approach outperformed the
separately used techniques.

o Contrary to most of the existing studies in this domain,
we compare the results in images with high congestion
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FIGURE 1. Top level view of the process.

diversity and tissue noise, which creates many artifacts
in sparse regions and causes vague segregation of cells in
congested regions. We show the effects of the heuristic
approach on these harder-to-process images.

lll. METHODOLOGY

This approach involves the integration of state-of-the-art cell
segmentation models with a hard decision-making mecha-
nism that relies on the size of the cell clusters. Fig. 1 shows
the block diagram of the proposed approach. The objective
of the proposed approach is to take advantage of the need for
additional training by finding optimal regions for each model.
Due to variations in training sets and network structures
across models, each model is expected to show outstanding
detection performance for specific areas in a given image. To
maximize the performance of different models, the proposed
study attempts to solve the cell counting problem by imple-
menting a two-step approach. In the first phase, the algorithm
produces segmentation masks of an image. The next step
includes the utilization of Otsu’s algorithm to extract areas
containing cellular presence and then assigning each area to
a model based on cellular density.

For convenience, in the rest of the paper Mcp, Msp, and
Mg will denote three different detection methods, Cellpose,
Stardist, and the proposed guided ensembling methods, re-
spectively. The proposed approach will be explained compre-
hensively in the following sections.

A. CELL SEGMENTATION VIA CELLPOSE AND STARDIST
For M¢p, we used the pretrained "cyto" model, which predicts
the probability of a pixel being inside a cell, the flows of
pixels toward the center of a cell in X and Y for each pixel. It
utilizes a standard U-Net backbone with 32 layers of blocks.
Each block consists of 3x3 convolution and max pooling (or
upsampling). Mcp was trained with 540 images that have
more than 70,000 cells.

As for Mgp, we used the pre-trained model "2D_versatile_fluo"

as , which was trained with a subset of the DSB2018 nuclei
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segmentation dataset [27]. It predicts for every pixel a star-
convex polygon for the cell instance at that position. On
top of the popular U-Net architecture [28], an additional 33
convolutional layer with 128 channels (and relu activations)
is added to avoid fight over features. Both methods accept a
grayscale image (R-channel for Dogys), I, as input.

B. GUIDED-ENSEMBLING APPROACH

The ensemble stage uses the original image / with the seg-
mentation masks Scp and Sgp. Users can fine-tune the algo-
rithms’ decision-making mechanisms by adjusting two exter-
nal parameters, namely Py.q. and Pipyeshols. The variable Py,
is anumerical value within the interval [0,1], which represents
the scaling factor applied to the threshold value obtained
through Otsu’s algorithm, as utilized in Section III-B1. The
variable P .snoiq 1S @ parameter that can assume any positive
integer value and serves to denote the threshold level for the
pixel area covered by a connected component. Sections I1I-B2
and IV-C provide an additional explanation of the utilization
of the parameters.

Initially, the algorithm produces a grayscale version of the
original image and then employs thresholding methodologies
to isolate areas that are densely occupied by cells. The con-
gested cell groups can be identified by the threshold algorithm
and indicated by each connected component produced by
the threshold algorithm. The presence of a significant cluster
is indicated by a large number of cells showing minimal
contrast variation with the surrounding background and being
near neighboring cells within the corresponding area. The
algorithm’s cell matching phase involves iterating through
each region and determining the cells to be included from the
input segmentation masks. The total number of cells in all
areas is then computed by adding up the counted cells.

1) Binary Mask Generation and Region Extraction

At first, the ensembling procedure will determine a threshold
value by means of Otsu’s algorithm. Then, this value will be
adjusted proportionally using an external parameter denoted
as Pyqle- The threshold value needs to be adjusted to include
cells that have lower brightness values. This procedure results
in the creation of certain insignificant artifacts that are related
to tissue noise. The algorithm prevents artifacts by eliminat-
ing regions that do not meet the minimum size threshold to be
categorized as cells. Following the generation of the mask, the
region props tool in MATLAB is used to extract each region.

2) Matching and Counting Cells

The algorithm evaluates each region and determines the ap-
propriate segmentation mask to include the cells. The algo-
rithm analyzes the area size of each cell and then examines
the overlapping cells from Sgp if the area size exceeds the
specified threshold parameter. If the value falls below the
specified threshold parameter Py egi0ia, the algorithm pro-
ceeds to search for overlapping cells in Scp. For a cell to
be considered part of a given region, it is necessary that it
has a minimum overlap of 50%. This method additionally
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assigns new labels to all cells obtained from the segmentation
masks and transfers them to an intermediary segmentation
mask. The algorithm provides the total number of cells of the
intermediate mask.

IV. EXPERIMENTS
This section presents the experimental findings for each
dataset.

A. DATASET

Three data sets were used in the experimentation. The Broad
Bioimage Benchmark Collection website offers two pub-
licly accessible datasets, namely BBBC004 [29], [30] and
BBBCO039, as documented in [31]. Each of the mentioned
datasets consists of images obtained through fluorescence
microscopy. From now on, the data sets shall be denoted
as Dogig', Dca, and D¢sg, respectively. Table 1 presents an
overview of the data sets mentioned.

Dataset Name Number of Images Image Resolution
Doric 290 1924x2572

Dc3g 200 520x696

Dca 300 950x950

TABLE 1. Dataset names, number of images, and image resolutions.

The sample denoted as Dogyg includes fish brain cells that
have been magnified by a factor of 20. Cells show significant
variability in terms of counts, congestion, and tissue noise.
The images provided have high resolution, measuring 2572
pixels in width and 1924 pixels in height. On average, the di-
ameter of the cells measures 20 pixels. All cellular structures
have uniform sizes and shapes. A total of 290 images have
been reported, each with a reported count of the total number
of cells in existence. A total of twelve images in the data set
have point annotations.

The datasets denoted as D¢4 and D39 include fluorescent
microscopy images that are supported by annotations of the
cell count and foreground. These properties provide consis-
tency to the outcomes in relation to Dogyg, thus enhancing
the reliability of the following comparisons. The images show
different cell congestion patterns that match the character-
istics of the Dogjc dataset. The images obtained from D¢y
and D¢39 show comparatively lower levels of congestion and
tissue noise, making them easier to process using state-of-the-
art cell counting models in contrast to Dogjc.

The dataset denoted by D¢y comprises artificially pro-
duced cellular images showing different levels of congestion
probabilities, namely 0%, 15%, 30%, 45%, and 60%. One
hundred images have been distributed into five subsets, each
showing distinct levels of congestion. Each image contains
a total of 300 individual units. Foreground segmentation can

IBilkent University Local Animal Ethics Committee (HADYEK) ap-
proved the animal ethics protocols of this data with the following approval
dates and numbers: July 10, 2015, with protocol number 2015/31 and Febru-
ary 21, 2018, with protocol number 2018/4.
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also be obtained. The dimensions of each image are 950 pixels
for both width and height.

The dataset denoted by D¢39 includes a total of 200 U20S
cellular images. The resolution of each image is 520x696
pixels. The ground truth data related to foreground segmen-
tations, outlines, and cell counts are accessible.

B. RESULTS

This subsection provides an analysis of the results obtained
from the proposed approach. Trendlines are included in the
cell count plots for each method to enable a comprehensive
comparison. The results of the cell counts obtained by each
method for each manual cell count can be seen in Fig. 2.
Note that some images show identical manual cell counts,
which allows for the possibility of a method that includes
multiple markers that are vertically aligned. Each method has
a trendline that fits its results. The trendline for the variable
Mg shows a higher degree of closeness to the results of
manual counting, in contrast to the trendlines of M¢p and
Mgp. This implies that the accuracy of M, is better in general.
The values of Pseqe and Pyesnoia for the given dataset have
been set as 0.8 and 10000, respectively.

Comparison of Cell Counting Methods for Dogjg
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FIGURE 2. Cell count results for Dgg,c. The X-axis denotes manual cell
counts, and Y-axis denotes calculated cell counts for images. Red
triangles indicate Stardist results. Blue squares indicate Cellpose results.
Green circles indicate ensemble results. The gold trendline indicates the
manual counts.
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FIGURE 3. Cell count results for D¢34. The X-axis denotes manual cell
counts, and Y-axis denotes calculated cell counts for images. Red
triangles indicate Stardist results. Blue squares indicate Cellpose results.
Green circles indicate ensemble results. The gold trendline indicates the
manual counts.
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FIGURE 4. Cell count results for Dc,. The X-axis denotes each image in
the data set, and Y-axis denotes calculated cell counts for images. Red
triangles indicate Stardist results. Blue squares indicate Cellpose results.
Green circles indicate ensemble results. The gold trendline indicates the
manual counts.

The results of the calculated cell count for each manual cell
count are presented in Fig. 3. The graphical representation
shows characteristics identical to those of Fig. 2. The close-
ness between the green trendline (M) and the gold trendline
(manual counts) is visible. The present data set has values of
0.8 and 800 for Pjcqpe and Pypresnod, respectively.

The performance of all methods for the D¢y data set is
shown in Fig. 4. Given that the initial subset showed a con-
gestion probability of exactly 0%, all methods effectively
achieved cell segmentation. As the congestion rate increased,
all techniques showed a deviation from the ground truth
values. It is notable that the trendlines for Mg and Mp show
a significant degree of overlap. Although the proposed ap-
proach did not result in a statistically significant improvement
in this particular dataset, the results indicate that overall per-
formance is limited by the benchmark methods. The values of
Pycate and Pipresnoia for the given dataset have been set as 0.7
and 500, respectively.

The segmentation masks corresponding to each method are
represented by the green outlines in their respective segmen-
tation figures in Figs. 5, 6, 7 and 8. The blue outlines denote
segmentations that are problematic, covering cases of false
positives, over-segmentations, and under-segmentations.

The graph shown in Fig. 5 illustrates the point at which Mp
begins to consider densely populated cells as a single unit,
whereas M ¢p ignores these regions entirely. The utilization of
Mgsp is intended to improve cell counts in densely populated
regions as the primary goal of this study.

Both Fig. 5 and Fig. 6 show false-positive cell detection in
low-intensity areas due to background interference. However,
the impact of these extra cells is negligible since they can be
readily eliminated through thresholding or similar method-
ologies.

The segmentation outcomes of all methodologies for the
D¢,y data set are shown in Fig. 7 and Fig. 8. Despite a
few variations in the count results, the segmentation results
show a high degree of similarities. It is challenging to make
comparisons or observe enhancements as both M¢p and Msp
show near-perfect performance for images that are relatively

VOLUME 11, 2023
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FIGURE 5. A portion of the segmentation results for an image from Dgg/c FIGURE 7. A portion of the segmentation results for an image with 15%
where both methodologies under-segment. overlap probability in D¢,.

Image Cellpose Image Cellpose

' ~AOQT

FIGURE 6. A portion of the segmentation results for an image from Dog g FIGURE 8. A portion of the segmentation results for an image with 60%
where both methodologies over-segment. overlap probability in D¢,.
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simple to process. are placed in the unnumbered footnote on the first page, not

here.

C. PARAMETER ANALYSIS

Despite the observations of enhancements across all datasets,
the proposed approach showed constraints for specific im-
ages. In the context of our experimentation, it was observed
that there were cases where the accuracy of the results ob-
tained from Mg was comparatively lower than those obtained
from Mcp and Mgp. This section will discuss the external
parameters that we used and their effects on the ensemble
process.

As stated previously, the scaling factor Py, is used to
reduce the value of Otsu’s threshold. This phenomenon im-
proves the ability of Mg to detect cell clusters showing lower
brightness levels, thereby increasing the recall rate of the
algorithm. As a result, the proposed approach is expected to
improve the detection of a more significant number of cells
that also exist in the ground truth. Nonetheless, a lower scale
may increase the algorithm’s potential for tissue noise. Re-
gions with high background brightness (and a lower contrast
difference in the cells) are more responsible for generating
false positives.

The usage rates of Scp and Ssp are determined by the value
of Pipreshola- Selecting a threshold value that is either exces-
sively high or excessively low may result in the nullification
of the proposed approach’s effects, as the algorithm will show
a preference for one segmentation result over the other. If the
value is set too high, the counting results will converge to
M p results, whereas if it is set too low, the count results will
converge to Mgy, results.

V. CONCLUSION

Cellpose and Stardist are two of the best state-of-the-art image
segmentation models currently available. Although they are
capable of meeting the majority of a researcher’s require-
ments, they need help with processing images with densely
populated cell clusters and tissue interference. It is often not
feasible to provide further training to these models in order to
address their errors, as this process can be prohibitively costly
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