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A B S T R A C T   

Based on our expectations about material properties, we can implicitly predict an object’s future states, e.g., a 
wine glass falling down will break when it hits the ground. How these expectations affect relatively low-level 
perceptual decisions, however, has not been systematically studied previously. To seek an answer to this ques
tion, we conducted a behavioral experiment using animations of various familiar objects (e.g., key, wine glass, 
etc.) freely falling and hitting the ground. During a training session, participants first built expectations about the 
dynamic properties of those objects. Half of the participants (N = 28) built expectations consistent with their 
daily lives (e.g., a key bounces rigidly), whereas the other half learned an atypical behavior (e.g., a key wobbles). 
This was followed by experimental sessions, in which expectations were unmet in 20% of the trials. In both 
training and experimental sessions, the participant’s task was to report whether the objects broke or not upon 
hitting the ground. Critically, a specific object always remained intact or broke - only the manner in which it did 
so differed. For example, a key could wobble or remain rigid but never break. We found that participants’ re
action times were longer when expectations were unmet, not only for typical material behavior but also when 
those expectations were atypical and learned during the training session. Furthermore, we found an interplay 
between long-term and newly learned expectations. Overall, our results show that expectations about material 
properties can impact relatively low-level perceptual decision-making processes.   

1. Introduction 

Objects are made of or consist of materials that determine their 
physical properties. Through a lifetime of experiences, we form long- 
term expectations about the associations between objects and their 
physical properties (Buckingham, Cant, & Goodale, 2009; Fleming, 
Wiebel, & Gegenfurtner, 2013). Based on these learned associations, we 
can predict future states of objects under different forces (Alley, Schmid, 
& Doerschner, 2020). For instance, when we hold a teacup in our hand, 
we will be careful not to drop it because we can predict what will happen 
if it falls to the ground. On the other hand, we would not worry a lot if a 
piece of cloth slipped from the grip of our hand. Such expectations are 
believed to influence behavior through top-down processes and may 
often be implicit (Kersten, Mamassian, & Yuille, 2004; Kveraga, Avniel, 
& Bar, 2007; Alley et al., 2020). Indeed we become aware of our ex
pectations only when we encounter a situation in which they are unmet 
or violated, as illustrated in Fig. 1. Such surprise effects are an important 
aspect of human experience, and are not only of great interest to 

researchers but also to artists and designers who use them strategically 
in their works (see, for example, Ludden, Schifferstein, & Hekkert, 2008; 
Ludden, Schifferstein, & Hekkert, 2009). 

Here we study the effect of long-term and newly acquired, context- 
dependent expectations about material properties on the speed of rela
tively low-level perceptual decisions. A great number of studies have 
shown that observers perceive expected stimuli faster (Stein & Peelen, 
2015; Wyart, Nobre, & Summerfield, 2012; Summerfield & de Lange, 
2014). Those studies, however, usually focused on the identification of 
static stimuli. Only a few studies tested the effect of expectation about 
material properties in dynamic scenes (Alley et al., 2020). In their study, 
Alley et al. presented participants with computer animations of objects 
that were falling down and behaving in a predicted or surprising way 
upon hitting the ground. For example, a teacup could shatter as pre
dicted or, surprisingly, wrinkle like a piece of cloth. The task of the 
observers was to judge as quickly and as accurately as possible one of 
four material attributes of the objects in each trial, which were hardness, 
gelatinousness, heaviness, and liquidity. Alley et al. found that long- 
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term expectations bias the perception of material attributes of familiar 
but not unfamiliar objects. For example, a spoon that wrinkles upon 
impact was judged harder than a piece of cloth that also wrinkles. 
Further, they showed that the reaction times were longer in the sur
prising trials than in expected trials for familiar, but not for unfamiliar 
objects. In the current study, we use a paradigm similar to that in Alley 
et al. We present observers with computer animations of familiar objects 
falling down and behaving in a predicted or surprising way upon hitting 
the ground. Unlike in the experiment by Alley et al., we do not ask ob
servers to judge material qualities which engage mid to high-level visual 
processes (Fleming, 2014; Anderson, 2011; Schmid & Doerschner, 
2018), but instead target relatively low-level perceptual decisions: the 
task of the observers was simply to answer the question “did the object 
break?” Breaking, after hitting the ground, is usually characterized by a 
typical motion pattern where a uniform vertical trajectory is followed by 
a fast radial motion pattern. Thus breaking entails a fairly low-level 
motion cue, i.e., sudden changes in motion direction and speed that 
can be detected by low-level visual mechanisms (Burr & Ross, 1986). 
Importantly, in our experiments, breaking objects always break, and 
non-breaking objects always remain intact upon hitting the ground in 
both predicted and surprising conditions. Thus, the correct response for 
the same object, whether surprising or predicted, does not change, 
eliminating a response preparation confound. With this paradigm and by 
assessing reaction times (RTs) of observers’ judgments about whether 
breaking occurred, we are able to assess the effect of expectations about 
material properties on relatively low-level perceptual decisions. 

In short, our research question is whether expectations about mate
rial properties affect low-level perceptual decisions. We hypothesize 
that if they do, then RTs should be different under the predicted and 
surprising conditions. To anticipate, under two different experimental 
manipulations and with two groups of participants, we found that RTs 
are indeed longer for the surprising trials. Further, we found an inter
esting interplay between long-term expectations and newly formed ex
pectations based on context-dependent regularities, for which we 
propose possible explanations. 

2. Materials and methods 

2.1. Participants 

Twenty-eight participants participated in the experiment. All had 
normal or corrected to normal vision and were naive to the purposes of 
the experiment. Participants gave their written informed consent before 
the first experimental session, in line with the guidelines of the Decla
ration of Helsinki. Experimental protocols and procedures were 
approved by the Research Ethics Committee of Bilkent University, 
Turkey. 

2.2. Stimuli presentation 

An LCD color reference monitor (Eizo CG2730, 27 inches, 2560 x 
1440 resolution, 60 Hz refresh rate) was used for stimulus presentation. 
The monitor was the only light source in an otherwise completely dark 
room where the experiment took place. Participants sat on a chair and 
viewed the monitor from a distance of 60 cm. A chin rest was used to 
minimize the head movements. The experimental paradigm was pro
grammed with Psychtoolbox (Brainard, 1997) on MATLAB version 
2018a (MathWorks Inc., New York, NY, USA). 

Stimuli were generated by a professional graphic artist (Aleksa 
Radakovic) using commercial software (Cinema 4d) and consisted of 
computer animations of six objects that act in a certain way when 
dropped on the ground; three of them break upon hitting the ground 
(breaking objects: wine glass, pot, and teacup) and the other three do not 
break (non-breaking objects: spoon, key, and rod). Each animation 
consisted of 46 frames. In all animations, the objects hit the ground in 
frame number 15. There were two animations for each object. In one set 
of animations, objects behaved in a natural way upon hitting the ground. 
Specifically, breaking objects shattered, and non-breaking objects 
bounced rigidly after they hit the ground. In the other set, objects 
behaved in an atypical way upon hitting the ground: breaking objects 
graveled and non-breaking objects wobbled. Fig. 2 shows examples of 
these natural and atypical behaviors. 

Fig. 1. As soon as we see a teacup start falling down, our visual system predicts what might happen to it: if not caught, the cup will hit the ground and shatter. If the 
cup wrinkles as a piece of cloth upon hitting the ground, we will be surprised and even amazed. Because our expectations and the visual input mismatch (Alley 
et al., 2020). 
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2.3. Experimental design 

Participants were divided into two groups; natural group and atyp
ical group. Each participant underwent a training session followed by an 
experimental session. During the training session, participants in the 
natural group were presented with animations where objects behaved 
naturally, whereas participants in the atypical group were presented 
with animations where objects behaved atypically (20 trials for each 
object). Thus, the newly formed context-dependent expectations about 
an object’s material properties in the atypical group were different from 
the already existing long-term expectations. 

During the experimental session, 10 animations were shown for each 
object. Of those 10, 8 were the same as in the training session (naturally 
behaving objects for the natural group, atypically behaving objects for 
the atypical group). We call these predicted trials. The remaining 2 trials 
were from the untrained category (atypically behaving objects for the 
natural group, naturally behaving objects for the atypical group). We 
call these surprising trials. The order of presentation was randomized in 
all sessions. Fig. 3 shows example sequences of trials for training and 
testing sessions for both groups (natural & atypical). 

All sessions started with an instruction screen, followed by the ani
mations as soon as any key was pressed. All animations were preceded 
by a 1-s blank screen with a central fixation cross. Each animation was 
1.53 s long (46 frames, 30 frames per second). The task was to answer 
the question, “Did the object break?” by pressing the corresponding keys 
for ”yes” and ”no” on the keyboard after the object hit the ground. In the 
training session, an error sound was delivered if the participant 
answered the question before the object hit the ground. Reaction times 

were measured from the time an object made an impact on the ground 
(15th frame) to the time when the participant pressed a key. The next 
trial did not start until the observer responded. 

2.4. Analysis 

Analyses were performed on MATLAB version 2018a (MathWorks 
Inc., New York, NY, USA) and RStudio (RStudio Team, 2020). For the 
training session, data from trials in which reaction times were negative 
(i.e., a response was made before the object hit the ground) were 
excluded from analyses. For the experimental session, data from trials in 
which reaction times were negative or did not fall within the  ± 3SD of 
the mean were excluded from analyses (a total of 24 out of 1680 data 
points excluded). 

The histogram of the raw reaction time data indicated that they were 
skewed and not normally distributed. To remedy this, before any sub
sequent analysis, we transformed the RTs using a Box-Cox trans
formation. Note, to make interpretation of the results easier, we use raw 
RTs in the figures and when we report means in the text. Next, we ran 
two omnibus Linear Mixed Models (LMMs), one for the training RTs, and 
one for the experimental RTs, using the ‘lme4’ package (Bates, Mächler, 
Bolker, & Walker, 2015) in RStudio (RStudio Team, 2020). For both 
models, the transformed reaction times were included as the dependent 
variable, and the between-subject variance was estimated using a 
random intercept in the model. For the training, we wanted to investi
gate to what extent the training modulated reaction times in natural and 
atypical groups. To answer this question, we wanted to contrast RTs in 
the beginning (first five trials) and the end of the training session (last 

Fig. 2. Six objects used as stimuli and their natural 
and atypical behaviors. For the participants in the 
‘natural group,’ natural behavior was predicted, and 
atypical behavior was surprising. For the participants 
in the ‘atypical group,’ atypical behavior was pre
dicted, and natural behavior was surprising. These 
expectations were formed through a training session 
before the main experiment. See text and Fig. 3 for 
details about the training procedure. Click here to 
view or download a video clip showing sample stim
uli. [Please refer to video “sampleStimuli.mp4” under 
the supplementary section].   
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five trials) for each group (we call this predictor ‘time’). Thus our 
‘training’ LMM model included time, group, and their interaction as 
fixed effects: 

RT ∼ Time × Group+(1|participant ID). (1)  

For the experiment, we wanted to find out to what extent RTs might be 
modulated by the experimental condition (predicted vs. surprising), the 
type of the object, i.e., how its material reacted to impact force (breaking 
vs. non-breaking), and the group (natural vs. atypical). Thus the 
‘experiment’ model included condition, group, object, and their two- 
way and three-way interactions as fixed effects: 

RT ∼ Condition × Group × Object+(1|participant ID). (2)  

To calculate the significance of the fixed effects, we used the ‘lmerTest’ 
package (Kuznetsova, Brockhoff, & Christensen, 2017), which uses 
Satterthwaite’s method to estimate the degrees of freedom and generate 
p-values for linear mixed models. Any potential post hoc analysis for 
pairwise comparisons of estimated marginal means was done with the 
‘emmeans’ package (Lenth, 2023) using a Tukey correction. Percent 
correct responses were compared between expected and surprising 
conditions for each group using a two-tailed Student’s t-test, correcting 
for multiple tests (alpha = 0.025/2). 

3. Results 

3.1. Training session 

Using linear mixed model analysis that included time (first vs. last 
five time points) and group (natural vs. atypical) and their interaction as 
fixed effects, we found that time (F(1) = 63.3, p < 0.001), and the 
interaction of time and group (F(1) = 19.06, p < 0.001) significantly 
modulated RT. The main effect of group was not significant. To follow 
up the interaction, we conducted pairwise comparisons of RTs within 

each group and found that only for the atypical group, the difference in 
RT between initial and final trials was significant (p < 0.001). Fig. 4 
shows the mean RTs as a function of trial number in the training session 
as well as the mean RTs for only the first and last five trials of the 
training for each group. The latter clearly illustrates the significant 
interaction found in the LMM, which suggests that training effects were 
strongest for the atypical group. 

Fig. 3. Experimental Design: Each participant underwent a training session before the experimental session. Participants in the natural group were trained on 
naturally behaving objects, while participants in the atypical group were trained on atypically behaving objects. In the experimental session, contextual expectations 
formed in training sessions were unmet in 20% of the trials. 

Fig. 4. Reaction times (RTs) from the training sessions of both groups as a 
function of trial number. The blue solid line shows mean RTs for the natural 
group (across 14 participants), and the pink line shows mean RTs for the 
atypical group (across 14 participants). Shaded regions are the 95 percent 
confidence interval around the mean. Thick horizontal solid lines show mean 
RTs on the first and last 5 trials. Overall, RTs get shorter as the session pro
gresses. This training effect is stronger for the participants in the atypical group, 
who were trained on the atypical behavior. 
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3.2. Experimental session 

Before conducting the LMM analysis on RTs, we wanted to verify that 
there was no difference between expected and surprising conditions in 
terms of performance (percent correct) in the behavioral task (indicating 
whether an object broke or not). A two-tailed Student’s t-test yielded no 
statistically significant differences between the percentage of correct 
responses of predicted (average 98.6%) and surprising (average 98.5%) 
conditions. Next, using linear mixed model analysis that included con
dition (predicted vs. surprising), group (natural vs. atypical), object 
(breaking vs. not breaking), and their interaction as fixed effects, we 
found that condition ((F(1) = 60.44, p < .001), object (F(1) = 16.54,
p < .001), the interactions between object and group (F(1) = 29.95,
p < .001), and object and condition (F(1) = 15.66,p < .001), as well as 
the interaction between condition, group, and object (F(1) = 17.81,
p < .001), all significantly modulated RT. Table 1 reports the corre
sponding estimates of all fixed effects. 

Figs. 5–7 aid in interpreting the significant effects found in the LMM 
analysis. Overall, across conditions, RTs were longer in the surprise 
condition (meanRT = 619.2 ms) than in the predicted one (meanRT =
510 ms; Fig. 5, difference between dark and light blue bars). The same 
pattern is present in nearly every participant (Fig. 6) and and is also 
manifested in the negative value of the estimate of the predictor con
dition (Table 1): the condition ‘predicted’ is a negative predictor of RT 
surprising (which is used as the reference category in the model). 

The presence of this significant main effect, in essence, would answer 
our main research question, namely whether expectations affect the 
speed of making perceptual decisions and whether participants take 
longer when their expectations are unmet. The main effect of condition, 
however, has to be interpreted in light of the two- and three-way 
interaction(s) with object and group, which we will focus on next. 

The interaction between condition and group can be understood by 
inspecting Fig. 5: while the difference between predicted and surprise 
conditions was significant for both groups (p < 0.01), it was somewhat 
larger in the natural than in the atypical group. We also found an 
interaction between condition and object, with RTs under the surprising 
condition for the non-breaking objects (mean = 671 ms) being, on 
average, significantly longer than those for the breaking objects (mean 
= 576.5 ms, p < .001), whereas RTs under the predicted condition did 
not differ for the two object types (mean for breaking = 510.1 ms, mean 
for non-breaking = 509.9 ms, p = 0.99). Further, Fig. 7 reveals the cause 
for the significant three-way interaction between condition, group, and 
object: the difference between the RTs of predicted and surprising 
conditions was significant only for the non-breaking objects in the nat
ural group (p < 0.001), and conversely, only for the breaking objects in 
the atypical group (p < 0.05). All significant pairwise comparisons are 
listed in Table 2. 

Taken together, these interactions do not invalidate the main effect 
of condition; instead, they paint a more interesting picture of how ex
pectations affect the speed of making perceptual decisions, which we 
will discuss below. 

4. Discussion 

Here we studied the effect of expectations about material properties 
on the speed of relatively low-level perceptual decisions. We presented 
computer animations of objects falling down and asked the participants 
to report as soon as possible whether the objects broke or not upon 
hitting the ground. We found that participants were slower to make this 

Table 1 
Linear mixed model fixed effect estimates from the experimental session. Esti
mates and standard errors correspond to Box-Cox transformed RTs. (Significant 
effects are in bold.)  

Predictors Estimates CI p-Value 

Intercept 26.04 24.47 – 27.60 < 0.001 
Condition (Predicted) − 0.91 − 1.13 – 

− 0.68 
< 0.001 

Object (Breaking) − 0.47 − 0.70 – 
− 0.25 

< 0.001 

Group (Natural) 0.76 − 0.81 – 2.33 0.342 
Condition (Predicted) x Object 

(Breaking) 
0.46 0.23 – 0.69 < 0.001 

Condition (Predicted) x Group (Natural) − 0.22 − 0.45 – 0.00 0.054 
Object (Breaking) x Group (Natural) − 0.64 − 0.87 – 

− 0.41 
< 0.001 

Condition (Predicted) x Object 
(Breaking)    

x Group (Natural) 0.49 0.26 – 0.72 < 0.001  

Fig. 5. Mean RTs of predicted and surprising conditions averaged across par
ticipants. When expectations are unmet, whether natural or atypical, perceptual 
decisions are delayed (post hoc pairwise comparison of estimated marginal 
means are significant, *: p < 0.01). This effect tends to be stronger in the nat
ural group. The error bars represent SEM. 

Fig. 6. Mean RTs per participant in the experimental session for (A) natural 
and (B) atypical groups. Light and dark blue bars denote mean RTs in the 
predicted and surprising conditions, respectively. Error bars correspond to SEM. 
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judgment when their expectations about the material properties were 
not met. Furthermore, this was true even when participants were trained 
to predict an atypical behavior, for example, that a candle stick wobbled 
as if made of jelly. The pattern of our results can not be explained by 
motor response preparations because whether under the predicted or 
surprising condition, for a given object, the correct response was always 
the same: breaking objects always broke, and intact objects always 
remained intact. Motion statistics, on the other hand, might have 
affected the RTs. For example, it could be easier to decide that an object 
remains intact with the motion statistics of a rigid body compared to a 
gelatinous one. Those low-level motion statistics alone, however, cannot 
completely explain the differences between the two experimental 
groups. Because if motion statistics alone determined the responses, we 
would find the same pattern of RTs for both groups; namely, participants 
would always be quicker on the trials of a certain motion type, for 
example, on the trials of rigid body motion. 

Expectations about material properties affect low-level 
perceptual processes. Our main finding is in line with previous 
studies. For example, Alley et al. (2020) found that unmet expectations 
delay participants’ decisions about material attributes. But unlike in 
most previous literature, in our study, the participant’s task was not 
about material attributes. And the participants did not need to attend to 
and process the material properties; they only needed to analyze the 
motion patterns after the objects hit the ground. Thus, a sensible strategy 

could have been to ignore or down-weigh the object-material associa
tions and instead focus entirely on the low-level motion patterns after 
the impact. Yet, we find that participants’ decisions were nevertheless 
affected by their expectations about material properties. This demon
strates that high-level expectations can affect low-level perceptual pro
cesses, even when those expectations are task-irrelevant. 

Training alters expectations. Our daily subjective experiences and 
previous research on the topic (Alley et al., 2020; Paulun, Schmidt, 
Assen, & Fleming, 2017; Schmid & Doerschner, 2018; Schmidt, Paulun, 
Assen, & Fleming, 2017) suggest that we form associations between an 
object and its typical material properties. These associations not only 
help us to recognize and identify the object and materials efficiently but 
also help in action planning and guiding our interaction with them 
(Buckingham et al., 2009; Doerschner et al., 2011; Sutter, Drewing, & 
Müsseler, 2014). 

Some long-term expectations are “stubborn” and do not easily 
change, but some can be altered under experimental conditions (Yon, de 
Lange, & Press, 2019; de Lange, Heilbron, & Kok, 2018). For example, 
Adams, Graf, and Ernst (2004) showed that “light from above” prior 
could be altered when participants are trained with haptic feedback. 
Similarly, Sotiropoulos, Seitz, and Seriès (2011) showed that “slow 
speed prior”, which explains many motion and direction illusions, can 
be altered through training sessions. The pattern of RTs we found in the 
current study is consistent with this literature. We found that RTs of the 
atypical group were longer under the surprising condition compared to 
the predicted condition, even though the predicted atypical behaviors 
were in conflict with the long-term expectations. In essence, participants 
learned new context-dependent expectations during the training session. 

RT data from the training session provides further insights into the 
progress of this learning. Firstly, the decrease in RTs was larger for the 
atypical group compared to the natural group. This was anticipated 
because only in the atypical group did participants learn new associa
tions and form new context-dependent expectations. At the beginning of 
the training sessions, RTs of the atypical group were longer than those of 
the natural group, which was also anticipated because the object be
haviors were atypical and not predicted based on long-term expecta
tions. But as the session progressed, the atypical group participants 
started to learn to expect the atypical behaviors in the context of the 
experiment, and their RTs decreased. Towards the end of the session RTs 
of the atypical group were equal to, and even slightly lower than RTs of 
the natural group. This further reduction might be related to an ‘oops’ 
factor, whereby a sequence of asynchronously presented mismatching 
cues can lead to efficient learning (Adams, Kerrigan, & Graf, 2010). 

Interplay between long-term expectations and context- 
dependent regularities. The overall effect of expectations, i.e., a 
larger RT difference between predicted and surprising conditions, ten
ded to be stronger in the natural group compared to the atypical group. 
For the natural group, where long-term expectations and context- 
dependent learned regularities were consistent, a strong expectation 
effect was indeed anticipated. Whereas for the atypical group, long-term 
expectations, which can often be strong (Seriès & Seitz, 2013), were in 
conflict with the newly acquired expectations. This conflict could have 
reduced the overall strength of the newly acquired context-dependent 
expectations in the atypical group. Further scrutiny revealed a signifi
cant effect of expectation for intact objects but not for breaking objects 
in the natural group. Conversely, for the atypical group, there was a 
significant effect for breaking objects but not intact objects. This finding 
might seem puzzling at first, but it can be explained by different 
strengths of long-term expectations. Long-term expectations for the non- 
breaking objects used in the experiment, such as the candlestick being 
rigid - rather than gelatinous, might be very strong, leading to the sig
nificant effect found for those objects in the natural group. These long- 
term expectations, however, strongly conflict with the context- 
dependent regularities for the atypical group and thus produce weaker 
new expectations and result in no effect for the non-breaking objects in 
that group. Conversely, for the breaking objects used in the experiment, 

Fig. 7. Mean RTs in the experimental session for breaking and non-breaking 
objects. The left side shows the results of the natural group, while the right 
side shows the results of the atypical group. Posthoc pairwise comparison of 
estimated marginal means is marked significant with ** for p < 0.001 and * for 
p < 0.05. Error bars represent SEM. For all significant pairwise comparisons, 
see Table 2. 

Table 2 
Follow-up contrasts for the three-way interaction of condition, group, and object 
that we found in the experiment. Only significant comparisons are listed. PRE: 
predicted, SUR: surprising, NAT: natural group, ATP: atypical group, BRK: 
breaking object, NBR: non-breaking object.  

contrast estimate SE df t.ratio p.value 

PRE BRK NAT - SUR 
NBR NAT 

− 4.4832 0.4632 1622.00 − 9.679 < .0001 

SUR BRK NAT - SUR 
NBR NAT 

− 4.1282 0.5887 1622.02 − 7.013 < .0001 

PRE NBR NAT - SUR 
NBR NAT 

− 4.1656 0.4630 1622.00 − 8.996 < .0001 

SUR NBR NAT - PRE 
NBR ATP 

5.5278 1.6474 29.82 3.355 0.0397 

PRE BRK ATP - SUR BRK 
ATP 

− 1.4240 0.4651 1622.00 − 3.061 0.0463 

SUR BRK ATP - PRE NBR 
ATP 

1.6902 0.4657 1622.01 3.629 0.0071  

A. Malik et al.                                                                                                                                                                                                                                   



Vision Research 208 (2023) 108223

7

long-term expectations to shatter might not be much stronger than the 
long-term expectations to gravel, leading to little or no effect of expec
tation in the natural group. But this time, because the long-term ex
pectations are weak, the newly-acquired expectations are stronger, and 
this results in a significant effect for the atypical group. Essentially, the 
pattern of our results indirectly reveals novel facts about the strength of 
various expectations about material dynamic properties. Note that, in 
principle, these conceptual arguments can be formalized in a Bayesian 
updating model, in which posteriors are computed iteratively in time 
(Urgen & Boyaci, 2021b; Bitzer, Park, Blankenburg, & Kiebel, 2014). 
Likewise, more mechanistic, iterative predictive processing models 
could be employed to establish a link between behavior and neuronal 
activity (Urgen & Boyaci, 2021a; Heeger, 2017). 

5. Conclusion 

To conclude, we found that unmet expectations about dynamic 
material properties delay perceptual decisions. We argue that high-level 
expectations about material properties affect relatively low-level 
perceptual processes even when those expectations are not directly 
task-relevant. Furthermore, we show that through training, participants 
form new context-dependent expectations. Those newly formed context- 
dependent expectations and long-term expectations together shape the 
perceptual processes. 
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