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Abstract
Purpose: This paper presents a novel computational approach to optimize
gradient array performance for a given pulse sequence. Specifically, we propose
an electromagnetic (EM) approach that minimizes eddy losses within the cryo-
stat while maintaining key performance parameters such as field linearity,
gradient strength, and imaging region’s dimension and position.
Methods: High-resolution EM simulations on the cryostat’s surface are
deployed to compute the net EM fields generated by each element of a gradient
array coil at different frequencies. The computed fields are stored and combined
for each frequency to form a quadratic vector–matrix–vector computation. The
overall time-average eddy power loss within the cryostat assembly for arbitrary
pulse sequences is computed using frequency domain superposition.
Results: The proposed approach estimates and regulates eddy power losses
within the cryostat assembly. When compared to the stray field minimization
approach, it can achieve over twice the reduction in eddy power loss. The pro-
posed approach eliminates the need to sample the stray fields on the cryostat
surface, which the number and position of the samples would be challenging
when designing tunable array coils with capabilities that disrupt field symme-
tries. Additionally, the loss calculation considers the entire cryostat assembly
rather than just the inner cylindrical surface of the warm shield.
Conclusion: Our findings highlight the efficacy of an on-the-fly tuning method
for the development of high-performance whole-body gradient array coils, effec-
tively mitigating eddy losses within the cryostat and minimizing stray fields
outside the coil assembly. This approach proves particularly advantageous for
array coils with variable feeding currents.

K E Y W O R D S

eddy loss, gradient field optimization, MRI gradient array coil, Poynting theorem

© 2023 International Society for Magnetic Resonance in Medicine

Magn Reson Med. 2023;1–14. wileyonlinelibrary.com/journal/mrm 1

https://orcid.org/0000-0001-5515-2472
https://orcid.org/0000-0002-6874-6103
http://wileyonlinelibrary.com/journal/MRM
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmrm.29921&domain=pdf&date_stamp=2023-11-27


2 TAKRIMI and ATALAR

1 INTRODUCTION

Modern high-performance whole-body gradient coils are
designed with active-shield coils to screen the fields gener-
ated by the primary coils such that the forces and torques
are balanced and the desired gradient fields are con-
fined inside the region of interest (ROI) with a minimum
stored magnetic energy and copper losses as well as min-
imum stray fields outside the coil assembly. Meanwhile,
the warm shield of the cryostat not only provides a solid
cylindrical bed for the gradient coil but also serves as an
additional passive screening wall, safeguarding the inner
cold shield of the superconducting magnet from eddy
currents induced by fast-switching stray fields generated
by multiple layers of gradient coils. Different analytic or
numerical methodologies1 have been published to address
the calculation and design of active-shield gradient coils
where the wire (strip) profiles are adjusted to minimize the
stray fields around the cryostat and optimize some perfor-
mance parameters like gradient intensity, field linearity,
and ROI size. Many of these approaches are based on the
well-known target-field method.2,3 Analytic eddy current
calculations combined with the stream-function method
were also formulated.4

The above design strategies work well for conventional
coils with a fixed magnetic field profile. However, in array
coils5–10 the feeding currents of the primary and shield
array elements are variable and depend on the required
magnetic profile at the time of imaging.7–11 Such on-the-fly
profile tuning poses the challenge of minimizing stray
magnetic fields near the warm shield while maintaining
the required performance parameters. The main challenge
is determining the number of target field points required
to achieve satisfactory performance parameters within the
ROI while minimizing stray fields on (and around) the
warm shield’s surface.12 Another design challenge is the
sensitivity of the solution to the number and location of
stray field sampling points around the cryostat. Note that
the total field sampling points can be significantly reduced
(by a factor of eight for both x- and y-gradient coils) with-
out compromising optimization, thanks to the inherent
even/odd symmetries of conventional gradient coils. To
further reduce the calculations for the z-gradient coil, 2D
models (rather than 3D) can be used. Unfortunately, when
array coils’ new capabilities enter the picture, most of
these reductions become inapplicable because the array
gradient coils11 are designed and optimized to address
many new features that disrupt field symmetries (such
as tuning the size, position, and linearity of the fields
within the ROI). Furthermore, recent array-based gradient
coils introduce new functionalities (such as regulating the
peripheral nerve stimulation threshold8 or reverse feeding
of the shield coil to increase the slew rate) that redefine

how we used them previously, necessitating the develop-
ment of new and fast calculation methods to compensate
for induced eddy currents.

In this work, using quadratic vector–matrix–vector
multiplication, we propose a fast method to estimate and
minimize the time-average eddy power losses within the
warm shield of the cryostat assembly by optimizing the
feeding currents. We demonstrate that based on the pro-
posed approach, the number and location of stray field
sampling points around the cryostat surface would no
longer be an optimization target. Additionally, we show
that the proposed approach is extendible for any pulse
sequence using superposition in the frequency domain. In
this work, the phasor notation with ej𝜔t time convention is
used and suppressed.

2 METHODS

2.1 Poynting theorem and eddy power
loss calculation

We utilize the Poynting theorem13 to calculate the
time-average ohmic eddy power loss in the warm shield’s
metallic body. For a body composed of a nondispersive
simple medium of volume V enclosed by surface(s) S, with
no impressed sources inside, the time-harmonic integral
form of the Poynting theorem reads:

∫V

1
2

(
E ⋅ J

∗)
dv+ 𝑗4𝜋f

[
∫V

1
4

(
B ⋅H

∗)
dv −∫V

1
4

(
E ⋅D

∗)
dv

]

= −∮S

1
2

(
E ×H

∗)
⋅ ânds (1)

where superscript (⋅)∗ denotes complex conjugate, ân is
the outward normal unit vector on the closed surface S,
J is the volume eddy current density, and f is the exci-
tation frequency. The first term in the equation repre-
sents the time-average conversion of the electromagnetic
energy generated by the gradient coils into thermal energy.
The second and third terms account for the time-average
stored (reactive) magnetic and electric energies within V .
We assume that the permittivity 𝜀, permeability 𝜇, and
conductivity 𝜎 are real constants (regardless of possible
temperature dependency), and therefore, all three volume
integrals are real. Four important aspects of using the
Poynting theorem in the loss calculation are:

1. It only requires sampling the fields on the surface(s)
of the specified volume rather than dealing with the
spatial distribution of the fields within it.

2. Only the normal component of
(

E ×H
∗)

with respect
to the surface(s) is needed to carry out the integral.
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TAKRIMI and ATALAR 3

3. Re
{
− ∮S

1
2

(
E ×H

∗)
⋅ ânds

}
represents the

time-average total ohmic power loss caused by induced
eddy currents.

4. Im
{
− ∮S

1
2

(
E ×H

∗)
⋅ ânds

}
returns the time-average

stored magnetic energy within the volume (since the
stored electric energy is negligible), which can be used
as the secondary cost function to be optimized.

The net magnetic field, denoted as H in Eq. (1),
encompasses different electromagnetic effects. These
include nonuniform current distribution across wire
cross-sections and the proximity effect when multi-turn
wire bundles serve as array elements. This is where com-
mercial full-wave electromagnetic (EM) solvers step in to
handle these phenomena. The fields produced by each ele-
ment of a gradient array coil in the presence of a cryostat
are simulated and captured for a set of frequencies with an
appropriate level of accuracy and spatial resolution. Once
recorded, the collected data enables superposition, facili-
tating the computation of the net EM fields for all array ele-
ments under various excitations. This EM-based approach
may require several hours of simulations, depending on
the number of array elements and the mesh size, but it only
has to be computed once.

2.2 Eddy power loss calculation for a
gradient array coil

Let r be the position vector specified by (𝜌, 𝜑, z) for
an arbitrary point in cylindrical coordinates. If E(r) =[
E𝜌(r),E𝜑(r),Ez(r)

]
and H(r) =

[
H𝜌(r),H𝜑(r),Hz(r)

]
repre-

sent the total net radial, circumferential, and axial time
harmonic EM fields generated by all array elements at a
given position r and frequency f , then the complex Poynt-
ing vector P = 1

2
E ×H

∗
yields:

P(r, f ) = 1
2
(

E𝜑H∗
z − EzH∗

𝜑

)
â𝜌 +

1
2
(
−E𝜌H∗

z + EzH∗
𝜌

)
â𝜑

+ 1
2
(

E𝜌H∗
𝜑
− E𝜑H∗

𝜌

)
âz. (2)

The cylindrical symmetry of the cryostat assembly
allows us to safely ignore the 𝜑 component in Eq. (2). The
net EM field generated by the nth array element is propor-
tional to the excitation current An,where n = 1..N, and N
is the total number of array elements. One can write an
expression for the total net EM field generated by all array
elements on the surface(s) of interest as:

Fu(r) =
N∑

n=1
AnFun(r) (3)

where F stands for either of electric or magnetic field,
the index u refers to any of its (𝜌, 𝜑, z) components, and
Fun represent the net radial, circumferential, or axial EM
field generated by the nth array element with unit input
excitation. Each of the four remaining Poynting terms in
Eq. (2), namely, E𝜑H∗

z ,EzH∗
𝜑
,E𝜌H∗

𝜑
, and E𝜑H∗

𝜌
is rewritten

as a double summation using Eq. (3) as:

P(A, r, f ) = 1
2

{ N∑
n=1

N∑
m=1

An
[
E
𝜑n (r)H

∗
zm (r) − Ezn (r)H

∗
𝜑m (r)

]
A∗

m

}
â
𝜌

+ 1
2

{ N∑
n=1

N∑
m=1

An
[
E
𝜌n (r)H

∗
𝜑m (r)−E

𝜑n (r)H
∗
𝜌m (r)

]
A∗

m

}
âz.

(4)

All four double summations in Eq. (4) are converted
into quadratic form as:

P(A, r, f ) = 1
2

A
(

T𝜑z−Tz𝜑

)
A
′
â𝜌+

1
2

A
(

T𝜌𝜑 − T𝜑𝜌

)
A
′
âz

(5)
where superscript (⋅)′ denotes complex conjugate trans-
pose and Tuv(𝜑, z) is a frequency and position-dependent
N × N complex matrix defined by:

Tuv(r, f ) ≜
⎡
⎢⎢⎢⎢⎣

Eu1 (r)
Eu2 (r)
⋮

EuN (r)

⎤
⎥⎥⎥⎥⎦

[
H∗

v1
(r) H∗

v2
(r) … H∗

vN
(r)

]
;u, v ∈ {𝜌, 𝜑, z}.

(6)

The total time-average complex power PCTotal delivered
to volume V enclosed by surface(s) S would be:

PCTotal(A, f ) = −1
2 ∮S

A
[ (

T𝜑z(r, f ) − Tz𝜑(r, f )
)

â𝜌

+
(

T𝜌𝜑(r, f ) − T𝜑𝜌(r, f )
)

âz

]
A
′
⋅ ânds. (7)

Since A is independent of the integration variables, we
can carry out the integrations for each element of Tuv(r, f )
by defining Q matrices as:

⎧
⎪⎪⎨⎪⎪⎩

[
Q

𝜑z(f )
]

m,n
=− 1

2 ∮S

([
T
𝜑z(r, f )

]

m,n
−
[

Tz𝜑(r, f )
]

m,n

)
â
𝜌
⋅ ânds

[
Q

𝜌𝜑
(f )

]

m,n
= − 1

2 ∮S

([
T
𝜌𝜑
(r, f )

]

m,n
−
[

T
𝜑𝜌
(r, f )

]

m,n

)
âz ⋅ ânds

;m,n=1 · · ·N.

(8)

Now, by defining:
[

Q
𝜌𝜑z(f )

]

m,n

def
=

[
Q

𝜑z(f )
]

m,n
+

[
Q

𝜌𝜑
(f )

]

m,n
;m,n = 1 · · ·N

(9)
Eq. (7) can be further simplified into a quadratic form
suitable for optimization purposes as:

PCTotal(A, f ) = A Q
𝜌𝜑z(f )A

′
(W). (10)
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4 TAKRIMI and ATALAR

Eq. (10) and its element-wise integrals in Eq. (8) are
presented in cylindrical coordinates for an axisymmetric
cryostat assembly but can be adapted to different forms
and coordinate systems. The versatility of the surface inte-
grals in Eq. (8) allows us to include areas that interact
strongly with the gradient fields, notably near cryostat
edges and side plates where magnetic fields generated by
coils are not properly canceled. Simulations will show how
these locations contribute to the overall ohmic power loss.

Due to the cylindrical symmetry for a z-gradient array
coil, only Hz,H𝜌 and E𝜑 exist, and they are independent of
𝜑. This reduces the cylindrical closed-surface integrals in
Eq. (8) down to 2𝜋𝜌 times the “closed-path integrals” along
the perimeter of the warm shield where 𝜌 is the local radius
of the closed path to be traversed. The fields and param-
eters are depicted in Figure 1. In Eq. (8), we choose S as
the outer surface of the warm shield, and consequently, the
closed path corresponds to the cross-section of the warm
shield denoted by the ABCD blue double line in Figure 1.
This choice proves useful because when the array coil oper-
ates in advanced mode,11 it generates significant magnetic
fields near the cryostat’s end plates. The advanced mode of
a gradient array coil provides a wide range of extra func-
tionalities where the performance parameters such as the
linearity, gradient strength, FOV position and diameter,
and slew rate are programmable.11 To the authors’ knowl-
edge, none of the published gradient array coil design and
tuning approaches account for induced currents and asso-
ciated power losses in the warm shield and both of the end
plates.

Back to Eq. (8), both Tz𝜑 and T𝜌𝜑 are zero because of

symmetry and only
[

T𝜑z

]

mn
=

[
E𝜑Hz

]
mn and

[
T𝜑𝜌

]

mn
=

[
E𝜑H𝜌

]
mn exist and are used for integrations. By adjusting

the limits and considering the direction of the unit vectors
as â𝜌 ⋅ ân = ±1 (AB or CD path) and âz ⋅ ân = ±1 (BC or
DA path), reduced surface integrals read:
⎧
⎪⎪⎨⎪⎪⎩

[
Q

𝜑z(f )
]

m,n
= 𝜋

[
∫

B

A
−∫

C

D

]
𝜌

[
E
𝜑m
(r) H∗

zn
(r)

]
m,ndz

[
Q

𝜌𝜑
(f )

]

m,n
= 𝜋

[
∫

C

B
−∫

D

A

]
𝜌

[
E
𝜑m
(r) H∗

𝜌n
(r)

]
m,nd𝜌

;m,n= 1 · · ·N.

(11)

After plugging the two N × N matrices into Eq. (9) and
then Eq. (10), we arrive at the total time-average complex
power PCTotal for a sinusoidal gradient waveform of fre-
quency f , delivered into the warm shield. These one-time
integral calculations are computed using the numerical
data integration package of Maple®.14 It is worth highlight-
ing that the spatial resolution of the sampled E and H
fields along the ABCDA path determines the time needed
to populate the matrices.

F I G U R E 1 A typical cylindrical warm shield of length 2Lc,
radii Rin and Rout and body thickness d (the thick blue double line)
and its cross-sectional view showing solely the inner and outer
surfaces. None of the inner layers/components of the cryostat are
considered here. The left, right, top, and bottom edges of the outer
surface and the starting and end points of these edges (A–D) are
shown and labeled. Both of the axial and radial net magnetic fields
on the outer surface are shown as Hz,H

𝜌
. The current J

𝜑
= 𝜎E

𝜑
is

also shown. The red ân unit vectors are normal to the integration
paths.

2.3 Eddy power loss calculation for an
arbitrary periodic excitation

Assume g(t) as a (real-valued) periodic waveform of period
T. Using the complex exponential representation of the
waveform, one can write:

g(t) =
∞∑

m=−∞
cme𝑗2𝜋 m

T
t
, cm =

1
T ∫T

g(t)e−𝑗2𝜋 m
T

tdt. (12)

The DC component c0 has no contribution. Moreover
|c−m|2 = |cm|2. Assuming An(t) = Ang(t) for n = 1 … N,
we can use Eq. (10) and deploy the superposition for the
average power associated with each harmonic and calcu-
late the grand total time-average eddy power loss as:

PLoss
g (A) ≅

M∑
m=1

|2cm|2Re
{

PCTotal

(m
T

)}

=
M∑

m=1
|2cm|2 Re

{
A Q

𝜌𝜑z

(m
T

)
A
′
}

(13)

where M determines the number of harmonics such that
the Fourier expansion in Eq. (12) resembles g(t). The
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TAKRIMI and ATALAR 5

level of resemblance can be determined by observing the
decreasing trend of |cm|. The frequency dependency of

Quv(f ) in Eq. (11) means that a set of Quv matrices at a rel-
evant set of frequencies are needed to accurately carry out
Eq. (13). Because the harmonic content of conventional
MRI pulse sequences is limited, a handful number of these
one-time Quv calculations would suffice for all purposes.

2.4 Eddy power loss calculation based
on Fourier transform

Assume a periodic gradient pulse sequence, say g(t), which
is used to drive MRI gradient coils every T seconds. One
can rewrite Eq. (13) as:

PLoss
g(t) (A) =

M∑
m=1

||||
2
T

G
(m

T

)||||
2
Re

{
A Q

𝜌𝜑z

(m
T

)
A
′
}

(14)

where G(f ) is the Fourier transform of the pulse g(t). It is
important to note that both Eqs. (13) or (14) consist of two
parts: (a) a truncated summation that depend on the shape
of the feeding waveform and the number of harmonics
used for approximation; (b) a quadratic expression in the
form of AQ

𝜌𝜑z(f )A
′

that depends on the geometrical struc-
ture of the coil elements and their feeding currents as well
as the harmonic frequency being excited. Such a separa-
tion between the waveform characteristics and coil shape
helps us to focus mainly on the unknown feeding cur-
rents during the optimization process without involving
the waveform itself.

2.5 An analytic expression for the
magnetic flux density of a z-gradient array
coil

The wire pattern for a z-gradient coil consists of coaxial cir-
cular annular wires. The axial component of the magnetic
flux density, BZ, created by a filamentary circular wire loop
of current I and radius a, at an arbitrary point of height h
and radial distance 𝜌 from its center is given by15:

Bz(a, 𝜌, h) = 𝜇0I

2𝜋
√
(a + 𝜌)2 + h2

[
K(k) + a2 − 𝜌

2 − h2

(a − 𝜌)2 + h2 E(k)
]
,

k2 = 4a𝜌
(a + 𝜌)2 + h2 (15)

where K and E are the complete elliptic integrals of
the first and second kinds. We assume the primary and
shield array coils collectively consist of N∕2 + N∕2 bundles
of annular wire loops of current Ai, i = 1 … N. The wire

bundles (each with nt turns) are uniformly spaced along
the z-axis. The array’s overall axial magnetic flux density
BArr

z at an arbitrary point (𝜌, z) inside and outside of the coil
(except within the wires) can be written as:

BArr
z (A, 𝜌, z) =

Nnt∕2∑
i=1

{
A⌈

i
nt

⌉Bz
(

Rp, 𝜌, z − wp,i
)

+A⌈
N
2
+ i

nt

⌉Bz
(

Rs, 𝜌, z − ws,i
)}

(16)

where ‘⌈ ⌉’ denotes the ceil function and wp,i and ws,i
are the primary and shield wire positions, respectively.11

Given that the fields generated by eddy currents within the
ROI are small in magnitude, the impressed longitudinal
Bz field in this region primarily stems from the gradient
coils, ensuring precise calculations of the Bz field becomes
imperative. This precision is achieved through Eq. (16).
It’s worth noting that this equation is not employed for
calculating the stray fields on or around the cryostat, as is
commonly done in various articles. The rationale behind
this distinction will be elaborated upon in subsequent
discussions.

2.6 Z-gradient coil structure
and dimensions

Three cylindrical conducting structures comprise a typ-
ical cryostat assembly: a stainless steel warm shield at
room temperature, an Aluminum cold shield at 50 K,
and a stainless steel spool at 4.2 K.16,17 We only include
the warm shield and simulate the fields and then cal-
culate the eddy power losses dissipated inside the warm
shield. The cold shield and the spool and their dedi-
cated ohmic power losses were not included to simplify
the numerical computations by reducing the number
of geometry discretizations. The 3D structure and its
half-cross-sectional view of the cylindrical cryostat are
shown in Figure 2A,B, respectively. All dimensions
and essential details are included in the caption to
shorten the text.

2.7 Optimization procedure

When designing an active-shielded gradient array coil
within a cryostat’s presence, two main approaches could
exist: (a) The first method involves computing the induced
eddy currents on12 (and more accurately inside) the cryo-
stat’s metallic body for all array elements. Secondary
fields within the ROI are ignored during optimization.
This is possible since the optimization process minimizes
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6 TAKRIMI and ATALAR

(A) (B)

F I G U R E 2 (A) The 3D structure of the proposed z-gradient array coils within a simplified cryostat subsystem (excluding the cold
shield and the spool). It consists of the cylindrical warm shield of thickness d = 5 mm, length 2Lc = 1.6 m, inner radius Rin = 0.47 m and two
welded end plates of width Wc = 30 cm. (B) The half-cross-sectional view of (A) with some other details. The primary array bundles are
labeled from #1 to #N∕2, and the shield array is labeled from #N∕2 + 1 to #N, with N = 48. (B) The center and radius of the ROI are shown by
Rc and Rr. The radial distance and height of the field sampling point are shown by P𝝆 and Pz. (A) The ABCD corner point introduced in
Figure 1 and the shifted ROI. The remaining coil parameters are: 2Lp = 1.3 m, Rp = 41 cm, 2Ls = 1.48 m, and Rs = 44 cm.

the eddy currents that create these secondary fields. (b)
Alternatively, the second approach considers induced eddy
currents within the cryostat and their secondary fields
on and inside the ROI for each array element. Opti-
mization is performed to achieve minimal eddy power
loss within the cryostat and the best field profile within
the ROI.

We opt for the first approach by enhancing the accu-
racy of calculating each array element’s contribution to
the total eddy losses. The overall eddy loss minimization
directly reduces both the stray fields on the cryostat’s sur-
face and the secondary fields within the ROI. This choice
requires less computation and ensures quicker responses,
a critical factor for real-time magnetic profile adjustments.
We are exploring the potential benefits of the second
approach in our future work.

We deploy a series of distinct constraints for each tar-
get point on and inside the ROI to achieve precise control
over the uniformity of the field gradient within the ROI,
especially when it is shifted.11 Additionally, in contrast
to minimizing the stray fields on the outer surface of the
warm shield, we attempt to minimize the time-average
eddy power loss provided by Eq. (10) or either of Eqs. (13)

or (14). This approach leads us to a quadratic minimization
problem

Given f ∶ min
A

{
A

[
𝛼eddyRe

{
Q

𝜌𝜑z(f )
}

+𝛼storeIm
{

Q
𝜌𝜑z(f )

}
+ 𝛼copperR(f )

]
A
′
}
, (17)

subject to the following constraints:

⎧
⎪⎪⎨⎪⎪⎩

1
Bmax

ideal

||||B
Arr
z

(
A,Rr sin 𝜃n,Rc + Rr cos 𝜃n

)
− GzRr cos 𝜃n

|||| ≤ 𝜀ROI ,n = 1 · · ·NROI

1
Bmax

ideal

||||B
Arr
z

(
A, 0,Rc + zm

)
− Gzzm

|||| ≤ 𝜀ROI ,m = −Nz · · ·Nz

|Ai| ≤ Imax
, i = 1 · · ·N

(18)

where Rc and Rr (Figure 2B) are the center and radius of
the ROI, GZ is the desired gradient intensity, and Bmax

ideal =
GzRr is the expected maximum BArr

z field within the ROI.
The first set in Eq (18) with 𝜃n = 𝜋(n∕NROI) enforces NROI
distinct constraints on the right semicircle boundary of
the ROI that guarantee the relative field deviations on the
(shifted) ROI will not exceed 𝜀ROI. Note that for multiple or
shifted ROIs,18 the interior of the ROI should be included
for the error assessment since maximum field deviation
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TAKRIMI and ATALAR 7

does not always happen on the boundary. The second
set of constraints insert an extra 2NZ + 1 points with
zm = Rr(m∕Nz) to control the linearity deviation along the
z-axis. These constraints should be duplicated for as many
ROIs9 as needed and can be modified for non-spherical
ROIs as well. The tuning coefficient, 𝜀ROI, controls the
maximum field linearity error on and inside the (shifted)
ROI, typically between 5% to 15%. 𝛼eddy and 𝛼store con-
trol the eddy loss and the stored magnetic energy within
the structure. RN×N(f ) is a diagonal frequency-dependent
resistance matrix (AC+DC) and 𝛼copper controls ohmic
power loss due to copper wires. For eddy loss minimization
only, both 𝛼store = 𝛼copper = 0.

3 RESULTS

For all matrix computations and dedicated optimizations,
a CORE i7, 8th generation laptop with 12GB of memory
and for EM simulations using Ansys Maxwell 2023.R1.1,19

a Dell Precision 3650 workstation with an Intel® Xeon CPU
(12 cores) and 128 GB of memory is used. The operating
systems are Windows 10. In Eq. (18), we choose Imax =
300 A, N = 48, nt = 22, and NZ = 2 that helps to search
for a better gradient uniformity inside the (shifted) ROI
within all possible solutions that could be a local mini-
mum. To save memory and CPU time, we assume Wc =
30 cm rather than its typical width of Wc = 1 m.17 The net
EM fields generated by each array element are sampled
by 0.2 mm resolution along the closed ABCDA path (see
Figure 1) of length 2Lc + 2Wc + 4d = 382 cm (> 19000 field
points). The IntegrateData command of the Signal Process-
ing package and the Nonlinear Programming Solver com-
mand (NLPSolve) of the Optimization package, both from
Maple™ 2022 software, were deployed in this research.
The optimizations in Eqs. (17) and (18) take no more than
5 s to converge and the 48× 48 Q matrices in Eq. (11) are
populated in 65 s.

We consider the warm shield of the cryostat assem-
bly to be composed of nonmagnetic Stainless Steel 304
material, serving as the initial passive shield. At a tem-
perature of 300 K, its conductivity is approximately about
𝜎SS = 1.388 × 106 S∕m. As emphasized in Section 2.6, our
assumption excludes any presence of additional lossy
medium or a cold shield within the warm shield. This
choice, driven by the twin objectives of simplicity and effi-
cient computational execution for field simulations, leads
to the fact that Re{∮ E ×H ⋅ ds} is zero on the inner sur-
face of the cryostat, obviating the need for field sampling
in this region.

However, in scenarios where both the warm and cold
shields are to be accounted for, as in practical cryostat

designs, it becomes imperative to encompass the
inner and outer surfaces of both shield layers in our
considerations.

3.1 Frequency selection for Quv

Induced eddy currents depend on the time derivative
of applied magnetic fields. The greater the frequency,
the stronger the coupling between the wires and the
body of the cryostat, and thus the greater the eddy
power loss. Figure 3 depicts the time-average eddy power
loss PLoss

sin(𝜔t) =
1
2
Re

{∮S E ×H
∗
⋅ ds

}
under sinusoidal exci-

tations for a given set of feeding currents, where S is
the warm shield’s surface. Additionally, PLoss

sin(𝜔t)∕
√

f is also
depicted by the dashed line to demonstrate its normal-
ized frequency-dependent behavior. It begins at zero, has
two break points, and finally remains almost constant after
f ≥ 10 kHz, for a wide range of excitations. Based on the
high frequency content of the driving pulse sequence, one
of the following approaches can be used:

1. If the effective high frequency components are concen-

trated around a frequency, say 1 kHz, choosing Q
𝜌𝜑z(f =

1 kHz)would suffice to achieve a near optimal solution
for the cost function Eq. (17).

2. If a wider range of high-frequency components exists,
we may find a more optimal solution. Assume Fset =
{f1, f2, … , fk} as the set of k frequency compo-
nents of g(t) with the highest magnitudes and cset =
{c1, c2, … , ck} as their corresponding magnitudes.
Eq. (17) can be reformulated as:

min
A

Re

{
A

[ k∑
i=1

|ci|2Q
𝜌𝜑z(fi)

]
A
′
}

(19)

where 𝛼store and 𝛼copper are set to zero for simplicity. For
both cases above, when the optimum A has been com-
puted, either of Eqs. (13) or (14) can be used to calculate
the total time-average eddy power loss PLoss

g(t) (A).
To accurately estimate eddy power loss for a

non-sinusoidal waveform using Eqs. (13), (14), or (19), we
compute and store sixteen 48 × 48 matrices for frequen-
cies between 10 Hz and 30 kHz, namely Mset = {10, 30,
50, 80, 100, 300, 500, 800, 1k, 2k, 3k, 4k, 5k, 8k, 10k, 30k}.
The last one is used to accurately extrapolate the loss
curve for f ≥ 10 kHz (see Figure 3). This is important for
those pulse sequences with high-frequency components
since they contribute the most in the power loss even with
relatively small magnitudes of cn.
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8 TAKRIMI and ATALAR

F I G U R E 3 Time-average eddy power loss PLoss
sin(𝝎t) for a given

set of sinusoidal feeding currents calculated on the warm shield’s
outer surface. The dashed line shows its normalized version
PLoss

sin(𝛚t)∕
√

f and demonstrates its frequency behavior that stars from
zero, has two break points, and finally remains almost constant
after f > 10 kHz. The dotted purple line shows the skin depth as a
function of excitation frequency.

The logarithmic magnitude plot of Hz,H𝜌, and E𝜑 (at
f = 1 kHz) are plotted in Figure 4A–C. The horizontal axis
represents the distance traversed by a closed ABCDA path
(see Figure 1) of length 382 cm. The first (#1) and the last
(#24) array elements of both primary and shield coils are
labeled in the figure. These fields are simulated and stored
for each array element at multiple frequencies when fed
by a current of unity amplitude. A single frequency simu-
lation that computes the EM fields for all array elements
takes 77 min and consists of 117 k tetrahedra within the
cryostat’s body with maximum edge size of 1 mm. After

computing the associated Q matrices, we do not need them
anymore.

3.2 Stray field minimization method
versus proposed method for z-gradient
array coil tuning

We commence with two optimizations for the z-gradient
array coil, both of which are subjected to similar con-
straints of <5.0% linearity deviation, 40.0 mT/m gradient
strength, and 45 cm diameter of ROI. All array elements
are excited by 1 kHz sinusoidal current sources of a maxi-
mum of 300A.

In the first optimization, we aim to nullify the stray
fields on the cryostat while also reducing the copper loss
within the wire coils. Driven by an optimization regarding
the optimum number of field sampling points on the warm

shield, the details of which are provided in the supporting
Section (A) in Appendix S1, we consider 40 uniformly dis-
tributed distinct points (zi, i = 1 … 40) along the left edge

of the warm bore and minimize
∑40

i=1
||||B

Arr
z

(
A,Rin, zi

)||||
2
+

𝛼copper
∑48

i=1A2
i with 𝛼copper = 5 × 10−3. In this approach, the

power losses incurred by induced eddy currents within
the end plates are neither included nor minimized. How-
ever, in the second optimization that includes the entire
cryostat (see Figure 2), the proposed method provided by
Eq. (17) with 𝛼copper = 5 × 10−5

, 𝛼store = 0, and 𝛼eddy = 1 is
deployed. Figures 5 and 6 illustrate half-plots of both Bz
and ∣ B ∣ fields for each optimization separately.

The first optimization converges in 16 s, resulting in a
total time-average eddy power loss of 23.33 W, with con-
tributions of 20.15 W from the left edge and 3.16 W from
both end plates. The RMS value for all feeding currents is
190.2 ARMS. Eq. (10) predicts 23.28 W, closely matching the
simulation. In the second optimization, which converges
in 3.9 s and covers the entire cryostat’s warm shield, the
values are 8.34 W (reported by Maxwell), 186 ARMS (4.2 A
less), and 8.32 W according to Eq. (10). The power loss con-
tributions from the left edge and both end plates are 7.17 W
and 1.16 W, respectively. Notably, this new approach sig-
nificantly outperforms the stray field method, reducing
power loss by more than 2.8 times while achieving even
lower RMS current.

3.3 Power loss calculation for an
arbitrary waveform

After selecting the dominant high frequency and running
the optimization, the excitation vector A is ready for eddy
loss calculation for an arbitrary waveform, g(t). We pro-
ceed by calculating 15 distinct AQ

𝜌𝜑z(f )A
′

values using
Mset matrices and then perform interpolation for all har-
monic contents of g(t) in this range. For harmonic frequen-
cies above 10 kHz a logarithmic extrapolation is utilized.
Assuming f0 as the fundamental harmonic of g(t), the total
time-average eddy power loss will be:

PLoss
g(t) =

M∑
m=1

|2cm|2pm; (20)

pm
def
=

⎧
⎪⎪⎨⎪⎪⎩

interpolate
[

Re
{

A Q
𝜌𝜑z(f )A

′
}]

f=mf0

f ≤ 10 kHz

extrapolate
[

Re
{

A Q
𝜌𝜑z(f )A

′
}]

f=mf0

f > 10 kHz
.

We investigate two scenarios. As the first scenario, we
consider the second optimization provided in Section 3.2
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TAKRIMI and ATALAR 9

(A)

(B)

(C)

F I G U R E 4 The logarithmic magnitude plot of Hz,H𝝆 and E𝝋 versus distance by traversing ABCDA path in Figure 1. The path includes
160 cm left edge, 31 cm top edge, 160 cm right edge, and 31 cm bottom edge. Although the left and right edge field values differ by at least two
orders of magnitude, the fields at close proximity of both ends and along the plates cannot be ignored. The first (#1) and the last (#24) array
elements of both primary and shield coils are labeled in the picture.
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10 TAKRIMI and ATALAR

(A) (B)

F I G U R E 5 Half plots of (A) Bz

field map and (B) ∣ B ∣ field map for
the first design by nullifying the stray
fields on 40 distinct points on the left
edge of the warm shield that takes
16 s to converge. The array coils, the
ROI, and the thin body of the warm
shield as well as the cryostat region
are shown. The diameter of the ROI
is 45 cm. The linearity error and
gradient strength within the ROI are
5.26% and 40.1 mT/m, respectively.
The RMS value of all feeding
currents is 190.2 A. The average eddy
power loss (reported by Maxwell) is
23.33 W, where the contributions of
the left edge, right edge, and both
end plates are 20.15 W, 0.020 W, and
3.16 W, respectively. For the complete
cryostat assembly, the proposed
formulation in Eq. (10) reads 23.28 W.

which was only based on Q
𝜌𝜑z at f = 1 kHz. Figure 7 shows

10 cycles of eddy power loss (and its running average)
within the cryostat. Details of the feeding waveform g(t)
are given in the caption. Eq. (20) predicts 32.83 W (with
M = 20 harmonics) which agrees well with the 31.80 W
running average shown in the transient simulation with

about 3% error. In the second scenario, the relevant Q
𝜌𝜑z

matrices are weighted by dominant harmonics of the driv-

ing waveform to acquire a multi-frequency Q
𝜌𝜑z matrix.

For the same bipolar trapezoid waveform with 2, 4, 6,
8, and 10 kHz as the dominant harmonics, |cm|2 reads
0.78, 0.16, 0.043, 0.024, and 0.001, respectively. By running
the minimization in Eq. (19), a new set of currents with
185ARMS can be found. Eq. (20) predicts 30.86 W of aver-
age power loss (not shown in the figure), which is 6% less
than the first scenario.

3.4 Power loss calculation for a pulse
sequence

We assume g(t) as a general bipolar trapezoidal waveform
of amplitudes A1,A2 and break-points a, b, c, d, e as shown
in Figure 8A and w(t) as its repeated version by N times
followed by a blank signal that extends up to t = L and

then repeats indefinitely (see Figure 8B). Using Eq. (12)
and assuming 0 < a ≤ b < c ≤ d < e ≤ L∕N, cn is given by:

cn =
L

4n2
𝜋

2 ⋅
PD(0,Ne)
PD(0, e)

⋅
[
−A1

a
PD(0, a)

+A1 − A2

c − b
PD(b, c) + A2

e − d
PD(d, e)

]
, (21)

where PD(t1, t2) is the phase difference function defined
by:

PD(t1, t2)
def
= e−𝑗2n𝜋(t1∕L) − e−𝑗2n𝜋(t2∕L)

. (22)

Note that A1∕a, A2∕(e − d) and (A1 − A2)∕(c − b) rep-
resent the slew rates of g(t) during the rise and fall times,
respectively. Similar analytic expressions can be found for
other commonly used pulse sequences. Using Eqs. (21)
and (22), one can find the dominant harmonics of a given
pulse sequence and use one of two optimization cost func-
tions in Eqs. (17) or (19) to solve for unknown currents A.
Once the currents are found, Eq. (20) can be used for power
loss estimation.

As the last optimization example, we consider a sym-
metric pulse sequence consisting of N = 4 bipolar (±1)
trapezoidal pulses of 400 μs rise and fall times (between
−1 and 1) and 200 μs plateau times, collectively repeated
every L = 10 ms (a = 200μs, b = 400μs, c = 800μs, d =
1 ms, and e = 1.2 ms). Figure 8C shows the power
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TAKRIMI and ATALAR 11

F I G U R E 6 Half plots of
(A) Bz field map and (B) ∣ B ∣
field map for the second design
based on the proposed cost
function. It takes care of all four
edges (the whole surface) and
takes 3.9 s to converge. The
diameter of the ROI is 45 cm.
The linearity error and gradient
strength within the ROI are
5.18% and 40.2 mT/m,
respectively. The RMS value of
all feeding currents is 186 A (4.2
A less than Figure 5). Maxwell
reports 8.34 W for the
time-average eddy power loss in
the cryostat. The power loss
contributions from the left
edge, right edge, and both end
plates are 7.17 W, 0.01 W, and
1.16 W, respectively. The
proposed formulation reads
8.32 W, which is 2.8 times less
than the first design.

(A) (B)

F I G U R E 7 The feeding waveform used to drive the array elements is a 500us periodic bipolar trapezoidal waveform of 50 & 100 μs
rise/fall time(s) and 50 & 150 μs plateau time(s) shown by black (dot-dot-dash line). A transient simulation based on the proposed
optimization that illustrates 10 cycles of the instantaneous eddy power loss in (blue) and its running average within the cryostat (dashed red).
Eq. (13) predicts 32.83 W (with M = 20 harmonics) which agrees well with the 31.80 W running average shown in the transient simulation
with about 3% error. The RMS value of all feeding currents is 187.6 A.
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12 TAKRIMI and ATALAR

(A) (B)

(C) (D)

F I G U R E 8 (A) g(t) is a bipolar trapezoidal pulse of amplitudes A1,A2 and breakpoints a, b, c, d, e. (B) w(t) is an N times repeated version
of g(t), followed by a blank signal that extends up to t = L and then repeats indefinitely. (C) Power spectrum of w(t) for N = 4, a = 200 𝛍s,
b = 400 𝛍s, c = 800 𝛍s, d = 1 ms, e = 1.2 ms, and L = 10 ms with dominant harmonics around 700 Hz. (D) four full cycles of the transient
simulation showing the instantaneous eddy power loss (and its running average) for t = 10, 20, 30, and 40 ms. The approach based on Eq. (20)
reports 3.24 W power loss and 186 ARMS. Ansys simulation reads 3.077 W, which is about 5% lower and agrees well with the proposed method.

spectrum of the pulse sequence. It is seen that 7th and
8th harmonics (700 Hz and 800 Hz) are the dominant ones.
We use single frequency (800 Hz) optimization based on
Eq. (17) since it is already in Mset. Additionally, 𝛼copper =
5 × 10−5 is used to reduce the RMS value. Our approach
based on Eq. (20) reports 3.24 W power loss and 186 ARMS.
Figure 8D illustrates four full cycles of the transient simu-
lation showing the instantaneous eddy power loss (and its
running average) for t = 10, 20, 30, and 40 ms. Ansys sim-
ulation reads 3.077 W, which is about 5% lower and agrees
well with the proposed method.

4 DISCUSSION

The cross-sectional view in Figure 1 is a simplified ver-
sion of a typical cylindrical cryostat assembly that does
not include other internal components. This means that
Eq. (10) solely predicts the total complex power delivered
to what is inside the surface S (including both electrical
and mechanical losses). If other components are inserted
in the cryostat assembly, their precise shape, dimension,
and materials must be included in the simulations to
obtain accurate results. Additionally, the Poynting-based
power (or energy) calculations must be performed twice,
once on the warm shield’s outer surface and once on its

inner surface, with the difference determining the power
loss specific to the warm shield’s metallic body. The cryo-
stat’s cold shield and other metallic layers can be treated
similarly.

A more in-depth examination of the physical behavior
of the EM fields on and inside the cryostat’s metallic body
(see the supporting Section (B) in Appendix S1) reveals
why the proposed approach is more effective than the stray
field minimization method. Since the cryostat’s body is a
thin lossy medium rather than a perfect conductor, the
induced eddy currents within the warm shield are affected
not only by the surface magnitude of the stray fields but
also by the rate of change of the magnetic field in both the
radial and longitudinal directions.13 Minimizing the tan-
gential component of the H (or B) field on the surface only
addresses the magnitude and ignores how these fields pen-
etrate the surface, vanish inside the body, and form the
eddy current. The Poynting theorem accounts for all losses
within a given volume without directly involving the field
behavior inside the volume.

Simulations show that for different sets of sinu-
soidal excitation currents, the curve in Figure 3 shifts
up or down, reflecting the amount of power loss,
but the break-points remain almost stationary with
only a slight shift to the left or right. To clarify the
frequency response of PLoss

sin(𝜔t), the skin depth plot
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TAKRIMI and ATALAR 13

has been added to the figure. Our observations
are as follows: (a) When the skin depth approaches the
thickness of the warm shield’s thin metallic body, around
f ≥ 6 kHz, the induced eddy currents start vanishing when
they penetrate the body. At higher enough frequencies,
the EM fields are almost absorbed within the body, and
hereafter, the power loss is proportional to

√
f . An approx-

imate mathematical proof is provided in the supporting
Section (C) in Appendix S1. (b) The frequency response of
induced eddy currents for individual array elements dif-
fers amongst array elements. This is caused by the various
radii and position of the array elements, and consequently,
the level of coupling between these elements and the cryo-
stat. (c) There are six orders of magnitude difference in
the cryostat power loss (from 10−4 to 100 W) versus four
orders of magnitude change in the excitation frequency
(from 1 Hz to 10 kHz). Such a big variation means that for
an excitation pulse containing a wide variety of harmonic
components, it is better to deploy Eq. (19) rather than
Eq. (17) to gain optimum results.

Similarly, the results illustrated in Figure 4 reveal that:
(a) The magnitudes of the fields at the left edge (AB),
which is closer to the gradient coils, are at least two orders
of magnitude (three orders for the Hz field) greater than
those at the right edge (CD). Therefore, the calculations
for the right edge may be safely ignored. (b) Because of
the warm shield’s proximity, shield array elements have
stronger fields and contribute more to eddy currents than
primary array elements. (c) The field variations around
both end plates (BC and DA) are much sharper and deeper
for Hz rather than those for both H𝜌 and E𝜑 that neces-
sitate finer meshes at the corners. (d) For each array ele-
ment, the magnitude ratio between the axial and radial
components

(
Hz∕H𝜌

)
is at least 35 everywhere at the left

edge; however, they may reach the same level at the top
and bottom edges. The higher the frequency, the greater
this ratio becomes, implying that at high enough fre-
quencies, the normal component of the magnetic field
vanishes, and only the tangential components need to be
considered (as explained in the supporting Section (C) in
Appendix S1).

5 CONCLUSIONS

We propose a novel method based on a computational
electromagnetic approach to estimate and regulate the
time-average eddy power loss within the cryostat assembly,
which improves the tuning of a gradient array coil of any
shape given a pulse sequence. Compared to the stray field
minimization method for a cylindrical cryostat assembly,
the proposed approach results in more than 280% less
power loss. The advantages are fourfold: (a) it addresses

power losses within the cryostat body rather than just
the outer cylindrical surface of the warm shield; (b) it
accelerates array tuning and provides an accurate estima-
tion for power losses or stored magnetic energies; (c) its
accuracy is comparable to numerical results reported by
commercial software; and (d) it is extendable to other array
coils of any shape or even conventional coils.
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