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Abstract
Purpose: To introduce an unsupervised deep-learning method for fast and effec-
tive correction of susceptibility artifacts in reversed phase-encode (PE) image
pairs acquired with echo planar imaging (EPI).
Methods: Recent learning-based correction approaches in EPI estimate a dis-
placement field, unwarp the reversed-PE image pair with the estimated field,
and average the unwarped pair to yield a corrected image. Unsupervised learn-
ing in these unwarping-based methods is commonly attained via a similarity
constraint between the unwarped images in reversed-PE directions, neglecting
consistency to the acquired EPI images. This work introduces a novel unsu-
pervised deep Forward-Distortion Network (FD-Net) that predicts both the
susceptibility-induced displacement field and the underlying anatomically cor-
rect image. Unlike previous methods, FD-Net enforces the forward-distortions
of the correct image in both PE directions to be consistent with the acquired
reversed-PE image pair. FD-Net further leverages a multiresolution architecture
to maintain high local and global performance.
Results: FD-Net performs competitively with a gold-standard reference method
(TOPUP) in image quality, while enabling a leap in computational efficiency.
Furthermore, FD-Net outperforms recent unwarping-based methods for unsu-
pervised correction in terms of both image and field quality.
Conclusion: The unsupervised FD-Net method introduces a deep forward-
distortion approach to enable fast, high-fidelity correction of susceptibility arti-
facts in EPI by maintaining consistency to measured data. Therefore, it holds
great promise for improving the anatomical accuracy of EPI imaging.
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1 INTRODUCTION

Echo planar imaging (EPI)1 is the most commonly
employed MRI sequence for diffusion-weighted imaging
(DWI) and functional MRI (fMRI), due to its rapid k-space
acquisition capability.2,3 However, EPI is prone to sus-
ceptibility artifacts arising from B0 field inhomogeneities,
which are particularly prominent near tissue interfaces.4
These artifacts manifest as intensity distortions from sig-
nal pileups/dropouts, and geometrical distortions due to
compression/stretching of affected regions.5 Severe arti-
facts can limit the clinical utility of EPI images. Therefore,
artifact correction is an essential step to ensure accuracy
of downstream qualitative and quantitative assessments,
especially at high field strengths.6-8

A leading framework for susceptibility-artifact correc-
tion uses images acquired in reversed phase-encoding
(PE) directions to estimate the susceptibility-induced dis-
placement field directly from the resulting blip-up (BU)
and blip-down (BD) EPI images.5,9-11 An unwarping-based
approach is commonly adopted for correction, where the
reversed-PE images are nonlinearly transformed to alle-
viate artifacts based on the estimated displacement field.
Either voxel-wise field estimates,10,12,13 or weighted combi-
nation of basis spatial maps across the field-of-view (FOV)9

can be used. Popular implementations of this framework
include classical methods such as TOPUP from the FMRIB
Software Library9,14 and hyperelastic susceptibility correc-
tion of DTI data (HySCO) from the Statistical Parametric
Mapping toolbox.15,16 Since no additional data collection is
needed beyond reversed-PE images, classical methods in
the unwarping-based framework can offer notable bene-
fits over measured-field-based, registration-based, or point
spread function- (PSF) based approaches in the litera-
ture.17,18 Nonetheless, these classical methods are based on
iterative optimization techniques that introduce substan-
tial computational burden, rendering them impractical
under clinical settings.

Deep neural networks have recently been considered
as a powerful alternative for artifact correction that can
maintain high computational efficiency.19 In the absence
of ground-truth anatomically correct images, network
training can be performed in a supervised fashion by
using the corrected images generated by classical meth-
ods as reference. However, the lack of a physics-driven
formulation in this approach can compromise general-
ization performance. Furthermore, the process of obtain-
ing the corrected images can create extensive computa-
tional overhead for training, whereas the improvement
gained in network performance may not scale with the
computational overhead. Previous studies in this domain
have addressed these problems via unsupervised learn-
ing strategies that aim to maximize the similarity of

unwarped images across the two PE directions.20,21 In this
unwarping-based framework, reversed-PE images are first
individually unwarped by the network, and then com-
bined to produce a final estimate. Among such unsuper-
vised learning-based methods, S-Net performs unwarp-
ing via bilinear interpolation and assesses the similarity
between the corrected BU/BD images via a cross-modal
loss.20 Deepflow-Net instead performs unwarping via
cubic interpolation and assesses the similarity between
the corrected BU/BD images via a mean-squared error
(MSE) loss.21 While promising results have been reported,
these previous methods define an unsupervised loss func-
tion in the output domain of unwarped images, for which
no ground-truth data are available. Such lack of phys-
ical constraints in the loss function can cause subop-
timal learning.22,23 In turn, the network can produce
low-fidelity images during inference, resulting in solu-
tions that are notably inconsistent with the acquired
reversed-PE images.24

Here, we propose a novel deep network model
(FD-Net) based on a forward-distortion approach for cor-
recting EPI susceptibility artifacts in reversed-PE image
pairs. Unlike unwarping-based methods that average indi-
vidually corrected reversed-PE images, FD-Net predicts
a single anatomically corrected image along with a dis-
placement field. Unlike previous deep-learning meth-
ods, FD-Net directly incorporates physical constraints in
the input domain where measurements are available.
Specifically, FD-Net forward-distorts the corrected image
with the predicted field to reconstruct the reversed-PE
image pair. Unsupervised learning is then achieved by
enforcing consistency of the reconstructed versus acquired
reversed-PE images. A multiresolution architecture is
employed to maintain performance at both local and
global scales. Comprehensive demonstrations are per-
formed to assess the quality of corrected images and
field estimates on EPI data from the Human Connec-
tome Project (HCP) database.25 FD-Net performs compet-
itively with the reference TOPUP method, while enabling
a leap in computational efficiency; and it significantly out-
performs competing deep-learning methods based on the
unwarping framework. These findings demonstrate the
potential of FD-Net as a fast and effective method for
susceptibility-artifact correction in EPI.

2 THEORY

2.1 Susceptibility-induced distortions

The relationship between the anatomically correct image
and the distorted EPI image can be expressed as a linear
system:
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f
⏟⏟⏟

nFEnPE×1

= K
⏟⏟⏟

nFEnPE×nFEnPE

𝝆

⏟⏟⏟

nFEnPE×1

, (1)

where K is a transformation matrix called the K-matrix,
𝝆 is the vectorized anatomically correct image, f is the
vectorized EPI image, and nPE and nFE are the image
dimensions in the PE and frequency encode (FE) direc-
tions, respectively. In general, K can be complex-valued
given complex-valued images𝝆 and f, such that it performs
a phase shift as well as interpolation.9 In practice, how-
ever, magnitude images are more commonly utilized for
convenience and K is real-valued. Ignoring the distortion
along the FE-direction enables block diagonalization of
the K-matrix, allowing the problem to be separated across
FE lines as:

fi
⏟⏟⏟

nPE×1

= Ki
⏟⏟⏟

nPE×nPE

𝝆i
⏟⏟⏟

nPE×1

, (2)

Here, Ki, i = 1, 2, … ,nFE, are the transformation subma-
trices acting along the PE-direction, and𝝆i and fi are the ith

rows of the correct image and the EPI image, respectively.
As shown in Figure 1, the K-matrix describes the map-
ping from the correct image to the EPI image. Deviations
of the K-matrix from the identity matrix are representative
of the amount of distortion, and multiple nonzero values
on the same row indicate a many-to-one mapping (i.e.,
pileup/dropout distortions).

For reversed-PE acquisitions, Equation (2) can be
written separately for the ith rows of the EPI images
from BU/BD acquisitions. In that case, the associated
K-matrices Ki,BU and Ki,BD are based on the same under-
lying field, with the difference of utilizing the negative of
the field for BD acquisition.

2.2 Classical methods for distortion
correction

Among classical methods for susceptibility-artifact cor-
rection in EPI, the predominant approach is correction
based on reversed-PE acquisitions. TOPUP, a popular
implementation of this approach, uses an alternating
least-squares optimization to jointly solve the linear sys-
tem of equations resulting from the reversed-PE acqui-
sitions.9,14 TOPUP first estimates the underlying field,
which is taken as a compact linear combination of spatial
basis functions across the image domain.9 Next, trans-
formation matrices that act on BU/BD acquisitions are
generated based on the estimated field. Finally, to gen-
erate the anatomically correct image, unwarping is per-
formed on BU/BD acquisitions by incorporating Jaco-
bian modulation to compensate for intensity pileups.

(A) (B)

(C) (D)

F I G U R E 1 Illustration of the image distortion characterized
by the K-matrix. (A) The estimated displacement field (in units of
pixels) and (B) the corrected image predicted by TOPUP are shown,
with the magenta dashed lines highlighting a particular row along
the PE direction (RL direction). (C) The K-matrix formed from the
field for the highlighted row and (D) the corresponding blip-up EPI
image. The deviations of the K-matrix from the identity matrix
indicate the amount and direction of distortion, as can be understood
by comparing the corrected image and the blip-up image for the
highlighted row. The labeled axes correspond to the PE direction.

A main limitation of this method is that it relies on
iterative optimization techniques that are computationally
intensive.

Another classical method for correcting susceptibility
artifacts is B0 field map-based correction, which requires
at least two additional acquisitions with different TE
values for computing the field based on phase differ-
ences. This field is then used to correct the distorted EPI
images by unwarping in image domain. However, erro-
neous field maps can elicit residual artifacts after correc-
tion, and phase unwrapping during field computation is
prone to failure especially in regions with high B0 inho-
mogeneities, such as air/tissue and bone/soft tissue inter-
faces.26 Yet another classical method is registration-based
correction, which requires an additional anatomical ref-
erence image to perform registration with the use of
a cross-modal loss function.24 A distortion-free T1- or
T2-weighted image typically serves as an anatomical tem-
plate for the EPI image in the presence of large dis-
tortions. Additional constraints are often incorporated
to improve solutions, including diffusion tensor27 and
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fiber orientation distributions,28 alignment of cortical
surfaces29 and synthesized anatomical images.30 Popu-
lar implementations of the aforementioned methods pro-
vided in FMRIB Software Library are FUGUE and FLIRT,
which perform B0 field map-based correction and image
registration-based correction, respectively.31,32 However,
in addition to requiring auxiliary scans, these approaches
fall short at capturing more intricate distortions or com-
pensating for signal intensity variations.33 Alternatively,
methods based on PSF measurements have been proposed
for analytical correction based on regularized deconvo-
lution,18,34 where learning-based deconvolution methods
can also be adopted to improve performance.35,36 While
PSF-based methods can correct a broad range of distor-
tions in EPI images, they require voxel-wise PSF measure-
ments via prolonged scans that must be repeated under
notable changes in k-space trajectories.37

2.3 Learning-based methods
for distortion correction

In recent years, learning-based approaches have been
adopted as a promising alternative for correction of sus-
ceptibility artifacts in EPI. A first group of methods
have aimed to improve performance of classical meth-
ods via complementary data processing. Synthesis meth-
ods are applicable in cases where reversed-PE data are
not available.38,39 After an undistorted EPI image is syn-
thesized given as input a structural MR image, syn-
thesized and acquired EPI images are processed via
TOPUP to unwarp the acquired image.38,39 While suited
for clinical data acquired under time limitations, synthe-
sis methods can yield images with reduced resolution
when compared to those based on reversed-PE acquisi-
tions. Fiber-orientation distribution methods use latent
features of fiber-orientation distribution images extracted
from DWI data to further improve TOPUP-based correc-
tion of reversed-PE images.40 Fiber-orientation distribu-
tion methods incorporate additional anatomical informa-
tion to improve performance in problematic regions such
as the brainstem. However, they still rely on the relatively
slow TOPUP correction. Learning-based correction with
multishot EPI sequences has also been considered to help
minimize the distortions in acquired images. Low-rank
reconstructions of a multishot EPI sequence based on
simultaneous multislab acquisition have been proposed
for DWI.41 Self-supervised denoising of a multicontrast
multishot EPI sequence based on reversed-PE acquisitions
has been proposed for T2, T2

*, and susceptibility map-
ping.42 Physics-driven reconstruction of an echo-shifting
acquisition has been proposed for relaxometry along with
B0 and B1 mapping.43 Note that these methods involve

advanced pulse sequence modifications that may not be
available at all sites, and often leverage TOPUP for estima-
tion of field maps.

A second group of methods have instead aimed to
improve computational efficiency over classical correction
methods. A common framework in this domain relies on
field estimation followed by unwarping of EPI images.
Earlier studies have considered supervised methods that
train network models for correction assuming availabil-
ity of ground truth for undistorted EPI images.44-46 These
ground truth images are typically obtained via simula-
tions or from classical correction methods. Some super-
vised methods further cast estimation of the displacement
field from a reversed-PE image pair as an optical flow
estimation problem, and later use the estimated field for
correction.47,48 Although supervised methods benefit from
the data-driven learning capabilities of network models,
reliance on the availability of undistorted EPI images lim-
its their utility in many applications where such ground
truth is not available.

This has sparked interest in unsupervised methods
that can learn to correct artifacts in the absence of
ground truth. As in the case of classical methods, the pre-
dominant approach for unsupervised correction relies on
reversed-PE acquisitions. Based on the assumption that
displacements in non-PE directions are negligible,10 the
displacement field is estimated so as to maximize the
similarity of unwarped images obtained by reverse dis-
tortion on the acquired PE image pair. The recently pro-
posed S-Net20 utilizes a three-dimensional U-Net model19

to predict the field, followed by unwarping using bilin-
ear interpolation inspired by the deformable image reg-
istration method VoxelMorph.49 For unsupervised learn-
ing, S-Net uses a similarity loss taken as the local
cross-correlation (LCC) between corrected BU/BD images,
along with a diffusion regularizer to enforce field smooth-
ness. Another recent method named Deepflow-Net21 uses
a two-dimensional (2D) U-Net model where field esti-
mates are produced at multiple resolutions by extract-
ing features from various stages of the decoder.47,48

Deepflow-Net performs correction via cubic interpolation
and adopts a density compensation similar to TOPUP9 to
handle pileups. For unsupervised learning, Deepflow-Net
uses as similarity loss the MSE between the corrected
BU/BD images, along with a total variation regularizer to
enforce field smoothness. While these seminal methods
have produced promising results, they enable unsuper-
vised learning by assessing similarity of unwarped images
in opposing PE directions. This indirect approach omits
physics-driven constraints regarding the actual EPI mea-
surements. Thus, performance of the learned correction
can degrade under relatively large distortions and near
tissue boundaries.
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(A) (B) (C)

F I G U R E 2 Overview of the proposed FD-Net. (A) The input distorted blip-up/blip-down images are fed through an encoder-decoder in
the prediction unit, which outputs a predicted image and a predicted field with optional multiresolution (multiscale and/or multiblur)
schemes. The field is used to formulate the bending energy loss and valley loss. (B) The K-Unit applies forward-distortion in each PE
direction, with the field negated for one of the directions. (C) A rigid alignment unit is included to improve registration, with the rigid loss
formulated from the transformation parameters. The forward-distorted images are compared with the input images (redisplayed here for
convenience) to formulate the mean-squared error loss. Training is performed over the aggregate of the shown losses.

Here, we propose a novel unsupervised deep-learning
method for artifact correction in EPI to improve perfor-
mance. Unlike previous unsupervised methods, the pro-
posed FD-Net method directly constrains fidelity to the
actual EPI measurements. This constraint is introduced by
integrating the forward physical model of EPI distortions
observed on measured images, so FD-Net benefits from the
enhanced reliability of physics-driven deep learning.

2.4 Proposed FD-Net

FD-Net is a novel unsupervised forward-distortion model
that explicitly enforces measurement fidelity for enhanced
correction performance, as outlined in Figure 2. The pre-
diction unit, shown in Figure 2A, uses a 2D U-Net to pro-
duce both a predicted field and a predicted anatomically
correct image from the input reversed-PE images. In con-
trast to unwarping-based methods that produce separate
unwarped images for BU/BD acquisitions, predicting a sin-
gle correct image can offer signal to noise ratio (SNR) ben-
efits analogously to the sensitivity-encoding approaches in
parallel imaging.50 Code to implement FD-Net is available
at: https://github.com/saritas-lab/FD-Net.

The K-Unit in FD-Net, illustrated in Figure 2B,
forward-distorts the predicted anatomically-correct image
using the predicted field to reconstruct the input PE
images. The BU acquisition is reconstructed using the esti-
mated field, whereas the BD acquisition is reconstructed
using the negative of the estimated field. Distortions are
efficiently emulated using the K-Unit that embodies a sim-
ple matrix multiplication with a separable formulation
as in Equation (2). Afterwards, fidelity between recon-
structed and measured data is enforced using a multireso-
lution scheme.

The rigid alignment unit in Figure 2C allows com-
pensation for small movements between the input PE
image in one direction (BD acquisition in this case) and
its corresponding forward-distorted image. This allows
the network to focus on displacements that are due
to off-resonance via the field-based formulation of the
K-Unit.

2.4.1 Forward-distortion with K-unit

The K-Unit in FD-Net performs forward-distortion on the
estimated anatomically correct image using the estimated
field, as illustrated in Figure 3. The steps described below
are given for the BU direction for brevity, but they are sim-
ilarly conducted for the BD direction, with the difference
of utilizing the negative of the displacement field. First, a
uniform spatial grid Xgrid is formed:

Xgrid
⏟⏟⏟

nPE×nPE

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 · · · 1
2 · · · 2
⋮ ⋮

nPE · · · nPE

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (3)

The distorted grid after interpolation, Xi,BU, is formed by
determining the new grid location for each pixel from the
shift amount given in the displacement field, that is,

Xi,BU
⏟⏟⏟

nPE×nPE

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ofield(i, 1) + 1 · · · Ofield(i,nPE) + nPE

Ofield(i, 1) + 1 · · · Ofield(i,nPE) + nPE

⋮ ⋮

Ofield(i, 1) + 1 · · · Ofield(i,nPE) + nPE

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (4)
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F I G U R E 3 Example of
forward-distortion by using the K-Unit
in FD-Net. (A) The input blip-up and
blip-down echo planar imaging images
are compared with the
forward-distortion results of FD-Net.
The intensities in absolute error maps
are scaled up 2.5× for improved
visualization. (B) The predicted field
and predicted image outputs from
FD-Net, which are input to the K-Unit
to obtain the forward-distorted images
in (A).

(A) (B)

where Ofield is the estimated field output of FD-Net in units
of pixels and i = 1, 2, … ,nFE is the row index over the FE
direction. For practical purposes, each entry in Xi,BU is kept
limited between 1 and nPE (i.e., clipped to the valid range
of interpolation). Taking the difference between the two
grids and then applying an interpolation kernel, 𝜅(𝜉), gives
us the K-matrix that will act on the ith row as follows:

Ki,BU
⏟⏟⏟

nPE×nPE

= 𝜅
(
Xi,BU − Xgrid

)
. (5)

Using this K-matrix, the ith row of the forward-distorted
image is reconstructed via a matrix multiplication:

[
OT

dist,BU

]

i
⏟⏞⏞⏟⏞⏞⏟

nPE×1

= Ki,BU

[
OT

image

]

i
⏟⏞⏟⏞⏟

nPE×1

, (6)

where (⋅)T denotes matrix transpose, [⋅]i denotes the ith
column of a matrix, and Oimage is the predicted anatom-
ically correct image. Finally, the forward-distorted image
Odist,BU can be formed by stacking the individually dis-
torted rows:

Odist,BU
⏟⏟⏟

nFE×nPE

=
[[

OT
dist,BU

]
1
|
|
|

[
OT

dist,BU
]

2
|
|
|
· · · ||

|

[
OT

dist,BU
]

nFE

]T
.

(7)

Note that multiplication with K-matrix rows performs an
interpolation across pixel neighborhoods with intensity
modulations, so it can emulate signal pileups/dropouts.

2.4.2 Network architecture

The architecture of FD-Net is detailed in Figure S1. As
depicted in Figure S1A, the encoder in the prediction

unit projects input reversed-PE images onto a latent rep-
resentation across multiple stages. The receptive field is
progressively refined by decreasing kernel size and using
convolution with stride 2 for downsampling. The decoder
then resolves the predicted field and predicted image from
the latent representation through multiple stages of convo-
lutional filtering and upsampling. Feature maps from the
encoder stages are projected onto the decoder through skip
connections to improve information flow.

A rigid-body motion may occur between the BU and
BD acquisitions. As shown in Figure S1B, the rigid align-
ment unit in FD-Net applies motion-related transforma-
tions on one of the forward-distorted images only (BD
distorted image in this case). This unit receives as input
the measured BD acquisition along with the respec-
tive forward-distorted image, and uses convolutional and
densely connected layers to predict the motion parameters
sx, sy, and r, which capture the x-axis shift, y-axis shift, and
in-plane rotation, respectively. These parameters are then
used to apply a rigid transformation to the BD distorted
image to improve its alignment with the corresponding BD
acquisition. Note that a similar rigid alignment is also per-
formed in TOPUP, and it offloads some burden from the
nonrigid field-based alignment by accounting for subject
movement between the two reversed-PE acquisitions.

As illustrated in Figure S2, FD-Net adopts a multireso-
lution scheme to improve performance by enforcing con-
sistency across different spatial resolutions, in principle
leading to faster convergence and more reliable perfor-
mance. The multiresolution idea can be applied across
spatial scales, spatial blurs, or both. In FD-Net, we refer
to the multiresolution scheme applied at different spatial
scales as multiscale and at different spatial blurs as multi-
blur. For multiscale, field and anatomically correct image
estimates are produced at multiple spatial resolutions by
extracting outputs from different stages of the decoder.
For multiblur, the full resolution outputs are blurred with
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Gaussian kernels at varying SDs. In both cases, the esti-
mates obtained at multiple scales/blurs are processed with
the K-Unit after proper scaling of their contribution to the
overall loss function.

2.4.3 Network loss

The overall loss function for FD-Net is given as:

FD-Net =
∑

m
𝜔m

[

(m)
MSE + 𝜆m

(

(m)
BE + 103


(m)
valley

)]
+ 𝛾rigid,

(8)
where m indicates the multiresolution step (full resolution
by default; optionally includes multiscale and/or multiblur
levels at progressively reduced resolutions), 𝜔m and 𝜆m
are the weighting and regularization parameter over the
smoothness of the field for step m, superscript (m) denotes
the version of a parameter at step m, and 𝛾 is the weight
of the rigid alignment loss. Here, the first term denotes
the sum of reconstruction losses, while the second term
denotes the rigid loss, described in detail below.

First, (m)MSE is MSE between the measured and
forward-distorted images averaged across the two PE
directions at the mth step:


(m)
MSE =

1
2n(m)PE n(m)FE

[
∑

p∈Ω

(
O(m)

dist,BU(p) − I(m)im,BU(p)
)2

+
∑

p∈Ω

(
O(m)

dist,BD(p) − I(m)im,BD(p)
)2
]

, (9)

where Iim,BU and Iim,BD are the input EPI images for
BU and BD acquisitions, respectively. For the multiscale
scheme, these images are downsampled properly to avoid
aliasing artifacts.

Next, (m)BE is the bending energy regularizer51 over the
field at each step m expressed as:


(m)
BE =

∑

p∈Ω

(
𝜕

2

𝜕x2 O(m)
field(p)

)2

+
(
𝜕

2

𝜕y2 O(m)
field(p)

)2

+
(
𝜕

2

𝜕xy
O(m)

field(p)
)2

+
(
𝜕

2

𝜕yx
O(m)

field(p)
)2

. (10)

In practice, first- and second-order finite differences are
used to approximate the gradients.52


(m)
valley is the valley loss for the field to prevent the

overall loss function from exploding in earlier training
iterations,21 and is given as:


(m)
valley =

∑

p∈Ω
max

(
|
|
|
O(m)

field(p)
|
|
|
− 𝜏m, 0

)
, (11)

where 𝜏m is a chosen threshold of maximum permissi-
ble field swing in units of pixels. (m)valley sums the excess
amount of field swing values when their magnitudes
exceed 𝜏m. These cases are penalized heavily by weight-
ing (m)valley with a large constant in Equation (8). In later
stages of training, the effect of (m)valley is negligible once the
network converges towards reasonable solutions.

Finally, rigid is the rigid loss to find the smallest pos-
sible rigid transformation parameters for the alignment of
measured and forward-distorted BD images, and is defined
as follows:

rigid = s2
x + s2

y + r2
. (12)

Because the same rigid alignment applies to all mul-
tiresolution steps, a single rigid loss term is included in
Equation (8).

3 METHODS

3.1 Experimental dataset and setup

3.1.1 Experiments on DWI dataset

For the main experiments in this work, unprocessed
DWI data from HCP 1200 Subjects Data Release were
used.25 The images were acquired on a 3T MRI scanner
(Siemens Skyra “Connectom”), using a multiband diffu-
sion sequence with ss-EPI readouts in right-to-left (RL)
and left-to-right (LR) reversed-PE polarities.53 Other imag-
ing parameters included: 210 × 180 mm2 FOV, 1.25 mm
isotropic resolution, averages = 1, multiband acceleration
factor 3; pulse repetition time/echo time = 5520∕89.50
ms, flip angle = 78◦, 168 × 144 acquisition matrix, band-
width= 1488 Hz/Px, EPI factor= 144, echo spacing= 0.78
ms, and 6/8 partial Fourier acquisition.

A total of 24 subjects were selected randomly from
the DWI dataset, with 12 reserved for training, four for
validation and eight for testing. For each subject, a sin-
gle b0-volume consisting of 111 axial slices with 168 ×
144 image matrix was utilized. To obtain reference cor-
rected images, the TOPUP method was applied on the data
following the recommended guidelines by the toolbox.

To test the effect of training dataset size, the networks
were trained separately with four subjects selected ran-
domly from the original 12 subjects reserved for training.
In addition, the networks were also trained separately with
42 subjects, by adding 30 new subjects to the training data.
The validation and testing subjects were kept the same in
all cases.

All networks were implemented in Keras with Ten-
sorflow backend, on a machine with NVIDIA RTX 3070
GPU. Training was performed with the Adam optimizer
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ZAID ALKILANI et al. 287

for a learning rate of 10−4 and a maximum of 1000 epochs,
with early stopping when the change in the validation loss
between consecutive epochs in the validation set fell below
a threshold of 10−6.

3.1.2 Experiments on fMRI dataset

To test out-of-domain generalization, networks trained
with EPI images from the DWI dataset were tested on
EPI images from an fMRI dataset featuring different scan
parameters. For this purpose, unprocessed task-evoked
fMRI data from HCP 1200 Subjects Data Release was
used,25 collected for the task of emotion processing.54 The
images were acquired on a 3T MRI scanner (Siemens Skyra
“Connectom”), using a BOLD sequence with a single-band
spin-echo EPI readout in RL/LR reversed-PE polarities.53

Other imaging parameters included: 208 × 180 mm2 FOV,
2.00 mm isotropic resolution, averages = 1, pulse repeti-
tion time/echo time = 7060∕58.00 ms, flip angle = 52◦,
104 × 90 acquisition matrix, bandwidth= 2290 Hz/Px, EPI
factor = 90, echo spacing = 0.58 ms, and 6∕8 phase par-
tial Fourier acquisition. For each subject, a single time
frame consisting of 72 axial slices with 104 × 90 image
matrix was utilized. Images were resampled using spline
interpolation of order 3 to the size accepted by the pre-
trained networks (i.e., 168 × 144, the size of the DWI
data).

For testing, evaluations were performed on the fMRI
data corresponding to the same eight subjects assigned for
testing in the DWI case. For fine-tuning, four additional
training subjects were selected randomly from the fMRI
dataset (nonoverlapping with the subjects chosen from
the DWI dataset). The reference corrected images were
obtained using TOPUP. The implementation and training
procedures were the same as in the DWI case, with the
difference that a maximum of 32 epochs was used with
early stopping conditioned on the fine-tuning training
loss.

3.2 FD-Net implementation

The columns of the K-matrix in the K-Unit were generated
using a sinc kernel, that is, 𝜅(𝜉) = sinc(𝜉). All convolu-
tional layers in the encoder-decoder (i.e., U-Net) utilized
Leaky Rectified Linear Unit (ReLU) activation with a slope
coefficient 𝛼 = 0.2, except at the final steps of the decoder
as indicated in Figure S1A; the predicted image was out-
put via a convolutional layer with ReLU activation and
the predicted field was output via a convolutional layer
with linear activation. For the multiscale case, convolu-
tional layers akin to the full resolution case were employed

to form the predicted field and image at 1/2 and 1/4 of
the full scale. For each level of the multiblur case, the full
resolution output was blurred with Gaussian kernels of
standard deviation 𝜎 and width ⌈4𝜎⌉. Three different blur
levels were used: small (S), medium (M), and high (H)
blurs of 𝜎S = 0.5, 𝜎M = 1.5, and 𝜎H = 2.5, respectively.

3.3 Competing methods

Two unsupervised learning-based methods, S-Net and
Deepflow-Net, were implemented for comparison. In addi-
tion, a supervised method was implemented to serve as a
baseline for FD-Net. Implementations of competing meth-
ods were maintained as consistent to FD-Net as possible to
facilitate fair comparisons:

1 S-Net: S-Net was implemented using a 2D U-Net. Only
the field head at the end of the decoder in Figure S1A
was necessary and correction was performed using a
modified K-Unit approach as follows:

[
OT

unwarp,BU

]

i
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

nPE×1

= KT
i,BU

[
IT

im,BU

]

i
⏟⏞⏟⏞⏟

nPE×1

, (13)

Here, Ounwarp,BU denotes the unwarped BU image. Note
that no density compensation was incorporated by
Duong et al.20 Similarly, by transposing Ki,BU, a stan-
dard unwarping interpolation was performed without
density compensation. The BD acquisition was simi-
larly treated, with the K-matrix formed after negation of
the field. The average of the unwarped BU/BD images
was taken as the corrected image. For training, LCC of
the unwarped BU/BD images was utilized for similarity
loss.20,49 In place of the diffusion regularizer in Refer-
ence 20, bending energy from Equation (10) was used
to facilitate comparison with FD-Net. In addition, the
rigid alignment unit was utilized and the rigid loss from
Equation (12) was incorporated.

2 Deepflow-Net: Deepflow-Net was implemented using a
2D U-Net. Only the field head at the end of the decoder
in Figure S1A was needed and density-compensated
correction was performed based on a modified K-Unit
approach. The K-matrix for the BU acquisition was
multiplied with a nPE × 1 vectorized image consisting of
1’s, 1, to produce a density pileup map WBU. This map
was inverted and used to weight the input PE image to
enable density compensation akin to Zahneisen et al.21:

[
OT

unwarp,BU

]

i
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

nPE×1

= KT
i,BU

(
(1⊘WBU)⊙

[
IT

im,BU

]

i

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

nPE×1

, (14)
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where
WBU
⏟⏟⏟

nPE×1

= Ki,BU 1
⏟⏟⏟

nPE×1

. (15)

Here, ⊘ and ⊙ denote Hadamard division and prod-
uct, respectively, and (1⊘WBU) is limited in [0, 1] to
decrease the intensity in pileup regions.21 The same
process was also followed for the BD acquisition, with
the K-matrix formed after negation of the field. In con-
trast to Equation (13), Equation (14) applies density
compensation together with unwarping. The average
of the two unwarped images was used as the corrected
image. The same multiscale strategy as in FD-Net was
adopted. MSE between the unwarped BU/BD images
was used as the similarity loss. In place of total vari-
ation regularization in Zahneisen et al.,21 bending
energy loss was applied for the field as in Equation (10).
The rigid alignment unit was also incorporated along
with its loss term.

3 Supervised baseline: Finally, a supervised baseline was
trained with an architecture identical to that of FD-Net,
with the exception of the loss being fully supervised.
For this purpose, MSE between the network predicted
field/image and the results from TOPUP were utilized.

3.4 Quantitative assessments

The qualities of the predicted image and field were
assessed via Peak SNR (PSNR) and Structural Similarity
Index Measure (SSIM) metrics, with the TOPUP results
taken as reference. Before computing PSNR and SSIM,
the field generated by each method was masked via a
median Otsu threshold over the TOPUP image to remove
background regions from consideration.55

For all methods, hyperparameters were chosen empir-
ically to maximize PSNR and SSIM over the four subjects
reserved as validation data. The selected hyperparameters
are provided in Table 1. Performance assessments were

reported on independent test data. Statistical evaluations
were performed using paired Wilcoxon signed-rank test,
with significance based on p < 0.05.

4 RESULTS

4.1 Computation time

All competing methods provided substantial computa-
tional advantage over TOPUP. While TOPUP took on aver-
age approximately 3086 s (∼ 51.5 min) to predict the field
and an additional approximately 6 s to correct per vol-
ume, network-based methods merely took approximately
7.5 s. For performing distortion correction, this entails
approximately 400× higher efficiency for a single vol-
ume, and approximately 5× higher efficiency for multi-
volume data such as multishell DWI with approximately
100 directions. Thus, network-based artifact correction
enables significant speed up over classical methods. Fur-
thermore, the long processing times of TOPUP also reflect
poorly on supervised network models that are trained
with TOPUP-corrected images as reference. Training the
network models considered here took on average approx-
imately 75 min per subject. As such, the unsupervised
FD-Net offers approximately 2× higher efficiency in model
training compared to the supervised baseline.

4.2 Ablation studies for FD-Net

The choice of multiresolution strategy for FD-Net was first
considered, followed by an ablation study on the combina-
tion of multiresolution components. The parameters were
chosen empirically, with the purpose of maximizing quan-
titative image quality metrics with respect to TOPUP over
the predicted field/image. Lastly, an ablation study was
conducted to evaluate the contribution of each loss term in
Equation (8).

T A B L E 1 Hyperparameter choices for the proposed FD-Net and the competing methods.

Methods 𝝀

𝝎

𝜸 𝝉FR 1/2 1/4 S M H

Proposed FD-Net 10−5 0.4 — — 0.3 0.2 0.1 0.01 32

Deepflow-Net 10−5 0.6 0.3 0.1 — — — 0.01 32

S-Net 10 1.0 — — — — — 0.01 —

Supervised baseline — 1.0 — — — — — — —

Notes: For each method, irrelevant hyperparameters are marked with a dash (—). The hyperparameters considered are: 𝜆 for field smoothness regularization, 𝜔
for multiresolution weighting parameter, 𝛾 for rigid loss, and 𝜏 for valley loss threshold. 𝜔 is split into its constituent full resolution (“FR”), multiscale (1/2 and
1/4 scale), and multiblur (S, M, and H) components.
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T A B L E 2 Performance comparison results for the loss ablation study for FD-Net.

Loss terms

Image quality Field quality

PSNR (dB) SSIM (%) PSNR (dB) SSIM (%)

FD-Net 31.29 (2.79) 86.71 (11.58) 22.48 (5.69) 83.09 (10.37)

FD-Net ⧵
{
rigid

}
31.37 (2.93) 86.65 (11.68) 22.21 (5.86) 83.02 (10.37)

FD-Net ⧵
{
valley

}
31.23 (2.79) 86.49 (11.63) 22.36 (5.77) 83.10 (10.27)

FD-Net ⧵ {BE} 30.92 (2.72) 85.51 (11.67) 21.46 (5.82) 81.47 (11.19)

MSE 31.02 (2.84) 85.50 (11.70) 21.37 (5.92) 81.35 (11.29)

Notes: Peask signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) metrics are reported as mean (SD) across subjects. Removal of a loss
component is indicated by “⧵” symbol followed by the removed loss term in curly braces. The full version of the loss is chosen for FD-Net as it provides the best
overall performance.

4.2.1 Multiresolution ablation study
for FD-Net

FD-Net was trained and subsequently evaluated for each
multiresolution strategy, alongside a strategy with no
multiresolution. The performances of the multiscale and
multiblur schemes, as well their combination, were com-
pared to determine the best multiresolution strategy. The
hyperparameters chosen for each multiresolution scheme
considered are provided in Table S1. PSNR and SSIM met-
rics are listed in Table S2. Overall, introducing a multiblur
strategy provides a performance boost. Using the multi-
blur strategy, the image quality is improved by 0.67 dB
PSNR/2.11% SSIM, and the field quality is improved by
1.68 dB PSNR/2.94% SSIM over the no multiresolution
case. In contrast, the multiscale strategy underperforms in
comparison to both the multiblur and the no multireso-
lution cases. A combination of multiblur and multiscale
strategies does not improve over the multiblur case either,
indicating that multiblur alone is sufficient to boost per-
formance. Hence, the multiblur strategy was selected for
FD-Net.

Next, combinations of three different blur amounts
were considered for the multiblur case, with hyperparam-
eters as listed in Table S3. The results in Table S4 show
that including two or more blur levels boosts performance.
Incorporating all blur levels (i.e., S-M-H multiblur com-
bination) provides the best results, improving the image
quality by 2.28 dB PSNR/5.23% SSIM and the field quality
by 5.99 dB PSNR/8.80% SSIM over the worst performing
M multiblur scheme. Hence, the S-M-H multiblur com-
bination was chosen for FD-Net, as it provides a reliable
generalization by incorporating all blur levels.

4.2.2 Loss ablation study for FD-Net

An ablation study was conducted by removing one loss
term at a time from Equation (8) to investigate its

contribution to the overall performance. Additionally, a
version using only the MSE loss term (i.e., MSE) was
provided for reference. The results provided in Table 2
indicate that the proposed FD-Net provides the best overall
performance. Removal of the rigid loss slightly decreases
the predicted field quality, while removal of the val-
ley loss slightly decreases the predicted image quality.
Removal of the bending energy loss has the most detri-
mental effect on performance, leading to a significant drop
in PSNR and SSIM down to the level of the MSE-only
case. The proposed FD-Net improves the image quality by
0.27 dB PSNR/1.11% SSIM and the field quality by 1.21dB
PSNR/1.74% SSIM over the MSE-only case.

4.3 Comparison with Competing
Methods

Comprehensive quantitative evaluations and visual assess-
ments of the proposed FD-Net and the competing meth-
ods were conducted with respect to the reference TOPUP
results.

Slice-wise evaluations: Figure 4 demonstrates the per-
formance of each method across different slices of the
dataset. Since the dataset captured the same anatomy at
the same orientation for all subjects, a given slice number
corresponds to approximately the same anatomical loca-
tion in all subjects. Hence, no additional intersubject reg-
istration was conducted for this analysis. The underlying
anatomy is illustrated in Figure 4A for a particular subject,
where the T1 weighted volume was registered to the cor-
responding b0 volume for display purposes, using FMRIB
Software Library’s FLIRT.31,32 The results in Figure 4B
show that all methods have dips/peaks in performance at
the same slice indices, providing insight into which slices
are more/less challenging in terms of distortion correction.
FD-Net outperforms all competing methods in terms of
the predicted image quality, especially at the problematic
lower brain slices where severe distortions are present.
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(A)

(B)

F I G U R E 4 Slice-wise performance comparison of FD-Net and
competing methods. (A) An example T1 weighted image registered
to the b0 volume of an individual subject to illustrate the anatomical
locations corresponding to the slice indices. Magenta dashed lines
indicate the locations of more challenging (lower line) and less
challenging (upper line) slices in terms of distortion correction (see
visual results in Figure 6 and Figure 7). (B) Peak signal-to-noise
ratio (PSNR;top row) and structural similarity index measure
(SSIM; bottom row) metrics for predicted image (left column) and
predicted field (right column). Results are shown for FD-Net and
competing methods as a function of slice index. For each method,
the mean metric is shown along with the 95% confidence interval.

Moreover, the predicted field quality from FD-Net exceeds
the competing methods, except for the supervised baseline.
It should be noted that while the supervised baseline is
able to match the TOPUP field better, it performs the worst
in terms of predicted image quality.

Subject-wise evaluations: The performance of each
method was assessed over all slices in the volume of a given
subject, for each of the eight subjects reserved for testing.
Figure 5 gives the scatter plots of mean PSNR and mean
SSIM of FD-Net versus each competing method for each
subject, for a direct one-to-one performance comparison.
In terms of image quality, FD-Net dominates over the com-
peting methods, including the supervised baseline. While
S-Net matches FD-Net in terms of SSIM over the predicted
image quality, it lags behind in terms of PSNR. As for the
predicted field quality, FD-Net is second only to the super-
vised baseline which was trained to directly fit the results
from TOPUP.

F I G U R E 5 Subject-wise performance comparison of FD-Net
against competing methods. Peak signal-to-noise ratio (PSNR; top
row) and structural similarity index measure (SSIM; bottom row)
metrics for predicted image (left column) and predicted field (right
column). Metrics are averaged across slices within individual
subjects, and the mean metrics for the eight test subjects are
displayed as scatter plots. The vertical axis denotes FD-Net
performance, whereas the horizontal axis denotes competing
method performance (see legend). The results above the dashed
identity lines indicate superior performance by FD-Net.

Overall performance evaluations: The quantitative
results in Table 3 summarize the overall performance
of each method across all subjects. FD-Net signifi-
cantly boosts image quality by 2.21 dB PSNR/4.01%
SSIM (p < 0.05, paired Wilcoxon signed-rank test) over
Deepflow-Net, by 1.37 dB PSNR/0.27% SSIM (p < 0.05)
over S-Net, and by 1.97 dB PSNR/13.54% SSIM (p < 0.05)
over the supervised baseline. It also boosts field quality by
4.24 dB PSNR/6.11% SSIM (p < 0.05) over Deepflow-Net,
and by 2.03 dB PSNR/1.49% SSIM (p < 0.05) over S-Net,
albeit incurs a cost of 1.00 dB PSNR/3.61% SSIM (p < 0.05)
against the supervised baseline.

Visual assessments: To visually compare the qualities
of the predicted images and the predicted fields, example
results from the slices marked in Figure 4A are provided
in Figure 6 for a lower brain slice and Figure 7 for an
upper brain slice. These slices were chosen to represent
the most and least challenging slices, corresponding to the
dip and peak in PSNR in Figure 4B, respectively. The error
maps, as well as visual inspection of the predicted image
and predicted field, indicate that FD-Net outperforms the
other methods. This is especially true at the problematic
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T A B L E 3 Performance comparison of FD-Net and the competing methods.

Methods Image quality Field quality

PSNR (dB) SSIM (%) PSNR (dB) SSIM (%)

Proposed FD-Net 31.29 (2.79) 86.71 (11.58) 22.48 (5.69) 83.09 (10.37)

Deepflow-Net 29.08 (2.33) 82.70 (11.72) 18.24 (6.48) 76.98 (14.19)

S-Net 29.92 (3.63) 86.44 (12.16) 20.45 (5.43) 81.60 (10.50)

Supervised baseline 29.32 (2.24) 73.17 (11.26) 23.48 (5.06) 86.70 (7.63)

Notes: Peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) metrics are reported as mean (SD) across subjects. Bold font denotes the
best performing method.

F I G U R E 6 Visual results
for FD-Net and competing
methods from a lower brain
slice, corresponding to a more
challenging location in terms
of distortion correction.
TOPUP results are taken as
reference. (A) Predicted images
and absolute error maps with
respect to TOPUP. The error
maps are scaled by 1.25× to a
visibly discernible display
window. (B) Predicted fields
and the masked error maps
with respect to TOPUP. The
error maps were masked via a
median Otsu threshold over
the TOPUP image to remove
the background regions. See
the lower magenta dashed line
in Figure 4A for the anatomical
location of this slice.

(A)

(B)

lower brain slice example shown in Figure 6, where large
distortions are present. The upper brain slice example in
Figure 7 exhibits distortions that are not as severe, indicat-
ing a less challenging problem for all methods to solve. For
both cases, the predicted images from FD-Net have higher
overall similarity to the TOPUP corrected image, with less
artifacts present than the other methods. The field results
also demonstrate that FD-Net produces the highest fidelity
field, with smoothness and details preserved in a coherent
manner. Additionally, the forward-distorted images gener-
ated by FD-Net closely match the input distorted images

for both the lower and upper brain slices, as shown in
Figures S3 and S4, respectively.

Performance evaluations for different training dataset
size: To assess the influence of training set size on model
performance, evaluations were performed on training sets
with 4 and 42 subjects. In both cases, FD-Net maintains
the highest performance in terms of image quality and out-
performs the competing unsupervised methods in terms
of field quality. Quantitative results for models trained
on four subjects are listed in Table S5. FD-Net boosts
image quality by 4.36dB PSNR/4.59% SSIM (p < 0.05,
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(A)

(B)

F I G U R E 7 Visual results
for FD-Net and competing
methods from an upper brain
slice, corresponding to a less
challenging location in terms
of distortion correction.
TOPUP results are takes as
reference. (A) Predicted images
and absolute error maps with
respect to TOPUP. The error
maps are scaled by 1.25× to a
visibly discernible display
window. (B) Predicted fields
and the masked error maps
with respect to TOPUP. The
error maps were masked via a
median Otsu threshold over
the TOPUP image to remove
the background regions. See
the upper magenta dashed line
in Figure 4A for the anatomical
location of this slice.

paired Wilcoxon signed-rank test) over Deepflow-Net, by
3.71dB PSNR/2.11% SSIM (p < 0.05) over S-Net, and by
3.48dB PSNR/21.45% SSIM (p < 0.05) over the super-
vised baseline. It also boosts field quality by 4.24dB
PSNR/6.61% SSIM (p < 0.05) over Deepflow-Net, and by
2.43dB PSNR/1.81% SSIM (p < 0.05) over S-Net, albeit
incurs a cost of 0.91dB PSNR/0.89% SSIM (p < 0.05)
against the supervised baseline. As listed in Table S6, quan-
titative results for models trained on 42 subjects are gen-
erally similar to those for the 12 subject case in Table 3.
FD-Net boosts image quality by 2.24dB PSNR/4.50% SSIM
(p < 0.05) over Deepflow-Net, by 1.24dB PSNR (p < 0.05)
over S-Net (while offering similar SSIM), and by 1.39dB
PSNR/9.92% SSIM (p < 0.05) over the supervised base-
line. It also boosts field quality by 5.50dB PSNR/7.00%
SSIM over Deepflow-Net, and by 2.13dB PSNR/0.28%
SSIM (p < 0.05) over S-Net, albeit incurs a cost of 1.18dB
PSNR/5.08% SSIM (p < 0.05) against the supervised
baseline.

Out-of-domain generalization on fMRI dataset: Finally,
FD-Net was evaluated on fMRI data obtained via the HCP,
without and with fine-tuning on the fMRI dataset. Quan-
titative results in the absence of fine-tuning are listed

in Table S7. In terms of image quality, FD-Net yields
similar PSNR (p > 0.05, paired Wilcoxon signed-rank test)
albeit moderately lower SSIM 0.48% (p < 0.05) than S-Net,
it yields an improvement of 2.19dB PSNR/3.74% SSIM
(p < 0.05) over Deepflow-Net, and it yields an improve-
ment of 2.29dB PSNR/4.69% SSIM (p < 0.05) over the
supervised baseline. In terms of field quality, FD-Net
attains 1.51% higher SSIM (p < 0.05) albeit 0.21dB lower
PSNR (p < 0.05) than S-Net, it yields an improvement of
0.79dB PSNR/2.27%SSIM (p < 0.05) over Deepflow-Net,
and it yields an improvement of 0.35dB PSNR/1.89%
SSIM (p < 0.05) over the supervised baseline. Mean-
while, quantitative results with fine-tuning are listed
in Table S8. In this case, FD-Net consistently outper-
forms competing methods. It boosts image quality by
0.54dB PSNR/0.53% SSIM (p < 0.05) over S-Net, by 2.60dB
PSNR/3.66% SSIM (p < 0.05) over Deepflow-Net, and by
2.80dB PSNR/7.57% SSIM (p < 0.05) over the supervised
baseline. It also boosts field quality by 2.96dB PSNR/4.98%
SSIM (p < 0.05) over S-Net, and by 0.80dB PSNR/4.80%
SSIM (p < 0.05) over Deepflow-Net, while incurring a
cost of 3.38dB PSNR/0.84% SSIM (p < 0.05) against the
supervised baseline.
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5 DISCUSSION

In this work, we have proposed a deep forward-distortion
model for unsupervised correction of susceptibility arti-
facts in EPI. FD-Net is based on a multiresolution net-
work model that estimates a single anatomically cor-
rect image along with a displacement field, given a
pair of reversed-PE acquisitions. Unsupervised learning
is achieved by forward-distorting the anatomically cor-
rect image with the field, and enforcing consistency of
the forward-distorted estimates to the input BU/BD acqui-
sitions. Our results indicate that this forward-distortion
approach improves estimation fidelity for both the cor-
rected image and field across a broad range of cross
sections in the brain. FD-Net outperforms competing
unsupervised methods in image and field quality. It also
achieves higher image quality than the supervised base-
line, while maintaining the field quality.

Unwarping-based methods rely on similarity losses
between corrected BU/BD images to enable unsupervised
learning. As these losses are expressed in an inaccessible
domain for which no explicit measurements are avail-
able, the resultant models can perform suboptimally under
large displacements or intensity mismatches. In partic-
ular, S-Net uses LCC between corrected images. As a
cross-modal similarity measure, LCC is known to be tol-
erant against intensity mismatches,56 but places higher
emphasis on global features that can incur spatial blur
in field estimates. In turn, overly smooth field estimates
and lack of density compensation in S-Net can limit
its performance in regions of large displacements with
abrupt susceptibility changes, particularly near the sinuses
and ear canals. To improve reliability against large dis-
placements, Deepflow-Net performs density compensa-
tion by estimating pileups via linear interpolation of the
grid point density map.21 However, the MSE loss that it
adopts to measure similarity between corrected BU/BD
images can lower tolerance against intensity mismatches
and induce spatial blur in image estimates. In contrast
to unwarping-based methods, the proposed FD-Net lever-
ages a forward-distortion approach based on the K-matrix
formulation where density compensation is not needed.
For unsupervised learning, it uniquely measures the sim-
ilarity between forward-distorted images, emulated from
estimates of the anatomically correct image and the field,
and acquired BU/BD images. As such, the similarity loss
is expressed in the actual measurement domain, which
can improve performance and reliability of FD-Net as sug-
gested by our experimental results. Quantitative assess-
ments on field quality indicate that the supervised baseline
provides a closer match to the TOPUP-estimated displace-
ment field than FD-Net. Yet, the apparent differences
are relatively modest based on visual comparisons. On

the other hand, FD-Net achieves a notable boost in
image quality over the supervised baseline, which is
best attributed to the physics-based forward-distortion
approach in FD-Net contributing to generalization perfor-
mance.23

Evaluations on different training set sizes indicate that
FD-Net demonstrates fast learning and becomes readily
performant in image quality with as few as four train-
ing subjects. At this relatively compact size, competing
methods yield relatively poor image quality. When the size
is increased, there is an initial boost from 4 to 12 sub-
jects, yet the benefits for 42 subjects are rather marginal in
image quality, more considerable in field quality. Among
the competing methods, S-Net and the supervised base-
line show consistent performance improvements for larger
sizes, whereas Deepflow-Net does not improve notably
from 12 to 42 subjects suggesting that its learning process
might be saturated.

Evaluations on the fMRI dataset reveal that, without
additional training, FD-Net outperforms the supervised
baseline in out-of-domain generalization. FD-Net and
S-Net show comparable performances and are capable of
generalizing to the fMRI domain. Meanwhile, fine-tuning
with only four additional subjects rapidly improves the
image quality of FD-Net, underlining its rapid learning
capability. While fine-tuning also boosts the field quality
for the supervised baseline, it does not notably affect its
image quality. Consistent with the DWI results, FD-Net
surpasses all methods in terms of image quality and the
competing unsupervised methods in terms of field quality.

Here, we implemented all unsupervised correction
methods by including a rigid loss for consistent and fair
comparisons with FD-Net. Based on Table 2, we observe
that the rigid loss slightly influences image quality but
achieves a modest boost in field quality. This improvement
can be attributed to the benefits of spatial registration to
account for possible patient motion. The empirical benefits
of the rigid loss are expected to become more prominent
for increasing levels of motion. We also observe a modest
improvement in image quality by inclusion of the val-
ley loss. This benefit can be attributed to the enhanced
performance in regions of high field inhomogeneities by
avoiding unrealistically large displacements. Similarly, we
observe that the bending energy loss that enforces field
smoothness is critical to the performance of FD-Net.

As common in deep-learning methods, the trained
weights of the FD-Net model are kept fixed during infer-
ence. For models trained on limited datasets, this may
results in suboptimal generalization to atypical anatomy.
In such cases, subject-specific optimization of model
weights during inference might improve generalization
at the expense of prolonged inference times.57,58 Here,
modules within FD-Net were implemented based on

 15222594, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29851 by B

ilkent U
niversity, W

iley O
nline L

ibrary on [04/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



294 ZAID ALKILANI et al.

convolutional backbones given their training efficiency.
To improve sensitivity to long-range context in brain
images, self-attention based transformer backbones can
be adopted.59 In the current study, all deep-learning
models were effectively trained from scratch on rel-
atively modest sized datasets including only 12 sub-
jects. In applications where training data are scarce, net-
work modules can first be pretrained on large public
datasets, and later fine-tuned on the application-specific
target datasets.60 Lastly, here we assumed that only
reversed-PE images are available as inputs to FD-Net.
In cases where additional measurements are viable to
capture the field map and/or PSF, FD-Net could be
modified to integrate these measurements for improved
performance.

It is worth noting that the extent of susceptibility arti-
facts in EPI can also be reduced by modifying the imag-
ing procedure. For example, methods such as parallel
imaging50,61 or reduced FOV imaging62,63 decrease sen-
sitivity to field inhomogeneities by encoding a smaller
FOV in the PE direction during data acquisition. Simi-
larly, multishot EPI,64 such as interleaved EPI,65 can also
be performed to reduce field sensitivity. While power-
ful, these acquisition-based methods still require addi-
tional distortion correction in postprocessing. The pro-
posed FD-Net is compatible with this class of methods,
as long as a reversed-PE acquisition is performed during
imaging.

6 CONCLUSIONS

In this work, we introduced a novel deep-learning
approach for efficient and performant correction of sus-
ceptibility artifacts in EPI. The proposed FD-Net esti-
mates an anatomically correct image and a displace-
ment field map. It achieves unsupervised learning by
leveraging a forward-distortion model to enforce consis-
tency of the estimates to measured reversed-PE images.
FD-Net performs competitively with the reference TOPUP
method, while offering notably faster inference as a
deep learning approach. It also outperforms recent unsu-
pervised correction methods that enforce similarity of
unwarped reversed-PE images. Therefore, FD-Net holds
great promise for susceptibility-artifact correction in EPI
applications.
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