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ARTICLE INFO ABSTRACT
Keywords: The increasing utilization of medical imaging technology with digital storage capabilities has
CBIR facilitated the compilation of large-scale data repositories. Fast access to image samples with

Medical image retrieval similar appearance to suspected cases in these repositories can help establish a consulting system

;np let tational learni for healthcare professionals, and improve diagnostic procedures while minimizing processing
epresentational learnin; . N . . . . .
HaIs)hing & delays. However, manual querying of large repositories is labor intensive. Content-based image

retrieval (CBIR) offers an automated solution based on quantitative assessment of image simi-
larity based on image features in a latent space. Since conventional methods based on hand-
crafted features typically show poor generalization performance, learning-based CBIR methods
have received attention recently. A common framework in this domain involves classifier-guided
models that are trained to detect different image classes. Similarity assessments are then per-
formed on the features captured by the intermediate stages of the trained models. While classifier-
guided methods are powerful in inter-class discrimination, they are suboptimally sensitive to
within-class differences in image features. An alternative framework instead performs task-
agnostic training to learn an embedding space that enforces the representational discriminabil-
ity of images. Within this representational-learning framework, a powerful method is triplet-wise
learning that addresses the deficiencies of point-wise and pair-wise learning in characterizing the
similarity relationships between image classes. However, the traditional triplet loss enforces
separation between only a subset of image samples within the triplet via a manually-set constant
margin value, so it can lead to suboptimal segregation of opponent classes and limited general-
ization performance. To address these limitations, we introduce a triplet-learning method for
automated querying of medical image repositories based on a novel Opponent Class Adaptive
Margin (OCAM) loss. To maintain optimally discriminative representations, OCAM considers
relationships among all image pairs within the triplet and utilizes an adaptive margin value that is
automatically selected per dataset and during the course of training iterations. CBIR performance
of OCAM is compared against state-of-the-art loss functions for representational learning on three
public databases (gastrointestinal disease, skin lesion, lung disease). On average, OCAM shows an
mAP performance of 86.30% in the KVASIR dataset, 70.30% in the ISIC 2019 dataset, and 85.57%
in the X-RAY dataset. Comprehensive experiments in each application domain demonstrate the
superior performance of OCAM against competing triplet-wise methods at 1.52%, classifier-
guided methods at 2.29%, and non-triplet representational-learning methods at 4.56%.
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1. Introduction

With the tremendous increase in the volume of medical imaging data accumulated in healthcare institutions due to the increasing
availability of imaging devices, promising opportunities have arisen in establishing image-based consulting systems for healthcare
professionals. Yet, a key component of such systems is the ability to efficiently search representative images of suspected diseases
within large image repositories. A powerful solution to address this challenge is content-based image retrieval (CBIR), which can
automate the search for images similar to a query by assessing the similarity of their image features. By providing automated access to
medical images that are visually similar to a query image, CBIR systems can aid in the solution of clinical problems such as grading of
disease progression, diagnosing multiple concurrent diseases, cross-organ disease assessment, and counseling of medical trainees.
Automated retrieval is characteristically performed by comparing the visual contents of the query image against candidate images in a
large image repository. Unfortunately, conventional CBIR methods assess the similarity of visual contents in terms of hand-crafted
local and global image features [1]. Since these approaches often rely on a compact set of color and texture features, they provide
an incomplete characterization of the image distribution and show suboptimal generalization to new image samples [2].

The limitations of conventional methods have recently motivated the adoption of learning-based CBIR methods with the advent of
deep neural network (DNN) architectures for data-driven capture of comprehensive image features. A prevalent framework in this
domain employs classifier-guided DNNs trained to detect the image classes via cross-entropy losses [3]. The feature maps extracted in
intermediate stages of the trained DNNs are then used to conduct similarity assessments between images. While this framework is
powerful in inter-class discriminations, classifier-guided DNNs lead to suboptimal intra-class discriminability as that information is not
relevant to the classification task [4]. An alternative framework involves task-agnostic training of DNNs to capture a latent embedding
space where images are highly discriminable [5]. In this representational-learning framework, each image is represented as a dense
embedding vector, and similarity between two images is computed based on their respective embedding vectors. To do this, an
embedding objective is used that enforces the assignment of comparable vectors to visually similar images, and disparate vectors to
visually dissimilar images [6]. Consequently, retrieval is performed by recollecting the set of images that are closest to the query image
in the latent space. Since representational learning does not exclusively focus on class discrimination, it can capture discernible
representations for inter-class and intra-class images.

Prominent embedding objectives to learn representations that become more discernible with growing dissimilarity between images
include pair-wise, and triplet-wise methods. Pair-wise methods process images in pairs to enable similarity assessments based on
contrastive loss [7]. However, these methods have relatively limited training efficiency as they only consider pairs of either similar or
dissimilar images, and they can produce weakly discernible representations for similar images. To address these limitations, triplet-
wise methods process images in sets of three with anchor (A), positive (P), and negative (N) samples. A triplet loss is commonly
used to compare the A-P distance between images of the same class (i.e., similar images) against the A-N distance between images of
different classes (i.e., dissimilar images) [8]. Traditional triplet-wise methods enforce the difference between A-P and A-N distances to
remain above a constant margin value. Several modifications have also been introduced to the loss function including the linear or non-
linear weighting of A-P and A-N distances in the triplet loss [9,10], and the addition of regularization terms based on the A-P distance
itself to emphasize its contribution [11,12]. Yet, similar to the traditional formulation, these methods do not place any explicit
constraints on the P-N distance [8], which can lower the segregation between P and N samples from opponent classes [13].
Furthermore, previous methods pervasively use constant margin values that can elicit suboptimal performance since the ideal margin
varies across datasets and across the training iterations for a given dataset [14].

This work introduces an Opponent Class Adaptive Margin (OCAM) loss to improve triplet-wise representational learning for CBIR
tasks. Addressing two main limitations of the traditional triplet formulation, OCAM incorporates the P-N distance to enforce better
segregation between opponent classes, and it leverages an adaptive margin determined based on the current segregation between the
opponent classes. This allows OCAM to learn more discriminative embedding vectors for medical imaging that can facilitate subse-
quent image retrieval. Demonstrations are provided on gastrointestinal, skin, and lung images based on Euclidean and Hamming
retrieval codes. Our experiments indicate that OCAM exhibits superior performance against competing baselines. Our main contri-
butions are summarized below:

e OCAM leverages an adaptive margin between A-P and A-N distances to improve conformity to the image distribution per dataset,
without necessitating manual intervention.

e OCAM incorporates the P-N distance in the embedding objective to enhance the discernibility of opponent image classes in the
latent space.

e Superior retrieval performance is obtained in various anatomies with the OCAM-based CBIR method.

2. Related work

An early approach for querying medical image repositories is text-based image retrieval (TBIR) where image contents are annotated
manually by human observers, and a query search is conducted based on the text annotations. Due to the involvement of the human
factor, TBIR systems are labor-intensive and susceptible to subjective annotations that vary across observers, rendering them
impractical for large repositories [15]. CBIR systems offer an efficient alternative where retrieval is conducted based on the similarity
of visual features in medical images instead of text annotations [16]. In CBIR, image contents are represented via features in a latent
space, similarity scores between a query image and candidate images from the repository are computed based on these features, and



S. Oztiirk et al. Information Sciences 637 (2023) 118938

retrieval is performed by recollecting the candidates with the highest scores [3]. CBIR systems’ performance inevitably depends on the
representational power of the features used for measuring image similarity [17]. To this end, feature extraction for image retrieval
tasks has been an active research area in recent years. Conventional methods in this domain rely on expert knowledge to define hand-
crafted features. These include both global features related to color, shape and texture [18] and local features as extracted by various
transforms [19]. While these hand-crafted features are relatively easy to derive, conventional methods commonly leverage a compact
set of features that are insufficient in providing a comprehensive characterization of the image distribution [16].

Learning-based methods based on DNNs have recently gained traction in CBIR due to their remarkable capabilities in capturing
descriptive image features. The first group of methods in this domain follows a classifier-guided framework where a DNN is trained to
perform image classification [20]. Training is commonly conducted via a cross-entropy loss for these methods, although tree-based,
logistic and graph-based losses have also been proposed [3,21]. Afterward, the feature maps in later layers of the trained DNN are
used to assess image similarity. Pooling of features across both intermediate and later DNN layers [22], across multi-scale DNNs [2.3],
and across randomly sampled image patches [24] have been proposed to improve feature diversity at the expense of computational
burden. Feature selection methods to lower the dimensionality of the latent representations have later been introduced to alleviate this
burden [25]. Due to their data-driven capture of image features, classifier-guided methods have enabled leaps in CBIR performance
over conventional methods. However, these methods are primarily trained for a classification task that prioritizes inter-class
discrimination, so representations of images within a given class may be less discernible. In turn, classifier-guided methods are
amenable to selecting candidate images that are not ideally similar to the query image.

An alternative group of methods instead follow a representational-learning framework where a DNN is trained to identify image
embeddings [8]. The embedding objective serves to promote visually similar images to have proximate embedding vectors and visually
dissimilar images to have distant embedding vectors. To do this, pair-wise and triplet-wise learning are two common approaches for
constructing the embedding objective. In pair-wise learning, a pair of images are processed with a pair of DNNs with matching model
weights. The resultant feature maps from the DNNs are then compared to compute a contrastive loss [26]. Pair-wise methods are
reported to elevate retrieval performance over classifier-guided methods [7]. However, the contrastive loss is computed based on
either a pair of similar or dissimilar images per iteration, which can limit learning efficiency. In addition, the traditional contrastive
loss enforces the distance between dissimilar images to exceed a margin value, albeit it does not consider the distance between similar
images. For improved learning, triplet-wise methods process three images (A, P, and N) per iteration with A and P sampled from an
opponent class to N [8]. As such, the triplet loss enforces the inter-class distance to be greater than the intra-class distance by a constant
margin value. While demonstrated to be powerful, conventional triplet-wise methods still face some challenges in representational
learning. First, the traditional triplet loss ignores the P-N distance in its formulation, resulting in suboptimal segregation between
opponent image classes. Second, it uses a user-determined scalar as the margin value that does not attune itself to specific datasets, and
that remains constant during the training, resulting in poor generalization. To address these challenges, OCAM explicitly incorporates
the P-N distance and utilizes an adaptive margin value.

Several recent studies have attempted to improve triplet learning by adapting margin values. In [10], a cross-validated search is
proposed for tuning the relative weighting of a constant margin per dataset. However, this approach still retains a fixed margin across
the entire training process. In [11,12,14], a global constant margin is prescribed by the user, and its relative weighting is adjusted via
penalty terms included in the triplet loss. While this approach introduces a degree of flexibility in changing the effective margin across
training iterations, it still requires manual selection of the global margin. In [27], an adaptive margin is proposed that is determined by
ground-truth A-P and A-N distances between triplets of image samples. To obtain the ground-truth distances, human observers rate
images from distinct classes of visual objects. This labor-intensive rating is difficult to adopt for large training sets, and visual ratings
might not be sufficiently distinctive for medical images where differences among separate disease types are relatively modest. In [28],
an adaptive margin approach is introduced that is determined per mini-batch of triplet samples. The margin value is defined as an
affine function of a semantic similarity term between A and N samples and a constant base margin term. This adaptive approach
ignores the P samples while computing the margin, and it still requires manual selection of the base margin term so it is not fully
automated. For cases when explicit class information is available on each image, [29] proposes a method to select a class-specific
adaptive margin per mini-batch. This method is not applicable when only binary similarity-dissimilarity information is available,
and it requires the manual selection of hyperparameters to update the margin across training iterations. [30] proposes to start the
training with a small initial margin and to gradually increase it across training iterations by a constant update multiplier as the
proportion of N samples that can be successfully separated exceeds a threshold ratio. While promising results have been reported, this
approach still requires manual selection of the initial margin, the threshold ratio, and the constant update multiplier. In contrast to
previous methods, the proposed adaptive margin in OCAM is automatically attuned for each dataset and triplet sample across the
training iterations. Unlike methods that involve the manual selection of hyperparameters to set the weighting or range of margin
values, OCAM does not require any manual parameter selection. Unlike methods that rely on external image ratings, OCAM computes
the margin value based on the P-N distance of triplet samples in the learned embedding space. Unlike methods that leverage explicit
class information, OCAM only relies on binary similarity-dissimilarity labels. Finally, unlike methods that require user-defined pa-
rameters, OCAM performs fully-automated selection of the adaptive margin.

A recent study on person re-identification has proposed to explicitly integrate the P-N distance into the triplet loss to improve
performance [13]. Considering not only the A-P and A-N distances but also the P-N distance can help lower the segregation between
image samples from opponent classes. Our proposed method differs from [13] in the following aspects. On the one hand, [13] uses a
constant margin value as in the traditional triplet loss. This can result in performance degradation as the ideal margin varies across
datasets and training iterations due to changing inter-class separation. While manual tuning might partly alleviate the degradations
across datasets, adapting the margin value across training iterations is challenging without an automated approach. On the other hand,
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unlike [13], OCAM also embeds the added P-N distance term into its adaptive margin value that is designed to vary inversely with
inter-class separation. To avoid the need for manual tuning, the margin is defined using P-N distance as a proxy for inter-class sep-
aration, so it is automatically adjusted during the course of iterations and per dataset.

3. Theory
3.1. Mathematical preliminaries

Given a single query image, CBIR methods aim to retrieve a finite subset of Z images from a repository with high similarity in visual
content to the query. Let’s consider a repository D={X,V}¥ consisting of K medical images X={x1,Xs,...,Xg} € RdXK, where x; € R
(<k<B) is the kth sample of X,Y={y1,ys,...,yx} represents image labels, and d denotes the image dimensionality. For assessing the
similarity of visual content, the images are typically mapped onto a latent space via a projection function Q:x; — Ej, where Q
transforms the original image space to the latent space, and the set of embedding vectors for the images are given as E={E1,E»,...,Ex} €
RS. To retrieve the most similar images from the repository, a search for the Z nearest neighbors (NN) to the query is required [30]:

NN(5,.2) = {F(E, ) € F: [P (-~ o015, 5)) (2} ®

where E; denotes the embedding of the query image, fis a distance metric, and F denotes the set of distances between the embeddings
of repository images and the query image. It is possible to conduct the search by ranking images according to the Euclidean distance of
their continuous embedding codes. While search based on continuous codes can be more sensitive, it also introduces a computational
burden for large image repositories. For improved search efficiency, a binary hash code can be generated for each image based on its
embedding, B={b1,by,.. .,bK}e{-l,-i-l}s"K [31] via a binarization operation:

+1, E;20

: Li=1,2,..,8 2
~1, E. <0 ®)

by = sgn(Ey) = {

Images can be ranked based on the similarity of their hash codes using the Hamming distance. While hash codes improve time
efficiency, their retrieval performance is inevitably dependent on the representation power of the codes. Therefore, DNN methods are
commonly adopted to obtain hash codes with high representation power to capture the underlying dense embedding vectors for
medical images.

Triplet-wise learning is considered one of the most effective approaches for capturing latent representations of images. The
traditional triplet loss (Triplet) for representational learning samples a set of three images (x4, xp, and xy) from the repository, as
illustrated in Fig. 1. Assuming access to information regarding whether any pair of images belong to the same image class, once x4 is
initially selected, xp is drawn from the same class, whereas xy is drawn from the opponent class. Embeddings of the images in the triplet
are computed via Q, Q:xa,Xp,xy — Ea,Ep,En, E € RS. The loss is then expressed as:

Triplet(Es, Ep, En) = max(0,f(Es, Ep) — f(Ea, En) + @) 3)

where a represents the margin parameter. A first limitation of the traditional formulation is that, for a random selection of the image
triplet, it is possible that f(Ea,Ep) > f(Ep,Ey) even if the condition in Eq. (3) is satisfied as f(Ea,Ep) + a < f(Ea,En). This lack of explicit
control over f(Ep,En) can lower the discernability of learned embeddings Ep, En. A second limitation is that the margin value a requires
manual tuning for each dataset, which can be labor-intensive. Moreover, the margin value remains constant throughout the entire
training process, which may result in suboptimal performance for specific stages of training.

XN

Xp
'
Fig. 1. To define a triplet loss, three image samples are selected. These include an anchor sample (x4, in blue color), a positive sample similar to the

anchor (xp, in green color), and a negative sample dissimilar to the anchor (xy, in red color). Links between image samples illustrate their relative
distances. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Similarity
s Measurement

S

Fig. 2. For CBIR, given a query image X,, E; is computed based on a trained network Qrr4ineq and compared against the embedding vectors in the
repository Ere to retrieve similar images. Candidate images from the repository can be ranked based on the Euclidean distance of continuous
embedding codes for the accuracy or based on Hamming distance of binarized hash codes for efficiency.

3.2. Ocam

We introduce OCAM, a novel triplet-wise method for medical image retrieval that improves image representation discernibility and
generalization performance by incorporating two technical improvements over traditional triplet learning. Traditional triplet learning
ignores the P-N distance, f(Ep,Ey), so it can yield insufficient segregation between opponent image classes. To address this issue, OCAM
explicitly incorporates f(Ep,Ey) in the loss function as inspired by a recent computer vision study on person re-identification [13]. Note
that there are two samples in each image triplet belonging to the positive class, so weighting the distance terms equally can introduce
unwanted biases towards the positive class. To avoid potential biases, a balanced weighting is instead adopted here: (f(Ea,Ep)-(f(Ea,En)
+ f(Ep,En))/2). As such, OCAM improves inter-class segregation by extending the A-P distance over the A-N distance and maintaining a
relatively large P-N distance. Furthermore, utilizing a static margin can result in suboptimal performance since f(Ea,Ep)-f(Ea,En)
inherently changes across the training process. In particular, an a value suited for early iterations where (f(Es,Ep)-(f(Ea,En) + f(Ep,EN))/
2) is relatively small will be rendered suboptimal towards later iterations as inter-class segregation increases, slowing down the
learning process. To address this limitation, OCAM introduces an adaptive margin value inspired by the recent success of adaptive
methods in classification tasks [14,27]. Here we propose to leverage a margin value aqdqptive=(1-f(Ep,En))/2 that is a function of f(Ep,
EN) so as to improve the P-N separation, avoiding the need for introducing a user-controlled parameter.

Taken together, these design elements lead to the following formulation in OCAM:

OCAM(E,, Ep,Ey) = max(0,f(Ey, Ep)

(f(Ea,Ev) +f(Ep,EN)) +(1 _f(EP-,EN))> “)
2 2

which can be further simplified as:
OCAM(E,, Ep, Ey) = max (0, f(Es, Ep)

~ (f(EA, En) + 2§(EP,EN) -1 ) ) (5)

To learn embeddings with strong representation capability, a cosine distance measure that ranges in [0,1] is used [26,31]:

. 1 —cos(E;, E;
f(E.E) = w (6)
Then Q parameters are updated using Adam optimizer according to OCAM value. Alg. 1 outlines the training procedures for OCAM:

Algorithm 1 OCAM training

Input:

D = {X,Y}X: training repository consisting of K medical images
X = {x1,X2,...,xg}: images in the repository

Y = {y1y2...yx}: labels in the repository

t: max iteration number

(continued on next page)
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(continued)

Algorithm 1 OCAM training

n: number of local iteration

Qy: DNN

0: parameters of DNN

Opt(): Adam optimizer that computes parameter updates
Output:

Q- trained DNN

Initialize parameters:

Random initialization of 6

forn=1:tdo

Randomly select triplets for iteration n, {x ,x’;,x’,ﬁ,}le
Create embeddings, {Ef\,Ef,,E}V}fil = Qo {xk ,x’;,xﬂ‘v}fil
Calculate OCAM(EX, EX, EX)
Update 6,60 —Opt(Vs, OCAM(EX , E§, EX) )

return: 0*= 6

Following the training of a neural network Qrraineq according to the loss in Eq. (5), inference can be performed for a query image x4 and
a test repository Dresi={Xrest}™ consisting of M test images Xrese—={x1,X2,...,.XM} € RdXM, where x;,, € RIA<m=M) i the mth sample of
XTest- Both the query image and test images in the repository are projected into the latent space via Qraineq- Then, a search is performed

to identify the most similar embeddings in Eres—{E1,Ea,....Em} € RSto Eq as illustrated in Fig. 2.
4. Methods
4.1. Datasets

We have demonstrated the CBIR performance of OCAM on three distinct medical image datasets. The first dataset, KVASIR [32],
contained endoscopic images from eight classes of gastrointestinal disease, with 1000 images per class. The second dataset, ISIC 2019
[33], contained dermoscopic images from eight classes of skin lesions, with the number of images in each class varying from 239 to
12875. The third dataset, curated X-RAY [34], contained radiographic images from four classes of lung disease, with the number of
images in each class varying from 4497 to 5768. All images were downsampled to 256 x 256 pixels. 85% of the dataset was used for
model training, and the remaining 15% was reserved for model testing.

4.2. Architectural details and model implementation

To capture the latent representations of medical images, we employed a Siamese neural network model with OCAM (Fig. 3). The
weights of subnetworks responsible for processing anchor, positive and negative samples were tied. The subnetworks were designed by

Siamese Network

> OCAM

= Y,

Backpropagation

Fig. 3. Representational learning with OCAM. Embedding vectors E4, Ep, and Ey for a randomly selected image triplet x4, Xp, and xy are generated
with a Siamese network. The Siamese network contains backbone CNNs (Q) with tied weights across anchor, positive and negative samples. CNN
parameters are trained to minimize the OCAM loss.
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considering popular convolutional neural network (CNN) architectures in computer vision: VGG16 [35], ResNet50 [36], InceptionV3
[371, MobileNetV2 [38], DenseNet169 [39], and EfficientNetB3 [40]. To obtain S-bit hash codes of image embeddings at the output of
the Siamese network, the final fully connected (FC) layers in backbone CNNs were replaced with a dropout layer at 0.3 dropout rate
and a dense layer of length S. Separate models were designed for S = 16 and S = 64. OCAM calculates the loss based on the similarity
information using these embedding vectors of length S.

The models were implemented using the TensorFlow framework and executed on an NVidia RTX 3090 GPU. Model training was
performed with the Adam optimizer, a batch size of 20 (corresponding to a selection of 60 images per batch due to triplet sampling),
and a learning rate of 10”°. Backbone CNNs were initialized with weights pretrained on ImageNet for object classification. The models
were trained until convergence on each dataset, and because the dataset sizes varied, the number of epochs was 4500 for KVASIR,
45,000 for ISIC 2019, and 5000 for X-RAY datasets. To evaluate CBIR performance, query search with continuous codes in the
Euclidean space of dense embedding vectors [1,7,8] and query search with binary codes in the Hamming space of the embedding
vectors [26] were separately examined.

4.3. Competing methods

We present a comprehensive evaluation of OCAM by comparing it against state-of-the-art representational learning and classifier-
guided methods. These comparisons are organized into two sections. For a focused assessment, the first section includes triplet-wise
methods for representational learning based on the same framework as OCAM but implemented via recently proposed advanced triplet
losses. The backbone architecture and training procedures for competing triplet-wise methods were identical to those for OCAM for a
fair comparison. Meanwhile, for a more comprehensive assessment, the second section includes recent classifier-guided and
representational-learning methods proposed for CBIR tasks in the literature. The network architecture and training procedures for this
broader set of competing CBIR methods were adopted from the original studies. We adhered to the hyperparameters given in the
original studies for each competing method described below.

4.3.1. Triplet-wise methods
Triplet: The Triplet method employs a traditional triplet loss function with « taken as 0.2 [8,11,14]:

Triplet(Es, Ep, En) = max(0,f(Es, Ep) — f(Ea, Ey) + @) ()]

TriEP: The TriEP method uses weighting coefficients for distance measures in the triplet loss, and selects the hardest positive and
negative samples [9].

TriEP(E,,Ep,Ey) = [610omax(f(Es, Ep) ) — B, f,min(f(Es, Ey) ) + a] (8)

where o1, 02, 1, f2 represent the weighting coefficients, and @ = 0.3, 67 = 2.04, 62 = 1.71, ; = 0.83, 32 = 0.64 were used.
WABT: The WABT method performs triplet-wise learning where the anchor sample is scaled prior to distance calculations to
improve performance [10]:

WABT(E,, Ep, Ey) = max(0,f(rEs, Ep) — f(rEs, Ey) + ) 9

where r denotes the scaling coefficient, and « = 1 and r = 3 were used.
dmTri: The dmTri method uses a dynamic margin value by normalizing the loss function in the traditional triplet formulation with
the sum of the A-P distance and « [41], with a taken as 0.2:

. f(Ea, Ey)
dmTri(Es,Ep,Ey) = 0,1 - ——7—— 10
mTri(Ea, Ep, Ey) max< , FEnE) +a (10)

CondTri: The CondTri method augments the traditional triplet loss with a weighted regularization term based on the individual
distance measures [11], with a = 0.2 and the regularization weight § = 0.1:

CondTri(Ey, Ep, Ey) = max(0,f(Es, Ep) — f(Es, Ey) +a) + ﬁw

(1D

CTLL: The CTLL method augments the traditional triplet loss with a weighted and biased regularization term based on the dif-
ference norm of the embeddings for anchor and positive samples [12], with a = 1, the regularization weight x = 0.01, and the reg-
ularization bias y = 0.01:

CTLL(E‘A7 Ep, EN) = IIlaX(O,f(EA, Ep) 7f(EA,EN) + (X) (12)
+(k(f(Ea — Ep)) —7)

4.3.2. Other Methods
Neural Codes: The Neural Codes method trains a backbone CNN architecture for a classification task and then discards its output
layer to use it in a retrieval task [42]. VGG16 was taken as the backbone CNN, and the dimensionalities of two FC layers prior to
softmax were changed to 2048 and S. In each dataset, the backbone CNN was trained to detect image classes by minimizing a point-
wise categorical cross-entropy loss as in Eq. (7). For retrieval, the softmax layer was removed, and the image embedding was taken as
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the vector of S-dimensional activations prior to the softmax layer in the trained CNN.

K
k=

Neural Codes = 7% Z yijlog (Q(xe;30) ) (13)
T =1

where K represents the total number of samples in the training repository, J represents the number of different classes in the training
repository, and 0 is the set of parameters of the Q. A mini-batch size of 32 and a learning rate of 0.0001 were prescribed, and training
was performed with the Adam optimizer.

Contrastive: The Contrastive method employs a traditional pair-wise contrastive loss on two anchor images (x41, Xa2) based on their
similarity label (L, 0 = dissimilar, 1 = similar). For this purpose, two images are randomly selected from the repository: x41, xa2. If
these two anchor images belong to the same class, parameter L is set to 1, if they belong to different classes, parameter L is set to 0. As
such, E4; and E45 can be derived by minimizing the following loss with a taken as 0.2 [7]:

1 1
Contrastive = LEf(EAl,EAz)2 +(1-1L) Emax(O,a —f(Ea1,En) )’ a4

For Contrastive, a margin value of 0.2, a mini-batch size of 20 and a learning rate of 0.0001 were prescribed, and training was
performed with the Adam optimizer.

Tr-Mixer-MLP: The vision transformer guided mixer MLP method (Tr-Mixer-MLP) employs a transformer architecture where the
dense layers are replaced with a Mixer-MLP module [43]. It was trained for image classification, and the feature maps prior to the
output layer were used for similarity measurements based on cosine distance. A mini-batch size of 32 and a learning rate of 0.001 were
prescribed, and training was performed with the Adam optimizer.

QDDR: The query-driven distance recommendation (QDDR) approach employs ResNet50, a backbone CNN architecture for image
classification, and utilizes the feature maps in the fully-connected layer before the output for similarity measurement based on cosine
distance [20]. A mini-batch size of 32 and a learning rate of 0.01 were prescribed, and training was performed with an SGD optimizer
with weight decay and momentum parameters set to 0.0001 and 0.99, respectively.

ABSM-Ret: The attention-based saliency map method (ABSM-Ret) generates saliency-weighted feature maps of images using an
attention-guided CNN architecture [44]. Pair-wise representational learning is performed using a contrastive loss. A margin value of 1,
a mini-batch size of 20 and a learning rate of 0.0001 were selected. Adam optimizer was used for training.

RIDH: The rotation-invariance deep hashing (RIDH) method uses a Cauchy rotation invariance loss for pair-wise representational
learning between images at varying rotations [31]. A mini-batch size of 32, and a learning rate of 0.01 were used along with an SGD
optimizer with weight decay and momentum parameters set to 0.0005 and 0.9, respectively.

X-MIR: The explainable medical image retrieval (X-MIR) method uses a CNN architecture for representational learning of image
embeddings via the traditional triplet loss [45]. A constant margin value of 0.2, a mini-batch size of 16 and a learning rate of 0.0001
were prescribed, and training was performed with the Adam optimizer.

4.4. Performance metrics

CBIR performance was measured using the precision metric for a total of Z retrieved images (P@Z) and the mean average precision
(mAP) metric [7,20,31]. Given a repository D with J image classes, P@Z was computed as the across-class average of class-specific
(P@Z);. To compute (P@Z);, a single test image from the jth class was taken as the query, and retrieval was attempted on the
entire test set, excluding the query image. This process was repeated across all possible query images for the jth class. Afterwards, class-
specific performance (P@Z); and P@Z were computed:

1 L E ) )
(Paz),=—%" Zt(x{-,NN()d,Z):)
i p—
e (1s)
Paz = ; Zl (Paz),

Jj=

where n; denotes the number of samples in the jth class, x’l is the ith query image from the jth class, NN(.), represents the zth element
retrieved from the repository among the set of Z images, and t is an indicator function that returns 1 if its inputs are from the same class,
and returns 0 otherwise. (mAP); and mAP were calculated as follows:

1 & Z (X NN(¥,2),
(mAP); = o7 7< . )
JT =1 =1
(16)
J

mAP =1 > (mAP),

j=1

Note that a high P@Z score can be achieved by retrieving a large number of images from the same class as the query image.
Meanwhile, mAP does not only consider the raw number of correctly retrieved images but it also reflects the order in which images are
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retrieved. In particular, a high mAP score can be attained when images from the same class as the query are retrieved in higher ranks
among Z images compared to images from other classes.

5. Results
5.1. Ablation studies

Several ablation studies were performed to demonstrate the value of the individual components in OCAM, including the backbone
CNN, the P-N distance loss component, and the adaptive margin value. First, retrieval performance was evaluated for OCAM variants
based on six different backbone CNNs, and the resulting mAP performances with S = 64 are given in Table 1 (E represents Embedding
space, and H represents Hamming space). Across all CBIR tasks, the variants with VGG16 produced the most optimal or near-optimal
results, thus it was chosen as the backbone CNN in the remaining experiments.

The retrieval performance of OCAM was also evaluated comparatively against a variant ablated of the P-N distance f(Ep,Ex) (W/0 f
(Ep,EN)), a variant ablated of the adaptive margin aqdgprive (W/0 @qdaptive), and a variant ablated of both the P-N distance and the adaptive
margin (w/o f(Ep,En) and dqdaptive)- Performances of variant models are shown in Fig. 4 with S = 64. Overall, OCAM outperforms all
ablated variants and the performance benefits grow towards larger Z values. Furthermore, both f(Ep,Ey) and agdapeive €lements in OCAM
contribute to CBIR performance in terms of P@Z and mAP. Both Euclidean and Hamming spaces exhibit nearly similar observations,
however, it is anticipated that there will be a decrease in performance for all methods when operating in the Hamming space due to the
binarization of embeddings.

The primary motivation of OCAM is to enhance the discernibility of latent space representations for images from separate classes.
We hypothesized that if OCAM improves representational discernibility over traditional triplet loss, then the learned embedding
vectors should be better segregated in the embedding space. To validate this hypothesis, we employed t-Distributed Stochastic
Neighbor Embedding (t-SNE) [8] to project the embedding vectors obtained using OCAM and Triplet into a two-dimensional space.
The image projections in the t-SNE space are displayed in Fig. 5. It can be observed that for OCAM, images from different classes project
to spatially segregated clusters that are well separated from each other. In contrast, the separation between clusters is relatively lower
for Triplet, and samples from distinct clusters can occur in spatially proximate locations. These findings indicate that OCAM improves
inter-class discernibility over the traditional triplet method.

To assess the influence of this representational discernibility on retrieved images, we visually inspected images retrieved based on
OCAM and Triplet. Fig. 6 depicts Z = 10 images retrieved in response to a query image randomly selected from the test set of each of the
three datasets. Overall, the images retrieved using OCAM were more visually similar to the query image. It’s worth noting that with
CBIR methods, there may be instances where images from different categories are retrieved. An essential performance criterion for
CBIR methods is the retrieve rank of opponent-class samples (which is also captured in the mAP metric). The retrieve rank of opponent
samples in OCAM is lower than that for Triplet, indicating that OCAM is more resilient against erroneous sample selection.

5.2. Performance comparisons against Triplet-Wise methods

This section presents a comparative evaluation of OCAM for CBIR tasks against state-of-the-art triplet losses based representational-
learning methods. Competing methods included traditional triplet learning (Triplet) [8], expansion-pool tri-hard learning (TriEP) [9],
weighted anchor based triplet learning (WABT) [10], dynamic margin triplet learning (dmTri) [41], conditional triplet learning
(CondTri) [11], and constrained triplet loss layer learning (CTLL) [12]. Experiments were conducted in the continuous Euclidean space
to demonstrate the full performance of learned representations, and in binarized Hamming space to demonstrate the performance in
real-time applications that require computational efficiency.

Euclidean Space: Tables 2-4 list retrieval performances of triplet-wise competing methods on the test sets of the KVASIR, ISIC 2019,
and X-RAY datasets, respectively. Note that the number of samples included in the minority class varied across datasets, which places a
practical limit on the number of images that can be retrieved. Accordingly, retrieval was performed for up to Z = 150 images in KVASIR
and X-RAY, and up to Z = 35 images in ISIC 2019 that had a more dramatic class imbalance. Compared to the second-best method,
OCAM improves mAP by 1.57% at S = 16 and 1.44% at S = 64 in KVASIR, by 2.03% at S = 16 and 3.80% at S = 64 in ISIC 2019, and by
0.25% at S = 16 and 2.21% at S = 64 in X-RAY.

Hamming Space: Tables 5-7 list retrieval performances of triplet-wise competing methods on the test sets of the KVASIR, ISIC 2019,

Table 1
Retrieval Performance of OCAM Across Backbone CNNs.
KVASIR (S = 64) ISIC 2019 (S = 64) X-RAY (S = 64)
E H E H E H
VGG16 [35] 88.74 85.93 72.95 71.48 87.32 86.41
ResNet50 [36] 87.03 82.22 72.44 70.91 86.52 85.71
InceptionV3 [37] 84.49 80.13 70.23 69.16 84.60 83.71
MobileNetV2 [38] 82.13 75.62 72.16 70.76 83.57 82.66
DenseNet169 [39] 88.52 84.37 72.98 71.20 85.98 85.34
EfficientNetB3 [40] 85.47 81.33 73.13 71.13 83.76 82.52
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Fig. 4. Precision performances of OCAM variants were measured based on 64-dimensional embedding vectors. P@Z metrics are plotted for the
KVASIR (a,d), ISIC 2019 (b,e), and X-RAY (c,f) datasets across various numbers of retrieved images (Z). Results for Euclidean space are given in the
top row, and those for Hamming space are given in the bottom row. mAP metrics for each variant are listed in parentheses.
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Fig. 5. The latent space distribution of images was visualized using two-dimensional t-SNE projections of learned embedding vectors. Represen-
tative results are displayed for embeddings learned based on the traditional triplet method (Triplet) versus OCAM. OCAM yields more discrete
clusters than Triplet. Black arrows highlight problematic samples with insufficient inter-class segregation. The distinct classes and their labels are

described in respective legends for each dataset.
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Fig. 6. Representative retrieval results for Z = 10 images given a single query image. Results are shown for the a) KVASIR, b) ISIC-2019, c) X-RAY
datasets. Images retrieved from the same class as the query image are marked in green bounding boxes, whereas opponent-class samples are marked
in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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and X-RAY datasets, respectively. As expected, the performances of these methods are moderately lower in the Hamming versus
Euclidean space due to the loss of information during the binarization of embedding vectors. In general, OCAM outperforms competing
methods in CBIR performance. Compared to the second-best method, OCAM improves mAP by 3.85% at S =16 and 1.46% at S = 64 in
KVASIR, by 1.07% at S = 16 and 2.71% at S = 64 in ISIC 2019, and by 2.01% at S = 64 in X-RAY. Meanwhile, it yields a moderately
lower mAP by 0.22% compared to WABT with Hamming codes at S = 16 in X-RAY.

Overall, we observe that the performance benefits of OCAM against competing triplet-wise methods are relatively larger in the ISIC
2019 dataset versus the KVASIR and XRAY datasets, where performance metrics are generally higher. It is important to note that the
difficulties of the representational learning task and subsequent image retrieval task grow with higher class imbalances in the re-
pository. Thus, this finding suggests that OCAM shows improved reliability against class imbalances compared to baseline methods.

5.3. Performance comparisons against other CBIR methods

Next, OCAM was comparatively demonstrated for CBIR tasks against other SOTA image retrieval approaches. Competing methods
included a classifier-guided model (Neural Codes) [42], a pair-wise representational learning model (Contrastive) [7], a classifier-
guided vision transformer and mixer-MLP model (Tr-Mixer-MLP) [43], a classifier-guided query-driven distance recommendation
(QDDR) technique [20], a pair-wise representational learning model based via attention-based saliency map guided CNN (ABSM-Ret)
[44], a classifier-guided model based on rotation-invariance deep hashing (RIDH) [31], a triplet-wise representational learning model
with saliency maps for explainable medical image retrieval (X-MIR) [45]. Experiments were conducted in Euclidean space and
binarized Hamming space for S = 16 and 64. Table 8 lists the mAP performances of competing methods on the test sets of the KVASIR,
ISIC 2019, and X-RAY datasets. In Euclidean space, we find that OCAM outperforms the second-best competing method in mAP
performance by 0.27% at S = 16 and 0.37% at S = 64 for the KVASIR dataset, by 3.36% at S = 16 and 2.72% at S = 64 for the ISIC 2019
dataset, and by 0.56% at S = 16 and 1.25% at S = 64 for the X-RAY dataset. In Hamming space, we find that OCAM outperforms the
second-best competing method in mAP performance by 0.12% at S = 16 and 0.65% at S = 64 for the KVASIR dataset, by 2.79% at S =
16 and 3.52% at S = 64 for the ISIC 2019 dataset, and by 0.67% at S = 16 and 0.56% at S = 64 for the X-RAY dataset. Overall, the
performance benefits of OCAM over competing methods are relatively more pronounced in the ISIC 2019 dataset, which manifests a

Table 2
Retrieval Performance in KVASIR Dataset (Euclidean).
S=16 S =64
P@5 P@20 P@50 P@100 P@150 mAP P@5 P@20 P@50 P@100 P@150 mAP
Triplet [8] 90.13 87.61 86.88 85.52 81.32 85.22 90.20 88.52 88.02 87.00 83.33 87.18
TriEP [9] 87.83 85.59 84.69 83.06 78.64 83.01 86.78 83.54 81.98 79.83 75.97 80.10
WABT [10] 81.45 76.67 75.23 74.26 7217 74.80 82.45 78.28 76.32 74.96 72.40 75.71
dmTri [41] 90.47 88.35 87.38 85.97 81.90 85.73 90.32 88.40 87.56 86.16 82.01 86.27
CondTri [11] 87.48 85.58 84.81 83.26 79.75 83.63 90.96 88.84 88.13 87.22 83.77 87.30
CTLL [12] 89.72 87.07 86.47 85.24 80.89 85.09 89.88 87.89 87.39 86.68 82.87 86.71
OCAM 90.75 88.97 88.64 87.40 84.13 87.30 91.33 89.84 89.76 88.93 84.82 88.74
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Table 3
Retrieval Performance 1n ISIC 2019 Dataset (Euclidean).
S=16 S=64
P@5 P@10 P@20 P@35 mAP P@5 P@10 P@20 P@35 mAP
Triplet [8] 77.70 74.84 73.21 72.48 67.92 79.68 77.03 75.66 74.79 68.87
TriEP [9] 76.70 73.55 72.28 71.33 66.45 78.60 75.26 73.61 72.49 67.84
WABT [10] 73.44 70.35 68.76 67.78 63.64 76.68 73.59 71.99 71.10 66.67
dmTri [41] 77.75 74.81 73.25 72.39 68.03 80.26 78.09 76.92 76.15 71.27
CondTri [11] 78.08 75.16 73.98 72.94 68.74 79.71 77.24 76.22 75.48 70.75
CTLL [12] 77.75 74.75 73.19 72.21 67.50 78.64 75.74 74.32 71.18 69.15
OCAM 79.29 77.00 75.79 75.20 70.77 81.38 79.27 78.21 77.59 72.95

Table 4
Retrieval Performance in X-RAY Dataset (Euclidean).
S=16 S=64
P@5 P@20 P@50 P@100 P@150 mAP P@5 P@20 P@50 P@100 P@150 mAP
Triplet [8] 88.60 86.13 85.53 85.41 85.21 84.48 88.77 86.90 86.12 85.84 85.57 85.11
TriEP [9] 88.10 85.45 84.82 84.77 84.63 84.06 88.32 86.20 85.70 85.42 85.18 84.68
WABT [10] 89.28 87.39 86.85 86.58 86.31 85.41 87.47 85.40 85.22 85.18 85.02 84.68
dmTri [41] 88.65 86.03 85.37 85.09 84.94 84.12 88.36 86.14 85.78 85.64 85.40 84.82
CondTri [11] 88.78 86.63 86.02 85.67 85.48 84.63 88.74 86.45 85.82 85.41 85.16 84.63
CTLL [12] 88.32 85.78 85.07 84.84 84.69 84.07 88.53 86.25 85.96 85.72 85.47 84.88
OCAM 90.42 88.49 87.84 87.53 87.20 85.66 91.19 89.21 88.93 88.66 88.42 87.32

Table 5
Retrieval Performance in KVASIR Dataset (Hamming).
S=16 S=64
P@5 P@20 P@50 P@100 P@150 mAP P@5 P@20 P@50 P@100 P@150 mAP
Triplet [8] 86.42 83.68 81.84 79.35 73.47 75.07 89.53 87.75 87.21 86.11 82.25 84.47
TriEP [9] 84.10 82.93 80.85 78.38 72.99 72.74 83.93 81.06 79.78 78.13 74.57 71.03
WABT [10] 76.08 74.66 73.62 73.10 70.67 63.94 74.83 73.96 73.45 73.23 71.20 67.13
dmTri [41] 87.81 85.38 84.50 82.26 76.80 79.37 88.93 87.08 86.16 84.81 80.01 83.97
CondTri [11] 84.73 83.25 82.02 79.61 74.04 72.43 88.98 87.25 86.38 84.87 80.90 82.73
CTLL [12] 84.92 82.56 80.53 77.44 71.94 74.42 86.62 87.45 86.81 85.87 81.78 84.38
OCAM 89.10 87.28 86.33 84.95 79.32 83.22 90.83 89.22 88.59 87.66 83.68 85.93

Table 6
Retrieval Performance 1n ISIC 2019 Dataset (Hamming).
S=16 S=64
P@5 P@10 P@20 P@35 mAP P@5 P@10 P@20 P@35 mAP
Triplet [8] 74.74 72.57 70.88 69.97 64.15 77.99 73.36 71.96 71.91 67.29
TriEP [9] 71.50 71.15 69.21 68.16 62.12 75.72 73.03 71.22 70.08 64.14
WABT [10] 61.57 66.12 66.91 65.58 61.60 61.82 62.51 64.96 64.17 59.73
dmTri [41] 72.95 70.60 69.55 68.70 62.31 77.91 75.34 73.91 73.02 68.44
CondTri [11] 74.91 72.88 71.01 70.11 64.91 78.22 75.45 74.00 73.14 68.77
CTLL [12] 72.59 71.48 70.52 69.59 64.73 77.47 74.73 73.05 71.97 67.94
OCAM 75.63 73.93 72.12 71.36 65.98 78.94 76.33 74.87 74.21 71.48

higher degree of imbalanced compared to the KVASIR and X-RAY datasets. This suggests that OCAM is capable of generating robust
embedding vectors even on more imbalanced datasets.

6. Discussion

CBIR methods aim to provide fast and automated access to visually similar images from a medical repository, enabling downstream
assessments with visual examples. Current CBIR approaches typically rely on the learning of embedding vectors with high repre-
sentation capability for visual image features, as subsequent retrieval performance depends critically on the representational quality of
the embedding vectors [9,20,31,45]. In this study, we introduced a novel triplet-wise representational learning method, OCAM, for
improved CBIR performance on medical image repositories. OCAM leverages triplet learning with an improved objective that considers
distances between positive and negative classes and an adaptive margin value. Explicit consideration of f(P,N) enables OCAM to
improve inter-class segregation in the embedding space, while the adaptive margin value improves performance by automatically
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Table 7
Retrieval Performance in X-RAY Dataset (Hamming).
S=16 S=64
P@5 P@20 P@50 P@100 P@150 mAP P@5 P@20 P@50 P@100 P@150 mAP
Triplet [8] 85.85 83.79 83.43 82.96 82.67 81.29 88.91 86.16 85.63 85.27 85.01 84.37
TriEP [9] 84.41 83.35 83.05 82.44 81.95 80.50 87.41 85.32 85.06 84.84 84.65 84.09
WABT [10] 87.28 85.89 85.70 85.30 84.82 83.11 87.89 85.58 85.22 85.01 84.89 84.40
dmTri [41] 86.10 83.93 82.97 82.45 82.22 80.43 88.55 86.11 85.49 85.21 85.00 83.90
CondTri [11] 85.76 83.99 83.45 82.81 82.28 79.55 88.01 85.54 84.91 84.62 84.40 83.38
CTLL [12] 86.17 84.12 83.44 82.88 82.41 80.98 88.64 86.19 85.67 85.39 85.06 84.16
OCAM 88.83 86.60 86.02 85.55 85.25 82.89 91.19 88.83 88.41 88.31 88.15 86.41

Table 8
Evaluation of Performance in Relation to Other CBIR Methods.
Euclidean Hamming
KVASIR ISIC 2019 X-RAY KVASIR ISIC 2019 X-RAY
S=16 S =64 S=16 S=64 S=16 S=164 S=16 S =64 S=16 S=64 =16 S =64
Neural Codes [42] 78.07 79.36 56.15 57.90 81.17 81.86 75.17 78.89 55.57 56.38 79.07 79.25
Contrastive [7] 80.63 85.59 58.85 60.27 84.40 84.72 72.96 81.23 54.74 58.11 76.44 84.18
Tr-Mixer-MLP [43] 83.15 85.66 59.10 60.87 82.88 85.28 77.91 81.51 56.81 59.16 79.16 83.87
QDDR [20] 81.74 83.17 59.62 62.22 81.73 83.11 79.26 81.11 56.17 59.43 81.10 82.73
ABSM-Ret [44] 83.11 87.24 60.44 64.09 83.86 85.87 81.59 83.77 56.48 61.24 81.23 84.96
RIDH [31] 87.03 88.37 65.29 68.26 85.10 85.93 83.10 85.28 61.02 64.07 81.87 85.85
X-MIR [45] 86.81 88.30 67.41 70.23 84.95 86.07 82.95 85.02 63.19 67.96 82.22 85.27
OCAM 87.30 88.74 70.77 72.95 85.66 87.32 83.22 85.93 65.98 71.48 82.89 86.41

tuning the margin value depending on the learned representations at each stage of the training process. Our results clearly indicate that
OCAM outperforms a state-of-the-art point-wise method (Neural Codes) by 9.15%, pair-wise methods (Contrastive and ABSM-Ret) by
5.90%, and triplet-wise methods (X-MIR) by %1.52 on average.

In our study, we investigated how the code length and type affect CBIR performance, which is crucial for image similarity as-
sessments. We conducted CBIR tasks with two code lengths, S = 16 and 64, and observed that retrieval performance improved as S
increased. On average, the increase in mAP performance of OCAM is 2.9% when the S is elevated from 16 to 64. We also assessed CBIR
tasks based on continuous Euclidean and binary Hamming codes. We observed that mAP performance in Hamming space is lower than
in the Euclidean space due to information loss during the binarization process. On average, the increase in mAP performance of OCAM
in Euclidean space is 2.8% compared to the Hamming space. Lastly, CIBR performance can also depend on the native imbalance
between different classes of images in the repository. A general inspection of the results in Tables 2-8 suggests that CBIR performance is
higher in relatively more balanced KVASIR and X-RAY datasets than in the imbalanced ISIC 2019 dataset.

Several lines of improvement might enable OCAM to further its performance in CBIR tasks. Following the general trend in retrieval
performance going from point-wise to triplet-wise methods, the quality of the learned embedding vectors may be further improved by
adopting advanced loss functions based on quadruplet learning that utilizes a larger number of image samples [46]. Architectures that
explicitly leverage self-attention mechanisms or vision transformers might enable the capture of more representative embedding
vectors for images by better modeling spatial context [47]. A task-agnostic approach to more sensitively capture the distributional
properties of medical images might employ recent diffusion models [48,49]. By using joint embedding of text and image data where
both a radiological report and a corresponding image are available, semantic similarities among medical images might be more
effectively captured [50]. Lastly, it may be possible to perform unsupervised retrieval with OCAM by learning the latent represen-
tations of images using unconditional generative adversarial network models in cases where class information is unavailable.

7. Conclusion

Triplet-wise methods for learning image representations promise superior CBIR performance over both classifier-guided models
and representational learning with point- or pair-wise methods. However, the traditional triplet formulation can suffer from subop-
timal segregation between positive and negative samples, and requires manual tuning of a margin value. Here, we introduced a new
triplet-wise method, OCAM, that addresses these limitations for improved CBIR performance. OCAM was demonstrated on three
medical datasets from divergent domains for CBIR tasks executed in Euclidean and Hamming spaces. Our results indicate that OCAM
outperforms competing state-of-the-art CBIR methods based on classifier-guided and representational-learning frameworks, including
several existing triplet-wise methods. Elevated performance is observed over competing methods particularly for imbalanced datasets.
As such, OCAM holds great promise for automating query search in CBIR systems that aim to improve diagnostic accuracy while
minimizing processing delays. In future studies, we aim to investigate potential enhancements in CBIR performance by utilizing
advanced loss functions that leverage a larger number of image samples, by incorporating vision transformer architectures that can
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improve the capture of long-range spatial context in medical images, and by employing generative modeling frameworks for more
sensitive and possibly unsupervised learning of latent image representations. For applications where pairs of medical images and
respective radiology reports are available, we will further investigate the effects of utilizing multi-modal embedding vectors of image-
text data on retrieval performance.
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