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Abstract— Magnetic particle imaging (MPI) offers un-
paralleled contrast and resolution for tracing magnetic
nanoparticles. A common imaging procedure calibrates a
system matrix (SM) that is used to reconstruct data from
subsequent scans. The ill-posed reconstruction problem
can be solved by simultaneously enforcing data consis-
tency based on the SM and regularizing the solution based
on an image prior. Traditional hand-crafted priors cannot
capture the complex attributes of MPI images, whereas
recent MPI methods based on learned priors can suffer
from extensive inference times or limited generalization
performance. Here, we introduce a novel physics-driven
method for MPI reconstruction based on a deep equilibrium
model with learned data consistency (DEQ-MPI). DEQ-MPI
reconstructs images by augmenting neural networks into
an iterative optimization, as inspired by unrolling meth-
ods in deep learning. Yet, conventional unrolling methods
are computationally restricted to few iterations resulting
in non-convergent solutions, and they use hand-crafted
consistency measures that can yield suboptimal capture
of the data distribution. DEQ-MPI instead trains an implicit
mapping to maximize the quality of a convergent solution,
and it incorporates a learned consistency measure to better
account for the data distribution. Demonstrations on simu-
lated and experimental data indicate that DEQ-MPI achieves
superior image quality and competitive inference time to
state-of-the-art MPI reconstruction methods.

Index Terms— Magnetic particle imaging, reconstruction,
equilibrium, implicit, data consistency, deep learning

I. INTRODUCTION

Magnetic particle imaging (MPI) is a powerful modality
with high clinical prospect in applications such as angiography,
cell tracking, cancer imaging, and neurovascular imaging [1]–
[9]. MPI maps the spatial distribution of magnetic nanoparti-
cles (MNPs) based on their magnetization responses [10], [11].
A selection field (SF) creates a field free region for localized
encoding, while a drive field (DF) evokes responses [12]. The
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point spread function (PSF) in MPI is spatially variant and
anisotropic due to system non-idealities (e.g., inhomogeneities
in applied fields) and trajectory-dependent response of the
MNPs. To account for these variations, a system matrix (SM)
is typically utilized to characterize the PSF across the field-of-
view (FOV) [13]–[15]. While analytical estimation is possible
[16], experimentally measuring the SM with a calibration
scan improves reliability against non-idealities [17], [18]. SM
measurements are taken point by point, by traversing an MNP
sample on a spatial grid covering the FOV at a desired
resolution. Relatively compact grids are common in MPI given
practical constraints on FOV and resolution due to hardware
limitations (e.g., limited coil sensitivity, gradient strength),
MNP properties (e.g., weak or wide responses, relaxation), and
excessive calibration times (e.g., ∼12 hours for a 32×32×32
grid) [19].

Following calibration, an imaging scan is performed to map
the MNP distribution in the anatomy of interest. For efficient
encoding of the anatomical volume, field-free-line (FFL) scans
can be performed by acquiring responses from an ensemble
of MNPs located across a selected line [20]. By traversing
the selected line along a trajectory, MNP responses can be
acquired across the FOV. Since acquired data are linearly
related to the MNP distribution via the SM, image recon-
struction can be achieved by solving an inverse problem [13].
That said, MPI measurements carry significant correlations
across the frequency dimension as the frequency response is
governed by the MNP characteristics, and they are corrupted
by high levels of correlated noise [21]. These factors cause
the SM to be rank deficient with respect to grid size, so
the resultant inverse problem is underdetermined [22]. As
an underdetermined inverse problem, MPI reconstruction has
high potential to benefit from regularization priors in order to
recover high-quality images [23], [24].

Traditional MPI reconstructions seek a solution that embod-
ies both physical constraints related to the SM and acquired
data, and attributes of high-quality images. While non-iterative
solvers exist [25], [26], optimization algorithms are prominent
that iteratively enforce data consistency (DC) based on the
SM and regularize the image [17], [27]. For DC, hand-crafted
measures based on energy or intensity differences between
reconstructed and acquired data are common [13], [28]. For
regularization, hand-crafted priors are used to promote desired
attributes (e.g., smoothness, sparsity) via ℓ2 [29], [30], ℓ1 [31],
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TV [17] losses or their combinations [32]. While they have
been pervasive in MPI reconstruction, hand-crafted priors can-
not fully capture the image distribution, they show suboptimal
performance especially in regions with low signal (e.g., due to
low coil sensitivity), and their performance depends on careful
tuning of regularization weights that can vary substantially
across scans [32], [33].

In recent years, learning-based priors have received inter-
est in MPI reconstruction as a powerful alternative. Purely
data-driven methods train neural networks to directly recover
images from frequency- or time-domain data [34]–[37]. Al-
though they enable efficient inference, neglecting the physical
constraints embodied in the SM can limit generalizability.
To improve generalization, deep image prior (DIP) meth-
ods instead use untrained networks whose parameters are
learned at test time by minimizing a DC loss [33], [38].
Yet, extensive inference times and difficulty in identifying
appropriate architectures per dataset can limit utility [39]. A
recent plug-and-play method (PP-MPI) pre-trains an image
prior for denoising and later combines it with the SM for
reconstruction [40]. The plug-ang-play framework offers a
flexible compromise between efficiency and generalization in
solution of inverse problems [23], [41]. Yet, transferring a prior
from the denoising to the reconstruction task can potentially
elicit performance limitations.

Here, we introduce a novel deep equilibrium model, DEQ-
MPI, for improved performance and efficiency in MPI re-
construction. Inspired by physics-driven unrolling methods
[24], DEQ-MPI augments neural networks into an iterative
optimization to rapidly alternate between regularization and
DC projections. Conventional unrolled methods produce non-
convergent solutions following a small number of iterations
due to computational and memory constraints [42], and they
use hand-crafted DC measures that can elicit suboptimal
performance [43]. DEQ-MPI instead trains an iterative archi-
tecture to maximize image quality at convergence for improved
performance, and it introduces a novel learned consistency
block to better conform to the MPI data distribution. Initial-
ization strategies are also proposed for both regularization and
learned consistency blocks to improve model training. Demon-
strations show that DEQ-MPI achieves superior performance
to state-of-the-art methods for MPI reconstruction, while also
maintaining superior or on par efficiency.

Contributions:
• We introduce the first physics-driven deep iterative archi-

tecture for performant and efficient MPI reconstruction.
• DEQ-MPI leverages the first deep equilibrium model and

the first learned consistency measure in MPI.
• We propose initialization strategies for regularization

and learned consistency blocks in DEQ-MPI to improve
model training.

II. RELATED WORK

Learned image priors have recently been adopted as a
promising approach in MPI tasks such as SM or image super-
resolution [44]–[46], view imputation in projection imaging

[47], and image reconstruction [34]–[40]. For image recon-
struction, purely data-driven methods provide fast inference
by directly mapping acquired data onto images without ex-
plicitly considering the SM [34]–[37]. As these methods do
not explicitly integrate physical constraints, reliability against
system variability can be limited. Moreover, previous data-
driven methods include dense layers whose complexity grows
substantially with data dimensions. DIP methods instead use
untrained networks with convolution filters serving as native
regularizers, and learn network parameters to optimize DC
on individual test scans [38], [39]. Although DIP methods
promise enhanced generalization by incorporating the SM,
they require thousands of inference iterations and face chal-
lenges in network selection as ideal architectures are often im-
age specific [48]. PP-MPI pre-trains a convolutional network
for image denoising, and combines it with the SM during an
inference optimization [40]. While PP-MPI offers improved
efficiency compared to DIP, transferring a model from the
denoising to the reconstruction task can limit performance
[49]. Thus, learning-based methods with improved efficiency
and generalization are needed in MPI reconstruction.

A powerful framework for learning-based reconstruction
employs physics-driven unrolled methods that perform a fixed
number of iterated projections through a convolutional net-
work block to regularize the image and a DC block to enforce
the system’s physical constraints [24]. While no previous study
has considered unrolled methods for MPI, state-of-the-art
results have been reported with them in other modalities [24],
[50]. That said, as computational complexity grows rapidly
when more blocks are cascaded, unrolled methods are typically
trained to optimize image quality after a small number of
iterations. This limitation results in suboptimal performance,
and image quality degrades significantly when inference is
sought at a different number of iterations than that prescribed
for training as suggested by recent image reconstruction stud-
ies [51]–[54]. Moreover, DC in MPI and other modalities is
commonly performed by projecting reconstructed data onto
the ℓ2-ball of acquired data to alleviate bias due to noise
[13], [28], [55], [56]. This procedure ignores the underlying
data distribution as it does not consider correlations among
acquired data samples that can help lower such biases more
effectively. In turn, the use of suboptimal DC measures can
elicit performance losses during image reconstruction [43].

Our proposed DEQ-MPI model leverages three technical
novelties to address the limitations of conventional unrolled
methods in the context of MPI reconstruction. First, DEQ-
MPI is not trained to optimize performance within a fixed
number of iterations, but rather upon convergence as inspired
by recent deep equilibrium models in machine learning [42].
Second, DEQ-MPI introduces a novel learned consistency
block based on a convolutional module as opposed to hand-
crafted measures. Third, DEQ-MPI employs a novel initial-
ization strategy for the learned consistency block to improve
model training. DEQ-MPI introduces the first physics-driven
iterative architecture, the first deep equilibrium model, and the
first learned consistency measure for MPI in the literature.
These technical advances enable DEQ-MPI to outperform
state-of-the-art methods in MPI reconstruction.
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Fig. 1: (a) Conventional unrolled methods ver-
sus the deep equilibrium model in DEQ-MPI.
Unrolled methods express reconstruction as
repeated projections through a network op-
erator, xk+1=hθ(xk;y,A) where xk is the
image at iteration k, y are acquired data,
A is the system matrix, and network pa-
rameters θ are shared across iterations. hθ
is trained to optimize performance after Nit
iterations where Nit is fixed and small to limit
computational burden, resulting in suboptimal
performance. DEQ-MPI instead leverages an
implicit mapping x∗=hθ(x∗;y,A) to com-
pute a convergent solution based on repeated
injection of acquired data. In this case, hθ
is trained to maximize image quality upon
convergence as opposed to an adhoc Nit. (b)
Proposed DEQ-MPI implementation. DEQ-
MPI integrates the implicit mapping into an
ADMM algorithm with fixed-point iterations
expressed in Eq. (14) for the image x and La-
grange multipliers d(0),d(1). Each iteration
involves projection through a learned regular-
ization block (ΨRDN ), projection through a
learned consistency block (ΨLC ), and recon-
ciliation in a least-squares step to compute the
output xk+1.
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III. THEORY

A. MPI Reconstruction

Receive coils in MPI measure time-domain voltage wave-
forms that reflect the magnetization responses of MNPs. The
acquired data can be transformed to frequency domain to
define a linear system of equations [10]:

Ax+ n = y (1)
where A ∈ CM×N is the SM, x ∈ RN is the image
vector, n ∈ CM is the noise vector, y ∈ CM are frequency-
domain data, M is the number of frequency components,
and N is the number of voxels in the imaging grid. While
M is typically greater than N , both the SM A and the
measurement noise n carry strong correlations across the
frequency dimension [20], [21]. As such, the inverse problem
in Eq. (1) is underdetermined [22], [57]. A common approach
to solve Eq. (1) uses iterative optimization [17], [27]:

argmin
x≥0

R(x) s.t ∥Ax− y∥2 < ϵ, (2)

where R(·) is the regularization operator, ϵ is the error bound
for the ℓ2-based DC measure that can be selected based on
the estimated SNR [17], [20]. Conventional methods adopt
R(x) =

∑
i αiri(x), where ri(x) is a hand-crafted function

such as ∥x∥22, ∥x∥1, or TV (x) [29]–[32].
An efficient algorithm is alternating direction method of

multipliers (ADMM) that solves problems of type [17]:
argmin

x,z
g(x) + f(z) s.t. Hx+Gz = c, (3)

by splitting them into simpler sub-problems [58], [59]. To
arrive at an ADMM formulation equivalent to Eq. (2), H =[
AT , I

]T ∈ R(M+N)×N ,G = −I ∈ R(M+N)×(M+N), c = 0

with z =
[
(z(0))T , (z(1))T

]T
and g(x) = 0 can be selected:

argmin
x,z

f(z) s.t. x = z(1), and Ax = z(0), (4)

where z ∈ RM+N is the auxiliary variable vector used for
splitting, and f(z) = χ(z(0)) + R(z(1)) where χ(t) is the
indicator function of the set {t|∥t − y∥2 ≤ ϵ} for the DC
constraint. The following iterations are used to solve Eq. 4:

z
(0)
k+1 = Ψχ(Axk − d

(0)
k ,y), (5)

z
(1)
k+1 = ΨR(xk − d

(1)
k ), (6)

xk+1 = M(AT (z
(0)
k+1 + d

(0)
k ) + z

(1)
k+1 + d

(1)
k ), (7)

d
(0)
k+1 = d

(0)
k + z

(0)
k+1 −Axk+1, (8)

d
(1)
k+1 = d

(1)
k + z

(1)
k+1 − xk+1, (9)

where k is the iteration index, M=(I + ATA)−1 can be
precomputed, d=

[
(d(0))T , (d(1))T

]T ∈ RM+N contains La-
grange multiplier terms for the constraints in Eq. 4. To incor-
porate the constraints flexibly, d(0) captures data residuals due
to deviation of Ax from y following DC, and d(1) captures
image residuals due to regularization of x. The proximal
mappings for DC and regularization are given as:

Ψχ(v,y) = y +

{
v − y if ∥v − y∥2 ≤ ϵ

ϵ v−y
∥v−y∥ o.w.

, (10)

ΨR(v) = argmin
x

R(x) +
µ

2
∥x− v∥22. (11)

with µ scaled inversely with step size. Performance is limited
by the capacity of Ψχ to describe MPI data distribution and
the capacity of ΨR to describe MPI image features.

B. DEQ-MPI
Unrolled methods use iterated projections through a network

operator, xk+1=hθ(xk;y,A), with parameters θ commonly
shared across iterations [24]. After a fixed number of iterations
Nit, hθ is trained to optimize the quality of xNit :

argmin
θ

∥hθ(. . . hθ(hθ(x0; ·); ·); ·)− x̂r∥1 , (12)
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where x̂r is the ground truth image, and x0 is an initial recon-
struction estimate provided to the network at k=1 (Fig. 1a).
Using large Nit improves performance by yielding solutions
closer to the convergence point. Yet, while forward passes can
be computed efficiently, backpropagation requires computation
and storage of model gradients across all iterations, rendering
large Nit prohibitive [24]. Thus, a small Nit is typically used
that yields non-convergent solutions of limited quality.

Unlike unrolled methods, DEQ-MPI leverages an implicit
mapping x∗=hθ(x∗;y,A) based on a convergent solution x∗,
as inspired by recent deep equilibrium models in machine
learning [42]. In theory, an infinite number of iterations
through hθ might be required to obtain x∗. For efficiency, here
we adopt an empirical convergence criterion to stop iterations
when the relative change in x between consecutive iterations
falls below a small non-zero threshold [42], [60]. Training is
then performed to maximize the quality of x∗ (Fig. 1a):

argmin
θ

∥hθ(x∗;y,A)− x̂r∥1 , (13)

Because a convergent solution is attained, DEQ-MPI can
perform efficient backpropagation via implicit differentiation,
where gradients have to be computed only at the convergent
iteration for x∗ [61]. Since gradient terms for other iterations
are not required, DEQ-MPI can improve performance without
the computational overhead of unrolled methods.

Here we integrate the implicit mapping in DEQ-MPI into
an ADMM algorithm with fixed-point iterations given as:

x

d(0)

d(1)


k+1

= hθ




x

d(0)

d(1)


k

;y,A

 . (14)

Mapping through hθ(·) is then operationalized as (Fig. 1b):

z
(0)
k+1 = ΨLC(Axk − d

(0)
k ,y), (15)

z
(1)
k+1 = ΨRDN (xk − d

(1)
k ), (16)

x

d(0)

d(1)


k+1

=


M(AT (z

(0)
k+1 + d

(0)
k ) + z

(1)
k+1 + d

(1)
k )

d
(0)
k + z

(0)
k+1 −Axk+1

d
(1)
k + z

(1)
k+1 − xk+1

 .

(17)

A solution for convergent [xT ,d(0),T ,d(1),T ]T∗ is computed
via fixed-point iterations accelerated with Anderson’s method
for efficiency [62]. During these iterations, the proximal
mapping ΨRDN (·) is implemented as projection through a
residual dense network (RDN) block, where d(1) captures
image residuals after regularization. The proximal mapping
ΨLC(·) is implemented as projection through a novel learned
consistency (LC) block, where d(0) captures data residuals
after enforcement of consistency. As deep equilibrium methods
can be sensitive to model initialization, we also introduce
initialization strategies for both blocks. Details of model
architecture and training procedures are discussed below.

B.1. Model Architecture
RDN block: ΨRDN (·) projects its input through a cascade
of residual dense modules [63]. The input in 2D form v =

xk − d
(1)
k ∈ RH×W , where d

(1)
k captures image residuals,

and H , W are image height and width, passes through two
convolutional layers Z0(·):

u0 = Z0(v). (18)
The feature map u0 ∈ RFR×H×W , where FR is the number
of channels, is then processed with nres residual modules:

um = Zm(um−1), (19)
where Zm(·) is the mth module with nconv convolutional
layers that receive concatenated outputs from previous layers:

um,l = Zm,l([um−1;um,1;um,2; · · · ;um,l−1]), (20)
where um,l ∈ RFS×H×W is the output of lth convolutional
layer, Zm,l with 1 ≤ l ≤ nconv . The output of mth residual
module um is then computed by adding the module input to
the output of a final convolutional layer, Zm,out:
um = Zm,out([um−1;um,1; · · · ;um,nconv ]) + um−1. (21)

The outputs of all residual modules are fused via a 1 × 1
convolutional layer, Zfuse:

ufuse = Zfuse([u1;u2; · · · ;unres ]), (22)

where ufuse ∈ RFR×H×W . The output image z
(1)
k+1 ∈ RH×W

is computed by a convolutional layer, Zout, with ReLU
activation to integrate a non-negativity constraint for MPI:

z
(1)
k+1 = ReLU(Zout(ufuse) + v) (23)

LC block: A common approach to implement Ψχ(·) in Eq.
(5) is to project onto the ℓ2-ball of acquired data y. In contrast,
DEQ-MPI leverages the LC block based on a convolutional
module to better account for the MPI data distribution. LC
receives a frequency-domain input v = Axk − d

(0)
k ∈ CM ,

where d
(0)
k captures data residuals, along with y:

z
(0)
k+1 = ΨLC(v,y), (24)

where z
(0)
k+1 are output data, and LC is implemented as:

ΨLC(v,y) = y +

{
Z(v,y)− y if ∥Z(v,y)− y∥2 ≤ ϵ

ϵ Z(v,y)−y
∥Z(v,y)−y∥ o.w.

(25)
In Eq. (25), Z(·) is a convolutional module with nLC hidden
layers and FLC hidden units per layer. The ϵ-bounded con-
straint prevents the output from diverging away from acquired
data undesirably. Assuming field-free-line (FFL) scans with a
single receive channel, data can be ordered in two dimensions
as y(f, ϕ), where f is the frequency component and ϕ is the
FFL angle, and processed with 1D convolutional kernels across
the frequency dimension. For field-free-point (FFP) scans with
multiple receive channels, 2D kernels may instead be used over
frequency and receive channel dimensions.

B.2. Training Procedures
Model initialization: Multiple convergent outputs x∗ can exist
for the implicit mapping in DEQ-MPI, and the quality of
a particular solution depends on the initialization of model
parameters. Here, we propose to initialize the RDN block
based on a plug-and-play approach as inspired by [51]. To do
this, independent identically distributed (IID) Gaussian noise
n1 ∈ RN with standard deviation σ1 is added onto a training
set of MPI images x̂r, to generate images xn = x̂r+n1. RDN
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is pre-trained to suppress the additive noise in xn:
arg min

θRDN

∥ΨRDN (xn)− x̂r∥1 . (26)

For the LC block, we propose a novel initialization procedure
based on noise-added MPI data. First, noise-free data are
generated using the SM and training MPI images, ŷr = Ax̂r.
IID Gaussian noise is added at σ2 and σ3 to generate yn =
ŷr +n2 and vn = ŷr +n3 with n2,3 ∈ CM , respectively. LC
is pre-trained to mimic a canonical unlearned DC block:

argmin
θLC

∥ΨLC(vn,yn)−Ψχ(vn,yn)∥1 , (27)

where Ψχ is implemented as in Eq. (10) based on projections
onto the ℓ2-ball. We observed that pre-training to align the
outputs of ΨLC and Ψχ improves performance over pre-
training to strictly align the output of ΨLC with ŷr. While
RDN and LC are initialized with the pre-trained weights for
ΨRDN (·) and ΨLC(·), x is initialized with the least-squares
solution xLS = A†y based on the pseudo-inverse of the SM,
and d(0),d(1) are initialized as zero vectors.

Implicit differentiation: In a forward pass, a convergent
solution of x∗ = hθ(x∗;y,A) is computed via fixed-point
iterations in Eq. (14) accelerated using Anderson’s method
[62]. An empirical convergence criterion is set as the ℓ2-
norm difference between consecutive iterations falling below
10−4. Here, a maximum of 25 iterations were observed to be
sufficient for reaching convergence. In a backward pass based
on Eq. (13), the Jacobian of the convergent solution ∂x∗/∂θ
is computed by differentiating the implicit mapping:

∂x∗

∂θ
=

∂hθ(x∗)

∂x∗

∂x∗

∂θ
+

∂hθ(x∗)

∂θ
, (28)

where the arguments y, A are omitted for brevity. The
following solution for the Jacobian ∂x∗/∂θ is then obtained:

∂x∗

∂θ
=

(
I− ∂hθ(x∗)

∂x∗

)−1
∂hθ(x∗)

∂θ
. (29)

Automatic differentiation tools for backpropagation require
multiplication of the Jacobian with an arbitrary vector b [61]:(

∂x∗

∂θ

)T

b =

(
∂hθ(x∗)

∂θ

)T (
I− ∂hθ(x∗)

∂x∗

)−T

b. (30)

To solve Eq. (30), an intermediate vector can be defined as:
s∗ = (I− ∂hθ(x∗)/∂x∗)

−T
b, (31)

where ∂hθ(x∗)/∂x∗ can be computed trivially. Eq. (31) can
be rearranged to compute s via fixed-point iterations [61]:

si+1 = (∂hθ(x∗)/∂x∗)
T
si + b. (32)

The expression in Eq. (30) can then be evaluated based on s∗:
(∂x∗/∂θ)

T
b = (∂hθ(x∗)/∂θ)

T
s∗. (33)

As such, the implicit mapping enables calculation of the
Jacobian ∂x∗/∂θ in terms of ∂hθ(x∗)/∂x∗ and ∂hθ(x∗)/∂θ.

IV. METHODS

A. Competing Methods

DEQ-MPI was demonstrated against state-of-the-art meth-
ods based on hand-crafted and learned priors. For each
method, hyperparameters were selected based on peak SNR
(pSNR) performance on a validation set. The number of
inference iterations was selected according to the L-curve

(a)

(b)

(c)

20 mm

20 mm

Fig. 2: (a) Open-sided ASELSAN FFL scanner. (b) A cylindrical
phantom with two parallel tubes was filled with Perimag MNPs at a
dilution of 1:20. (c) A Y-shape phantom was filled with Perimag at
a dilution of 1:100 and contained a central air bubble.

criterion to achieve a favorable trade-off between performance
and computation time [60]. Methods were implemented in
PyTorch on a Tesla V100 GPU. Except DIP, learning-based
models were trained for 200 epochs via the ADAM optimizer
(β1 = 0.9, β2 = 0.999). Code to implement DEQ-MPI is
available at https://github.com/icon-lab/DEQ-MPI.

DEQ-MPI: Architectural parameters were taken as nres =
4, FR = 12, nconv = 12 for the RDN block, nLC = 1, FLC =
8 for the LC block. Cross-validated parameters included a
learning rate of 10−3, 25 inference iterations. ϵ =

√
M for

data consistency, and σ1 = 0.1, σ2 = 0.05, σ3 = 0.02 for
model initialization were used.

ℓ1-ADMM, TV-ADMM, Hyb-ADMM: Three ADMM-
based methods were implemented with ℓ1, TV, and a hybrid
ℓ1+TV regularizer in the image domain, respectively [17]. For
each variant and each measurement SNR level, µ was selected
to ensure convergence. µ = 250 for the ℓ1, µ = 50 for the
TV, and µ = 10 for the hybrid variant were used. For the
hybrid variant, αTV = 1 − α1 was prescribed, and cross-
validated values were α1 = 0.1 for SNR<20, α1 = 0.8 for
20≤SNR<30, α1 = 0.9 for 30≤SNR. Cross-validated number
of iterations were 200 for the ℓ1, and 100 for the TV and
hybrid variants. ϵ =

√
M was used.

ℓ2-ART: Algebraic reconstruction technique (ART), i.e. the
Kaczmarz method, with a Tikhonov regularizer was imple-
mented [29]. Cross-validated parameters included 10 inference
iterations, and a regularization weight of λ = 10 for SNR<15,
λ = 1 for 15≤SNR<35, λ = 0.1 for 35≤SNR.

DIP: The DIP method based on an untrained network
was implemented as described in [38], albeit a mean-square
error loss was adopted as it was observed to yield higher
performance on the analyzed data. Inference was performed
with the ADAM optimizer. Cross-validated parameters were
10−3 learning rate and 20000 inference iterations.

PP-MPI: The PP-MPI method based on a denoising prior
was implemented [40]. The network architecture and loss func-
tion were adopted from [40]. Cross-validated parameters were
10−3 learning rate, additive noise with a standard deviation of
0.1, and 150 inference iterations.

B. MPI Phantoms

Vessel phantoms are commonly used in demonstrating MPI
reconstructions. Here, we generated simulated vessel phan-
toms based on time-of-flight magnetic resonance angiograms
(MRA) [40]. MRA images from 95 healthy subjects in the
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ITKTubeTK dataset were used [64]. Data were split into non-
overlapping training, validation, test sets of 77, 9, 9 subjects,
respectively. 10×26×52 volumetric patches were randomly
cropped, followed by a maximum-intensity projection (MIP)
along the first dimension, and downsampling in other dimen-
sions onto 13×26 images. The maximum pixel intensity in
each image was randomly scaled to a number between 0.5 and
1.5. A total of 33692 training, 3377 validation and 3730 test
images were obtained. Vessel phantoms were also generated
at a larger grid size of 26×52 following the same procedures,
with the difference of starting from 10×52×104 volumetric
patches.

We also generated simulated torus-shaped phantoms to
systematically assess the resolvability of fine-grained image
features. Three separate phantoms were generated with 4-
mm tube diameter and 1, 2, or 3-mm inner torus diameters,
corresponding to outer torus diameters of 5, 6, or 7 mm,
respectively. The torus contained MNPs while the background
was void. A continuous torus model was initially sampled at
0.1-mm resolution and then downsampled onto 1-mm resolu-
tion, resulting in 26×52 images. Noise was added to attain 15
dB measurement SNR. Multiple images were generated from
each phantom by using 100 independent noise realizations.

For the experiments, two different phantoms were used
(Fig. 2b,c). The first included two parallel cylindrical tubes
filled with Perimag (Micromod GmbH, Germany) MNPs at
a dilution ratio of 1:20. Each tube had 20-mm length, 2-mm
inner radius, 4-mm outer radius, and the tubes were attached
together without a gap, so their center-to-center distance was
8 mm. The second included a 3D-printed ‘Y-shape’ filled with
Perimag MNPs at a dilution ratio of 1:100, and contained a
central air bubble with 1.1-mm radius. Two arms of 10.7-mm
length with 3.5-mm spacing at one end, and one arm of 8.8-
mm length formed the Y-shape. All arms were 3.5-mm wide.

C. Experimental Procedures

Experimental SM and phantom measurements were per-
formed on the open-sided ASELSAN FFL scanner (Fig. 2a)
[20]. For the SM acquisition, an undiluted Perimag sample
of size 2×2×2 mm3 was scanned with 2-mm steps while the
FFL was rotated in the transverse plane over a 26×52 mm2

FOV. A DF of 9 mT amplitude and 10 ms duration per
angle was applied at a 10% duty cycle. An SR-560 pre-
amplifier (SRS, MA, USA) amplified the signal at a gain of
5, filtered it at a frequency cut-off of 10-300 kHz, and the
signal was then sampled at 5 MS/s. Frequency components
around the 2nd-to-11th harmonics were selected over 500 Hz
bandwidths. Whitening and background subtraction were per-
formed based on background measurements. High-SNR rows
were selected (SNR>5). Two separate experimental sessions
were conducted. In a first session, SM and Y-shape phantom
measurements were performed at an SF gradient strength of
0.5 T/m. In a second session that was held two months later,
SM measurements were taken at SF gradient strengths of 0.3,
0.5 and 0.6 T/m, while cylindrical phantom measurements
were taken at 0.5 and 0.6 T/m.
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DEQ-MPI

Fig. 3: Comparison of DEQ-MPI against an end-to-end model that
used an RDN block and omitted DC, an unrolled model with Nit=5
iterations, and an LC-ablated variant based on an unlearned DC block.
Separate models were trained at measurement SNRs of 5-45 dB,
testing was performed under 35 dB SNR. Average pSNR across the
test set is shown for each model.
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Fig. 4: Convergence behaviors of DEQ-MPI, unrolled model, and
LC-ablated variant. Models were trained and tested at 35 dB SNR.
Average pSNR across the test set is shown for each model. The zoom-
in window highlights performance during initial iterations.

D. Simulation and Analysis Procedures

For experimental phantoms, no ground-truth images exist
to quantify reconstruction performance. Thus, to perform
quantitative assessments in a setup that respects system non-
idealities, we emulated MPI data by coupling simulated phan-
toms with experimental SMs. MPI measurements reflect a su-
perposition integral between the continuously-varying system
function and MNP distribution. Assuming that Ac and xc

denote finely discretized SM and MNP distribution that closely
approximate the underlying continuous variables:

y = Acxc + n. (34)
We do not have access to Ac, but instead calibration scans
capture SM on a discretized grid for a relatively large MNP
sample size, Ameas = AcD where D ∈ Rs2N×N is the box-
downsampling matrix by a factor of s in two-dimensions [45].
Given Ameas, one can approximate the system function by
bicubic upsampling, Ãc = AmeasU where U ∈ RN×s2N .
However, during reconstruction xrec = m(y, Ãc), this elicits
a discrepancy between the underlying SM that gives rise to the
MPI data versus the estimated SM input to the reconstruction:

xrec = m(Acxc + n,AcDU). (35)
Ignoring this discrepancy can lead to an inverse crime for
simulation studies involving image reconstruction [65]. To
avoid this problem, we generated MPI data by multiplying the
simulated phantom with the SM measured during a calibration
scan, i.e., ŷr = Ameasx̂r. We then reconstructed the noise-
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TABLE I: Simulated vessel phantoms (13×26) reconstructed at varying
measurement SNRs. An SM at 0.5 T/m SF gradient was used in train-
ing and testing. pSNR (dB) / SSIM (%) are reported as mean±std.
across the test set. Boldface marks the top-performing method.

SNR=15 dB SNR=25 dB SNR=35 dB

ℓ1-ADMM 18.9±3.5 / 16.4±9.5 23.2±2.2 / 32.6±14.0 28.9±1.3 / 58.6±13.8

TV-ADMM 27.3±6.1 / 56.2±20.0 31.2±4.4 / 71.9±11.3 35.5±3.0 / 84.5±6.5

Hyb-ADMM 28.7±5.1 / 63.9±9.5 31.7±3.6 / 74.8±7.5 35.9±2.7 / 85.6±5.6

ℓ2-ART 26.7±4.3 / 49.6±7.8 28.5±5.7 / 64.3±8.8 31.9±4.3 / 76.1±4.4

DIP 16.7±2.6 / 13.5±9.1 22.6±1.7 / 30.9±16.6 28.2±2.9 / 54.6±21.0

PP-MPI 30.6±5.1 / 70.8±11.5 33.4±4.1 / 77.8±9.6 35.7±3.1 / 82.8±8.2

DEQ-MPI 32.1±4.5 / 75.2±9.9 34.8±3.5 / 81.5±8.3 37.7±2.6 / 88.1±5.7

TABLE II: pSNR (dB) / SSIM (%) of the simulated vessel phantoms
(13×26) reconstructed at varying measurement SNRs. The SM at 0.5
T/m was used in training, and the SM at 0.6 T/m was used in testing.

SNR=15 dB SNR=25 dB SNR=35 dB

ℓ1-ADMM 19.1±3.5 / 17.1±9.5 23.3±2.2 / 33.4±14.1 29.1±1.3 / 59.3±13.6

TV-ADMM 27.5±6.1 / 57.4±19.5 31.3±4.4 / 72.8±10.8 35.7±3.0 / 84.9±6.3

Hyb-ADMM 28.7±5.0 / 64.4±9.4 31.8±3.6 / 75.3±7.3 36.0±2.7 / 86.0±5.4

ℓ2-ART 26.7±4.3 / 49.8±8.0 28.5±5.8 / 64.6±8.8 32.0±4.3 / 76.5±4.4

DIP 16.9±2.6 / 13.9±9.0 22.5±1.8 / 31.0±16.7 28.0±3.1 / 54.1±21.8

PP-MPI 30.8±5.0 / 71.3±11.4 33.5±4.1 / 78.4±9.2 35.8±3.1 / 83.4±7.8

DEQ-MPI 31.9±4.5 / 75.0±9.8 34.5±3.4 / 81.3±8.1 37.6±2.6 / 88.0±5.7

added data y = ŷr+n assuming a modified SM, AmeasUD,
to mimic the discrepancy highlighted in Eq. (35).

For training DEQ-MPI, MPI data were generated by cou-
pling simulated vessel phantoms from the training-validation
sets with a single SM from the second experimental session.
Separate models were trained for 13×26 and 26×52 phantoms,
using the SM at SF gradient strength of 0.3, 0.5 or 0.6 T/m.
To quantify model performance, simulated phantoms from the
test set were coupled with the measured SMs from both exper-
imental sessions. The DEQ-MPI models trained on simulated
phantoms were also tested on experimental phantoms. During
training and testing with 26×52 phantoms, the measured SMs
were upsampled by a factor of 2 via bicubic interpolation to
have 1-mm/pixel resolution.

To describe the noise level in the generated MPI data, the
measurement SNR was computed as:

SNR(y) = 20 log10 (∥ŷr∥2/∥y − ŷr∥2) , (36)
where ŷr and y are noise-free and noisy data. To assess
reconstruction performance for simulated phantoms, pSNR
and structural similarity (SSIM) were computed:

pSNR(x) = 20 log10

(√
N∥x̂r∥∞/∥x− x̂r∥2

)
,(37)

SSIM(x) =
(2µxµx̂r + c1)(2σxx̂r + c2)

(µ2
x + µ2

x̂r
+ c1)(σ2

x + σ2
x̂r

+ c2)
, (38)

where x is the reconstructed image, x̂r is the ground truth, µ,
σ2 denote image mean and variance, σxx̂r is the covariance of
x and x̂r, c1,2 are scalars that prevent division by zero [66].

V. RESULTS
A. Ablation Studies

We conducted a set of ablation studies to assess the value
of the individual design elements in DEQ-MPI. The ablation

Fig. 5: Reconstructions of three simulated vessel phantoms (13×26)
and respective error maps (see colorbar) are shown for competing
methods, along with the reference images. A measurement SNR of
35 dB was used. The SM at 0.5 T/m SF gradient was used for training,
and the SM at 0.6 T/m was used for testing.

studies were conducted using 13×26 simulated vessel phan-
toms and measured SMs. To assess the value of physics-
driven learning, an end-to-end model was built where an
RDN block without DC was trained to directly map the
least-squares solution onto ground-truth images. To assess the
value of deep equilibrium modeling, an unrolled model with
conventional unlearned DC block was built with Nit = 5
iterations (selected via cross validation). To assess the value of
learned consistency, an LC-ablated variant of DEQ-MPI was
built with a conventional unlearned DC block. Training was
performed at measurement SNRs of 5-45 dB, and testing was
performed under 35 dB SNR. For brevity, pSNR assessments
are reported, while the same conclusions are valid based on
SSIM. DEQ-MPI achieves the highest performance (Fig. 3),
with pSNR improvement of 2.1 dB over the end-to-end, 3.4 dB
over the unrolled, and 0.9 dB over the LC-ablated model across
training SNRs. The only exception is at SNR=5 dB where
the LC-ablated variant yields a moderately higher pSNR, best
attributed to the relatively low training SNR that mismatches
the test SNR limiting the performance of the LC block.

We also examined the convergence behaviors of the iterative
models, when the training and test SNRs were both 35 dB
(Fig. 4). The non-iterative end-to-end model was not consid-
ered. The unrolled model begins to suffer dramatically when
the number of iterations exceeds Nit assumed during training,
and the LC-ablated variant has relatively slow convergence to
a suboptimal performance level. In contrast, DEQ-MPI shows
fast convergence where it exceeds the performance of the
unrolled model beyond Nit = 5.

Next, we assessed the importance of the proposed initializa-
tions for the RDN and LC blocks in DEQ-MPI. Accordingly,
a variant based on a randomly initialized RDN, a variant
based on a randomly initialized LC, and a variant with
randomly initialized RDN and LC were built. To demonstrate
the proposed LC initialization, an additional variant with LC
pre-trained to estimate noise-free data was also built. The
training and test SNRs matched (35 dB). We find that the
average pSNR is 37.6 dB for DEQ-MPI, 29.9 dB when RDN is
randomly initialized, 20.2 dB when LC is randomly initialized,
20.1 dB when both RDN and LC are randomly initialized,
and 29.9 dB with LC pre-trained to estimate noise-free data.
These results indicate that the proposed model initializations
contribute substantially to reconstruction performance.
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Fig. 6: Reconstructions of a simulated vessel phantom (13×26) at
SNR=15-35 dB and respective error maps are shown for competing
methods, along with the reference image. The SM at 0.5 T/m was
used for training, and the SM at 0.6 T/m was used for testing.

TABLE III: pSNR (dB) / SSIM (%) of the simulated vessel phantoms
(26×52) reconstructed at varying measurement SNRs. The upsam-
pled SM at 0.5 T/m was used in training, and the upsampled SM at
0.6 T/m was used in testing.

SNR=15 dB SNR=25 dB SNR=35 dB

ℓ1-ADMM 23.7±1.9 / 24.3±8.5 28.8±1.5 / 46.9±8.2 33.4±3.2 / 73.5±4.9

TV-ADMM 30.8±4.6 / 70.0±10.5 33.5±4.0 / 78.5±6.6 35.3±4.0 / 83.8±5.5

Hyb-ADMM 29.2±2.7 / 56.1±7.8 33.3±3.4 / 76.9±5.3 35.3±4.0 / 84.4±5.1

ℓ2-ART 28.8±4.0 / 55.6±5.1 30.3±5.4 / 68.7±9.3 33.8±4.3 / 78.2±5.8

DIP 23.7±1.9 / 25.5±11.5 29.3±2.3 / 52.1±15.2 31.0±3.1 / 64.7±16.1

PP-MPI 32.6±4.3 / 75.7±8.8 35.3±3.5 / 81.3±6.7 37.1±3.1 / 84.8±5.9

DEQ-MPI 33.9±3.9 / 78.7±7.8 36.0±3.3 / 82.9±6.5 37.7±3.2 / 86.3±5.5

B. Simulated Phantoms

DEQ-MPI was first demonstrated against traditional (ℓ1-
ADMM, TV-ADMM, Hyb-ADMM, ℓ2-ART) and learning-
based methods (DIP, PP-MPI) via quantitative assessments
on 13×26 simulated vessel phantoms. pSNR and SSIM were
computed across the test set for variable measurement SNRs,
with training and test sets having matching SNR for each
case for DEQ-MPI. When the same SM was used for both
training and testing (the SM at 0.5 T/m SF gradient from the
second session), DEQ-MPI outperforms the top-contending
traditional method by 2.8 dB pSNR / 6.8% SSIM, and the
top-contending learning-based method by 1.7 dB pSNR / 4.5%
SSIM (Table I). When the SM differed across training-test sets
(the SMs at 0.5 versus 0.6 T/m SF gradient), DEQ-MPI again
outperforms the top-contending traditional method by 2.5 dB
pSNR / 6.2% SSIM, and the top-contending learning-based
method by 1.3 dB pSNR / 3.7% SSIM (Table II). For each
competing method, performance levels are comparable across
Tables I-II because both cases utilized the same underlying
phantoms in the test set and the same SNR levels. Note,
however, that this does not imply that the SMs at 0.5 and
0.6 T/m are interchangeable, since reconstructing the data
measured with the SM at 0.5 T/m using the SM at 0.6 T/m
would result in substantial performance loss (e.g. 15.5 dB
pSNR / 7.3% SSIM loss for Hyb-ADMM).

Representative reconstructions and the respective error maps
from competing methods under 35 dB SNR are displayed in
Fig. 5 for the case with different SMs across the training-
test sets. ℓ1-ADMM yields a grainy image with residual noise
and background signal; TV-ADMM, Hyb-ADMM, and ℓ2-
ART suffer from spatial blurring; and DIP can suffer from

Fig. 7: Reconstructions of three simulated vessel phantoms (26×52)
and respective error maps are shown for competing methods, along
with the reference images. A measurement SNR of 35 dB was
used. The upsampled SM at 0.5 T/m was used for training, and the
upsampled SM at 0.6 T/m was used for testing.

TABLE IV: pSNR (dB) / SSIM (%) of the simulated torus-shaped
phantoms (26×52) reconstructed at SNR=15 dB. ID denotes inner
torus diameter. The upsampled SM at 0.5 T/m was used in training,
and the upsampled SM at 0.6 T/m was used in testing.

ID=1 mm ID=2 mm ID=3 mm

ℓ1-ADMM 29.6±2.2 / 84.5±20.4 29.2±2.0 / 86.7±19.6 29.0±1.9 / 89.5±16.8

TV-ADMM 30.0±0.9 / 81.7±20.1 28.2±1.2 / 82.3±17.9 27.7±1.6 / 81.9±14.6

Hyb-ADMM 30.5±1.2 / 96.0±3.1 30.2±1.2 / 96.0±3.3 29.8±1.2 / 96.4±2.9
ℓ2-ART 27.6±0.2 / 75.6±2.2 26.1±0.2 / 70.6±2.4 25.4±0.1 / 65.7±2.7

DIP 32.5±2.3 / 93.6±4.0 33.4±2.0 / 94.2±3.7 32.5±2.8 / 92.9±4.1

PP-MPI 31.6±2.3 / 90.8±5.0 31.9±2.0 / 89.4±4.9 31.6±2.0 / 90.3±4.9

DEQ-MPI 36.0±1.5 / 96.1±1.4 35.7±1.1 / 95.9±1.5 35.4±0.8 / 95.4±1.6

noise amplification. While PP-MPI yields relatively higher
performance, it shows elevated errors in regions of low signal
near the upper and lower right corners, where the experimental
SM has limited sensitivity due to the limits of receive coil
coverage. In contrast, DEQ-MPI yields superior performance
with lower errors than competing methods. Reconstructions for
varying measurement SNRs for the case with different SMs
across the training-test sets are shown in Fig. 6. As expected,
performance improves for all methods as measurement SNR
increases. Among competing methods, ℓ1-ADMM and partic-
ularly DIP that are relatively amenable to noise amplification
show limited performance towards lower SNR levels. Overall,
DEQ-MPI produces high image quality with lower artifacts
and noise than competing methods.

Demonstrations were also performed on simulated vessel
phantoms at a larger grid size of 26×52. To account for
the larger grid size, the measured SMs were upsampled via
bicubic interpolation to 1 mm/pixel resolution. Performance
was quantified for variable measurement SNRs, while the
SMs differed between the training and test sets. DEQ-MPI
outperforms the top-contending traditional method by 2.7 dB
pSNR / 5.2% SSIM, and the top-contending learning-based
method by 0.9 dB pSNR / 2.0% SSIM (Table III). Represen-
tative reconstructions under 35 dB SNR are displayed in Fig.
7. Among the competing methods, ℓ1-ADMM and DIP show
noise amplification, TV-ADMM and Hyb-ADMM show block
artifacts, and ℓ2-ART shows blurring. In contrast, DEQ-MPI
recovers images with higher spatial acuity and lower errors
than competing methods.

To systematically assess resolvability of fine structure,
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Fig. 8: Reconstructions of three torus-shaped phantoms (26×52) and
respective error maps with inner torus diameters of ID=1-3 mm are
shown for competing methods, along with the reference images. A
measurement SNR of 15 dB was used. The upsampled SM at 0.5 T/m
SF gradient was used for training, and the upsampled SM at 0.6 T/m
was used for testing.

DEQ-MPI was demonstrated using 26×52 simulated torus-
shaped phantoms. Separate phantoms were generated with an
MNP-free torus diameter gradually reduced from 3-mm to
1-mm. Performance was quantified for 15 dB measurement
SNR and mismatched SMs between the training and test sets.
DEQ-MPI outperforms the top-contending traditional method
by 5.5 dB pSNR while offering similar SSIM, and the top-
contending learning-based method by 2.9 dB pSNR / 2.3%
SSIM (Table IV). Note that the phantoms examined in this
analysis are highly sparse with MNPs located only within
a small torus. pSNR is based on absolute pixel-wise errors
without any local normalization, whereas SSIM is based on
relative window-wise similarities with window-level normal-
ization. As such, pSNR values remain more sensitive to errors
near the torus region, while SSIM values are dominated by
the close match between reconstructed and reference images
in void background regions. Hence, we deduce that pSNR
better reflects the performances of the competing methods in
this case. Representative reconstructed phantom images are
shown in Fig. 8. The torus-shaped phantom was placed off-
centered within the FOV to present a more challenging case
for all methods, as the measured SMs had reduced sensitivity
in the peripheries of the FOV. Among competing methods,
TV-ADMM and Hyb-ADMM show blocking artifacts, ℓ2-ART
shows blurring, and DIP shows pixel artifacts due to noise
amplification that limit spatial acuity. Although ℓ1-ADMM
yields visually sharp reconstructions, close inspection of re-
constructed images reveals that it suffers from amplitude errors
due to undershooting or overshooting of pixel intensities.
Meanwhile, PP-MPI yields relatively lower artifacts, but it
shows geometric distortions in the recovered torus, particularly
visible at larger inner diameters. In comparison, DEQ-MPI
recovers the torus shape with minimal artifacts and distortions,
and successfully resolves the reduced intensity in the MNP-
free inner region for inner torus diameter as low as 1 mm.

C. Experimental Phantoms

Next, DEQ-MPI was demonstrated on two experimental
phantoms. Due to lack of ground-truth images in experimental
settings, assessments were performed qualitatively via visual
inspection [20], [32]. DEQ-MPI was trained using emulated
MPI data from simulated phantoms at an assumed SNR level,

whereas testing was performed on experimental MPI data at
SNR≈20 dB (estimated based on multiple signal and back-
ground measurements). To assess reliability against SNR and
SM mismatches between the training-test sets, reconstructions
of measurements at 0.5 and 0.6 T/m SF gradients were
obtained separately using models independently trained for
SNRs in 5-40 dB (Fig. 9). Training was performed using
the SM at 0.5 T/m, whereas testing was performed using
the SM corresponding to each SF gradient. In general, DEQ-
MPI shows reliability against moderate deviations between the
training and test SNRs, albeit residual reconstruction errors
occur when the difference between the two SNRs reaches
towards 20 dB. In particular, residual artifacts become apparent
in reconstructed images when the model trained at 40 dB SNR
is tested at 20 dB SNR. This finding is best attributed to
the large mismatch between the training and test SNR levels,
which can limit generalization and cause over-sensitivity to
noise. To further assess reliability against SM mismatches
between the training-test sets, separate reconstructions of the
cylindrical phantom measurement at 0.5 T/m SF gradient
were obtained using models trained separately with SMs at
SF gradients of 0.3, 0.5 or 0.6 T/m (Fig. 10). We observe
minimal differences in reconstructions for models trained at
0.3-0.6 T/m, suggesting that DEQ-MPI demonstrates a degree
of robustness against SM deviations.

Reconstructions of the cylindrical phantom were then com-
pared for the competing methods at 0.5 and 0.6 T/m (Fig. 11).
Again, training for DEQ-MPI was performed using the SM
at 0.5 T/m, whereas testing was performed using the SM
corresponding to each case. The other methods utilized the
SM corresponding to each case, as well. ℓ1-ADMM and DIP
yield over-sparsified images with artefactual bright/dark pixels
due to amplified noise; TV-ADMM and Hyb-ADMM yield
over-smoothed images with block artifacts; and ℓ2-ART shows
blurring and residual noise. While PP-MPI mostly avoids these
issues, it reconstructs cylindrical tubes at an incorrect geomet-
ric orientation compared to remaining methods. In contrast,
DEQ-MPI yields lower artifacts/noise and higher resemblance
to the designed phantom than competing methods.

Images of the Y-shape phantom were also reconstructed
(Fig. 12). The SM at 0.5 T/m from the second experimental
session was used for training DEQ-MPI, whereas testing was
performed using the SM at 0.5 T/m from the first session.
A recalibration was performed on the FFL system between
the two sessions that were 2 months apart, so the resultant
SMs differed. The measured SM (sampled at 2-mm/pixel) was
used to reconstruct images at the original 13 × 26 grid size,
and bicubic interpolated version of the SM (upsampled to 1-
mm/pixel) was used to reconstruct images at 26 × 52 grid
size [20], [67]. ℓ1-ADMM and DIP suffer from artefactual
pixels due to noise amplification; TV-ADMM, Hyb-ADMM,
and ℓ2-ART suffer from spatial blurring; and PP-MPI does
not faithfully capture the geometry of the phantom including
the central air bubble. In comparison, DEQ-MPI offers high
quality reconstructions in both the original and upsampled
resolutions.
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10 mm

Fig. 9: Reconstructions of the experimental cylindrical phantom with DEQ-MPI trained at SNR levels in 5-40 dB. (a) Approximate geometry
of the phantom. Scale bar indicates 10 mm. (b) Reconstructions at (top-row) 0.5 T/m and (bottom-row) 0.6 T/m SF gradients. The SM at
0.5 T/m was used for training DEQ-MPI. Testing utilized the SM corresponding to each case. Red box denotes the case where the training
and testing SNRs match.

Fig. 10: Reconstructions of the experimental cylindrical phantom with
DEQ-MPI trained at SF gradients of 0.3, 0.5, or 0.6 T/m. In all cases,
testing utilized the SM at 0.5 T/m.

TABLE V: Inference iterations (number of iterations) and reconstruc-
tion times (milliseconds) for a single 13×26 MPI image.

ℓ1-ADMM TV-ADMM Hyb-ADMM ℓ2-ART DIP PP-MPI DEQ-MPI

Iters. 200 100 100 10 20000 150 25

Time 55 221 236 6966 235162 379 64

D. Reconstruction Time

The number of inference iterations and reconstruction times
for all competing methods are listed in Table V. Reconstruc-
tion performance as a function of run time is plotted in Fig.
13. Among competing methods, ℓ2-ART and particularly DIP
require prolonged inference, and ADMM variants with TV
regularization (TV-ADMM, Hyb-ADMM) and PP-MPI have
moderate run times. In comparison, DEQ-MPI yields efficient
reconstructions with relatively fast convergence and run times
competitive with ℓ1-ADMM.

VI. DISCUSSION

DEQ-MPI integrates an implicit mapping into an opti-
mization algorithm for performance and efficiency in MPI
reconstruction. The implicit mapping is based on learned
regularization and DC blocks to better conform to the data
distribution, and accelerated fixed-point iterations are used
to rapidly compute a convergent solution. Demonstrations
on simulated and experimental phantoms indicate that DEQ-
MPI trained using a single acquired SM outperforms previous
traditional and learning-based methods. As a physics-driven
method, DEQ-MPI shows reliability against deviations in the
SM and in SNR levels between the training and test sets.
While reconstruction errors occur when the training SNR is
dramatically higher than the test SNR, this scenario can be
avoided by performing a rough SNR estimation on given data.

MPI reconstruction involves the solution of an ill-
conditioned inverse problem due to significant measurement
correlations and high noise levels. Ill-conditioning can no-
tably degrade image quality, and in turn restrict the use of
MNPs with suboptimal characteristics (e.g., spatially-broad
PSF, weak responses at high harmonic frequency components).
Physics-driven deep learning methods integrate data-driven
image priors with physical constraints of the imaging system
to effectively regularize reconstructions, while maintaining

reasonable robustness against changes in the system con-
straints [41], [56]. By enhancing image quality over traditional
reconstructions, physics-driven methods such as DEQ-MPI can
enable high-performance imaging even when utilizing MNPs
with less desirable characteristics. Future studies are warranted
to systematically assess the utility of DEQ-MPI in enabling
use of a broader variety of MNPs in MPI.

The SMs acquired on our in-house MPI scanner had a
resolution of 2 mm/pixel given limitations related to the SF
gradient strength and MNP characteristics, as typically en-
countered in MPI systems [12]. For assessments at 1-mm/pixel
resolution, the measured SMs were upsampled via bicubic
interpolation and 26×52 images were reconstructed. Analyses
on simulated vessel and torus-shaped phantoms suggest that
DEQ-MPI can faithfully reconstruct features at spatial scales
down to 1 mm. Yet, the ability to resolve fine features depends
on various critical factors beyond the reconstruction method,
including the compatibility between the upsampled SM and
the actual high-resolution SM, distribution of the singular
values of the SM, measurement SNR, and position of the MNP
sample within the FOV. Thus, future studies are warranted to
experimentally investigate the ability of DEQ-MPI in resolving
features below 1-mm scale by measuring higher-resolution
SMs, and the benefits of DEQ-MPI over competing methods
in recovering images of larger sizes.

Traditional methods can show high sensitivity to weights
for hand-crafted regularizers [50]. MPI studies have reported
that ideal weights can vary drastically across scans, suggesting
that parameter tuning on each test image might be useful
[20], [32]. Such optimization is infeasible in pre-clinical or
clinical scenarios as no a priori knowledge would be available
on the MNP distribution. To address this challenge, here we
optimized model hyperparameters on a validation set, and the
selected values were used thereafter in the test set. Learning-
based methods were observed to be more forgiving against
suboptimal parameters (results not shown), so they might
alleviate the need for exhaustive parameter tuning.

While performant reconstructions have been reported based
on untrained networks in MPI literature [38], [39], here we
observed relatively limited performance with DIP. Note that
DIP directly minimizes a conventional DC loss between re-
covered and acquired test data. This loss function intrinsically
assumes that data contain negligible noise compared to the
signal. Because this assumption is violated for moderate to
low SNR levels as considered in the current study, DIP can
perform suboptimally in relatively limited SNR regimes.

Few recent studies have considered deep equilibrium models
for undersampled MRI reconstruction [51], [52], [54], and
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10 mm

Fig. 11: Reconstructions of experimental cylindrical phantom with competing methods. (a) Approximate geometry of the phantom. (b)
Reconstructed images at (top-row) 0.5 T/m and (bottom-row) 0.6 T/m SF gradients. The SM at 0.5 T/m was used for training DEQ-MPI.
Testing utilized the SM corresponding to each case.

10 mm

Fig. 12: Reconstructions of experimental Y-shape phantom with competing methods. (a) Approximate geometry of the phantom. (b)
Reconstructed images based on (top-row) the original 13× 26 SM and (bottom-row) the upsampled 26× 52 SM. The SM at 0.5 T/m from
the second session was used for training DEQ-MPI. The SM at 0.5 T/m from the first session was used for testing.

Fig. 13: Performance of competing methods as a function of inference
time. ℓ2-ART and DIP that have markedly prolonged run times are
omitted. Average pSNR across the test set is shown for each method.

low-dose CT reconstruction [53]. In addition to addressing a
distinct problem in MPI, our proposed approach is unique in
the following aspects: (1) Instead of integrating an implicit
mapping into a projection-onto-convex-sets algorithm as in
[52] or into a proximal gradient algorithm as in [54], DEQ-
MPI leverages an ADMM algorithm that can offer improved
reliability for non-convex or non-smooth problems. (2) While
[51] uses ADMM with Anderson acceleration similar to the
proposed method, the two methods differ in their variable
splitting procedures for ADMM. [51] uses a single-component
auxiliary variable dedicated to the proximal mapping for reg-
ularization. In contrast, DEQ-MPI leverages a two-component
auxiliary variable with sub-components dedicated to the proxi-
mal mappings for data consistency and regularization, respec-
tively. In initial phases of the study, we observed that this
splitting procedure facilitates implementation of a constrained
ADMM formulation based on a learned consistency measure.
(3) Unlike [53] that uses Jacobian-free backpropagation, DEQ-
MPI employs implicit differentiation for model training. (4)
[51]–[54] all employ a conventional unlearned DC block. In
contrast, DEQ-MPI leverages a learned consistency (LC) block
to better conform to the data distribution. (5) While [52], [53]
do not report non-standard initialization and [51], [54] only
consider initialization for the regularization block, DEQ-MPI
employs dedicated initialization methods for its regularization
and LC blocks that improve model performance. (6) Lastly,
[51], [52], [54] use a residual connection between the input

and output layers of a convolutional architecture, and [53] uses
four residual convolutional blocks with a residual connection
between the input and output of each block. Instead, DEQ-
MPI adopts multiple residual connections densely distributed
across layers in a convolutional architecture that have been
reported to offer performance benefits [63].

Several developments can be considered to improve DEQ-
MPI. First, we generated training data using MRA images un-
der the assumption that they have similar features to MPI im-
ages. When the imaged anatomy is non-vascular, this approach
might yield suboptimal performance. While public datasets of
MPI images are rare, DEQ-MPI can in principle be enhanced
by training the model on large amounts of experimental data
to better capture application-specific image features. Second,
MPI data include a non-stationary background that was sep-
arately measured and subtracted from acquired data prior to
reconstruction. The need for background measurements can be
avoided by extending DEQ-MPI to separately reconstruct the
foreground and background signals. To do this, a dictionary-
based approach can be adopted to estimate the background
signal from acquired data [68]. Third, DEQ-MPI was trained
based on convolutional networks and a pixel-wise loss term.
Performance improvements might be achieved with attention-
based architectures to capture contextual features [69], and
diffusion processes to increase reliability in model training
[70]. Fourth, DEQ-MPI was demonstrated for reconstructing
experimental phantoms at 2× higher spatial resolution by
bicubic SM upsampling. Visual acuity of resultant MPI images
scales up well, suggesting that upsampled SMs are reasonably
accurate. To enhance accuracy, learning-based super-resolution
methods can also be adopted [44], [45]. It remains an impor-
tant future work to evaluate the utility of upsampling methods
via comparisons against SMs acquired at high resolution. Fifth,
DEQ-MPI was trained via common backpropagation, where
the Jacobian of the convergent solution was computed via
implicit differentiation. A powerful alternative is the Jacobian-
free backpropagation framework that improves training ef-
ficiency and numerical stability [71], [72], which can be
utilized in DEQ-MPI to lower training costs and enhance
reconstruction performance. Finally, imaging over large FOVs
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can be attained by performing patch-wise reconstructions with
DEQ-MPI and fusing the multi-patch outputs [73].

VII. CONCLUSION

Here, we introduced a novel deep equilibrium reconstruction
for MPI with learned consistency. For improved performance
and reliability, DEQ-MPI follows a physics-driven approach
that integrates network blocks that regularize the image and
enforce DC into an iterative algorithm. Simulated and ex-
perimental demonstrations indicate clear performance benefits
and competitive efficiency over both traditional and recent
learning-based methods. Thus, DEQ-MPI holds great promise
for fast, high-fidelity image reconstruction in MPI.
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