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Abstract
Recent work in cognitive science suggests that our expectations affect visual perception. With the rise of artificial agents
in human life in the last few decades, one important question is whether our expectations about non-human agents such as
humanoid robots affect how we perceive them. In the present study, we addressed this question in an audio–visual context.
Participants reported whether a voice embedded in a noise belonged to a human or a robot. Prior to this judgment, they were
presented with a human or a robot image that served as a cue and allowed them to form an expectation about the category of
the voice that would follow. This cue was either congruent or incongruent with the category of the voice. Our results show
that participants were faster and more accurate when the auditory target was preceded by a congruent cue than an incongruent
cue. This was true regardless of the human-likeness of the robot. Overall, these results suggest that our expectations affect
how we perceive non-human agents and shed light on future work in robot design.

Keywords Prediction · Expectation violation · Human–robot interaction · Audio–visual mismatch

1 Introduction

Advances in artificial intelligence in the last few decades
have introduced us to humanoid robots that we encounter
everywhere ranging from classrooms to airports to shopping
malls to hospitals. While their presence in our daily lives
has brought a lot of excitement, how humans perceive and
interact with them has become an important research topic
in cognitive science. Do we perceive them differently from
the way we perceive other humans? How important is it that
they look or sound human or behave like humans? What are
our expectations from robots? To what extent do they fulfill
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our expectations? These are some of the questions cognitive
scientists are interested in addressing not only to be able to
better understand human nature but also to be able to guide
the design of robots in the future.

In his classical work, The Design of Everyday Things,
Don Norman [1] provides important insights about how cog-
nitive sciences can help in the design of artefacts including
machines such as robots. According to Norman [1], the
design artifacts should be adapted to the minds of their users,
and this is why one needs to understand the human mind
first. This implies that a collaboration between human–robot
interaction and cognitive sciences is necessary. Indeed, the
use of robots in well-established cognitive psychology and
neuroscience paradigms in the last decade has proven use-
ful to understand how humans respond to non-human agents
as compared to their human counterparts, and what kind of
principles we should follow in humanoid robot design [2–4].

One of the cognitive psychology/neuroscience paradigms
that have been successfully applied in human–robot inter-
action is the expectation-violation paradigm [5, 6]. These
paradigms have been developed to understand the nature of
information processing in a variety of perceptual and cogni-
tive tasks [7–12] and have been instrumental to come up with
recent theories of human brain and cognition such as pre-
dictive coding or computation [13–15]. According to these
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theories, perception is not a purely bottom-up or stimulus-
driven process, rather, expectations and prior knowledge
play an important role in how we perceive our environ-
ment. A growing body of empirical work in psychology and
neuroscience are in line with these theories showing that
participants respond faster and more accurately when they
perceive events that are expected compared to the ones that
are unexpected [9–12]. These results suggest that humans
constantly predict what would come next and this in turn
determines what they perceive [14].

Recent work at the intersection of cognitive science and
social robotics has shown that humans can extend their
prediction skills to the perception of robots and form expec-
tations about robots based on their prior experience [5, 6, 16,
17]. These studies manipulated expectations towards robots
by means of using stimuli that have mismatches in a variety
of visual dimensions including appearance (form), motion,
and interaction. In other words, these mismatch paradigms
aim to induce certain expectations based on a particular cue,
and at the same time present another cue that usually does
not match that cue, resulting in expectation violation. For
instance, Urgen et al. [6] show that the appearance of a
robot can elicit certain expectations in humans about how
the robot would move, and when the robot does not move in
an expected way, an N400 ERP effect is observed indicating
that the expectations are violated. Using a similar paradigm,
[5] showed differential activity in the parietal cortex for an
agent that moved in an unexpected way compared to others
that moved in an expected way, which they interpreted as a
prediction error within the framework of predictive coding
[13, 14]. Furthermore, in a study that investigates sensori-
motor signaling in human–robot interaction, [17] shows that
people show lower variability in their performance when a
human-like robot commits a human-like error compared to
a mechanical error and that the pattern is reversed when the
agent is non-human-like morphologically.

Other HRI studies explored mismatches in multisensory
contexts. While vision seems to be the dominant modality
in many HRI studies that investigate how humans perceive
robots, [18] highlights the critical role of voice in commu-
nication and interaction with artificial agents. Accordingly,
there is a growing body of research that examines the role of
voice inHRI in combinationwith other visual features such as
the appearance or movement of artificial agents [19–30]. For
instance, several studies show that the mismatch between the
visual appearance and voice of an artificial agent induces the
uncanny valley effect [19], impairs emotion recognition, and
negatively impacts likability and believability [30]. In a simi-
lar vein, [22] shows that the inconsistency between the facial
proportions and vocal realism of an artificial agent reduces
its credibility and attractiveness. A study with children [20]
shows that the interaction between voice and other visual

features such as appearance and movement affect the per-
ceived lifelikeness and politeness of a robot. People also find
artificial agents with a human-like voice more expressive,
understandable, and likable [21], or attribute more human-
like attributes evidenced by drawing tasks (such as facial
features) [29], than the ones with a synthetic voice.

One drawback of many studies that study HRI in an
audio–visual context is that they usually use subjective mea-
sures in the formof self-reports such as fear and eeriness [19],
credibility or attractiveness [22], politeness and lifelikeness
[20], likability, expressiveness, and understandability [21],
drawings [29], or emotion labeling [30] to evaluate artificial
agents rather than more objective measures such as reaction
time or accuracy. Although self-reports can be instrumen-
tal in providing an initial assessment and uncovering social
behavior under a variety of tasks, they fall short for a number
of reasons. First, self-reports are susceptible to the awareness
and the expressiveness of the participants and may provide
an incomplete or biased picture of human behavior if partic-
ipants lack these skills [31]. Second, self-reports usually do
not provide a mechanistic understanding which would help
with both explaining and predicting human behavior [6, 32].
Indeed, Greenwald and Banaji [33] recommend the use of
implicit measures to better understand human social cogni-
tion. To support this effort, many tasks have been developed
such as priming and implicit association tasks that usually
rely on reaction times [34], as well as eye-tracking [32]
and neurophysiological measures [6] recorded within strong
cognitive psychology paradigms in human–robot interac-
tion. Some studies even directly compared the results of
explicit and implicit measurements. A common finding of
these studies is that explicit and implicit measures are modu-
lated differently by the experimental conditions that are under
investigation [32, 35, 36]. Therefore, given the limitations
of explicit measures, it is important to benefit from implicit
measures recorded under well-established paradigms to gain
a better understanding of human perception and cognition
in human–robot interaction, especially in multisensory con-
texts.

The aimof the present study is to investigate the perception
of human and synthetic voices in the presence of congru-
ent or incongruent visual cues about the agents that produce
those voices using a prediction paradigm. More specifically,
we aim to address whether we make predictions about how
robots sound based on how they look and whether those pre-
dictions are similar to the ones we make for humans. To this
end, we used an expectation-violation paradigm in which
human participants judged whether a greeting word sounded
human-like or synthetic (‘robotic’). This soundwas preceded
by a picture of a human or a robot and informed the partic-
ipants with a certain probability about the sound that would
follow (thus form expectations). The hypothesis is that peo-
ple would discriminate the robot sounds faster when they are
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preceded by a robot picture in contrast to a human picture
just as theywould do sowith human sounds that are preceded
by human pictures.

2 Method

2.1 Participants

30healthy adults from the university community (16 females,
Mean age = 25.2, SD = 0.65) participated in the exper-
iment. All participants had normal or corrected-to-normal
vision and hearing. The sample size of the study was deter-
mined by a power analysis prior to data collection. The
minimum required sample size was determined to be 30 by
using G*Power (with alpha= 0.05, beta= 0.90, η2 = 0.25).
The studywas approved by theHumanResearchEthicsCom-
mittee of the university and all subjects signed a consent form
before the study.

2.2 Stimuli

2.2.1 Visual Stimuli

The visual stimuli consisted of static images of three agents.
We call them Human, Android, and Robot (see Fig. 1).
Android and Robot are the samemachine in different appear-
ances. Android has a more human-like appearance, and was
modeled from the Human agent, whereas Robot has a more
mechanical appearance as the clothing is removed. Android
is the robot Repliee Q2 which was developed at Osaka Uni-
versity. The images in Fig. 1were captured from the videos of
Saygin-Ishiguro database [5, 6], the agents were doing hand
waving gesture. The images were 240 × 240 pixels in size,
and all three were matched in terms of their low-level proper-
ties (luminance and spatial frequency) with SHINE Toolbox
[37].

2.2.2 Auditory Stimuli

The auditory stimuli consisted of two soundfileswhich lasted
2 s: the voice of a human saying ‘Good morning’ (Human
Voice), and amodified version of it in which the voice sounds
synthetic (we call it ‘Robotic Voice’ within the context of this
study). We explored several sound programs which create
synthetic voices usually associated with robots considering
our experience with science-fiction movies, smart devices,
voice assistants, and video games, and discovered that the
main manipulation on these sounds is to play with its echo
and frequency. To create a synthetic voice that would be
associated with a robot in a controlled manner, we modi-
fied the human voice by means of manipulating only these
two features and keeping everything else constant. We used

the audio library AudioLib in Python [38] for this modifica-
tion. The library has 5 different sound types: Ghost, Radio,
Robotic, Echo, and Darth Vader. We conducted a pilot study
in the lab with a small group of people to check whether
applying any of these filters actually worked, and the ghost
was found to be the most synthetic sound that was associ-
ated with a robot. To compensate for the echo factor in this
synthetic voice, echo (0.05) was added to the human voice.
Human and synthetic audio files were otherwise matched in
terms of their amplitude (i.e., loudness) using Adobe Audi-
tion CC (13.0.6). We also added white noise to both sound
files to make the task harder, as previous research on predic-
tion shows that the effect of prediction is strongest when the
stimulus is ambiguous [11]. In order to decide on the task dif-
ficulty, we added different levels of white noise (soft: 1/20,
medium: 1/8, severe: 1/2) and tested them in a pilot study. It
suggested that the visual cue (i.e. prior) was used when the
fraction of the white noise level was 1/2.

2.3 Procedure

Subjects participated in two experiments (Experiment 1 and
Experiment 2). The order of the experiments was counter-
balanced across subjects. In both experiments, the subjects
were seated 57 cm away from a computer screen. Their heads
were stabilized with a chinrest. Before each experiment, the
subjects were introduced to visual and auditory stimuli and
were given verbal instructions. When introducing the visual
stimuli, it was stated to the participants that the Android is
a type of robot. In addition, the human voice was told to
belong to the human in the Human image, and the synthetic
voice was told to belong to the agent in the Robot or Android
image depending on the experiment. They also did a prac-
tice session to make sure that they understood the task. The
experiment was programmed in Psychtoolbox-3 [39, 40].

2.3.1 Experiment 1

Experiment 1 consisted of 5 blocks, each containing 80 trials.
Each trial started with a fixation cross on a gray background
(1 s), which was followed by a visual cue (1 s), an image of
a human or a mechanical robot (Human and Robot agents in
Fig. 1). Following the visual cue, a 2 s auditory stimulus was
presented, either a human or a synthetic (robotic) voice (See
Fig. 2). The task of the subjects was to indicate whether the
sound was human-like or robot-like by pressing a key.

The visual cue informed the subjects about the upcom-
ing auditory stimulus category. Following the previous work
that used prediction paradigms [10, 11, 41, 42], in 80% of the
trials, the visual cue was congruent with the auditory stim-
ulus (e.g., human image and human voice or robot image
and robotic voice), whereas, in 20% of the trials, the visual
cue was incongruent with the auditory stimulus (e.g. human
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Fig. 1 Visual stimuli in the
experiments consist of images of
three agents with different
degrees of human-likeness: a
human (Human), and two robots,
one having more human-like
appearance (Android) and one
having less human-like
appearance (Robot)

Fig. 2 Each trial in Experiment 1 consists of a fixation screen, a visual
cue (Human or Robot) and an auditory target (human or robotic voice)
after which subjects need to respond with a key press

image and robot-like voice or robot image and human voice,
see Fig. 3).

2.3.2 Experiment 2

Experiment 2 is identical to Experiment 1 except the visual
cue screen. As a visual cue, subjects were shown the image of
either a human or a human-like robot (Human and Android
agents in Fig. 4).

Similar to Experiment 1, there were two types of trials:
congruent trials and incongruent trials. In congruent trials
(80% of total trials), the category of visual cue matched the
category of the auditory stimulus (e.g., human image and
human voice, or a robot image and robotic voice). In incon-
gruent trials, the category of the visual cue did not match
the category of the auditory target (e.g., human appearance
and robotic voice, or robotic appearance and human voice,
see Fig. 5). The total number of trials was the same with
Experiment 1.

Note thatwe did not include the human, android, and robot
conditions in a single experiment as it would require the
generation of three levels of voice stimuli, which may not
necessarily match perfectly with the human-likeness level of

Fig. 3 There are two types of trials in Experiment 1.A Congruent trials
in which the category of the visual cue and the auditory target match
(e.g., human appearance (Human) and human voice, or robotic appear-
ance (Robot) and synthetic (robotic) voice), B Incongruent trials in
which the category of the visual cue and the auditory target do not
match (e.g. human appearance (Human) and robotic voice, or robotic
appearance (Robot) and human voice)

the images. So, for the sake of simplicity and interpretability,
and following the two-category structure of previous predic-
tion paradigms [12, 42], we conducted two experiments in
which we compared a human and a robot, and across the two
experiments, we compared the effect of human-likeness of
the robot.
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Fig. 4 Each trial in Experiment 2 consists of a fixation screen, a visual
cue (Human or Android), and an auditory target (human or robotic
voice) after which subjects need to respond with a keypress

Fig. 5 There are two types of trials in Experiment 2.A Congruent trials
in which the category of the visual cue and the auditory target match
(e.g., human appearance (Human) and human voice, or robotic appear-
ance (Android) and robotic voice), B Incongruent trials in which the
category of the visual cue and the auditory target do not match (e.g.
human appearance (Human) and robotic voice, or robotic appearance
(Android) and human voice)

2.3.3 Statistical Analysis

We conducted separate ANOVAs for Experiment 1 and
Experiment 2, and an additional ANOVA to compare the
results of Experiment 1 and Experiment 2.

Experiment 1 We conducted 2 (Congruency: Congru-
ent, Incongruent) × 2 (Visual Cue: Human, Robot) mixed
ANOVA to investigate the effects of congruency and visual
cue (agent) on reaction times and accuracy. The congruency
was taken as a between-subjects factor due to the unbalanced
number of trials between its levels, and the visual cue was
taken as a within-subject variable.

Experiment 2 We conducted 2 (Congruency: Congruent,
Incongruent) × 2 (Visual Cue: Human, Android) repeated
measures ANOVA to investigate the effects of congruency
and visual cue (agent) on reaction times and accuracy. The
congruency was taken as a between-subjects factor due to
the unbalanced number of trials between its levels, and the
visual cue was taken as a within-subject variable.

Comparison of Experiment 1 and Experiment 2 We con-
ducted a 4 (Visual Cue: Human 1 (Experiment 1), Robot,
Human 2 (Experiment 2), Android) × 2 (Congruency: Con-
gruent, Incongruent) × 2 (Experiment Order: 1, 2) mixed
ANOVA to investigate whether the congruency, the human-
likeness of the agent, the order of Experiment 1 and 2 (Robot
or Android first) and their interaction affect reaction times or
accuracy.

3 Results

3.1 Experiment 1 (Human, Robot)

3.1.1 Accuracy

The data met the assumptions of ANOVA, so we ran 2 ×
2 mixed-design ANOVA with a within-subjects factor of
visual cue (human, robot) and a between-subject factor of
congruency (congruent, incongruent) on the accuracy scores.
Therewas amain effect of congruency on the accuracy scores
(F(1,58)= 22.66, p < 0.05, η2 = 0.28). Congruent trials were
overall more accurate than incongruent trials (Fig. 6). There
was no significant effect of visual cue (F(1,58) = 0.13, p =
0.72), nor the interaction between congruency and visual cue
(F(1,58) = 0.09, p = 0.76) on the accuracy scores.
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Fig. 6 Reaction Times (RT) on correct trials (left) and accuracy (%) results (right) of Experiment 1. Error bars show the standard error of the mean
(SEM)

3.1.2 Reaction Times (Correct Trials)

The data met the assumptions of ANOVA, so we ran 2 ×
2 mixed-design ANOVA with a within-subjects factor of
visual cue (human, robot) and a between-subject factor of
congruency (congruent, incongruent) on the reaction times
of correct trials. There was a main effect of congruency on
the reaction time of correct trials (F(1,58)= 21.27, p < 0.05,
η2 = 0.27). Subjects were significantly faster in congruent
trials than they were in incongruent trials (Fig. 6). There was
also amain effect of the visual cue on reaction times (F(1,58)
= 16.20, p < 0.05, η2 = 0.22). Subjects were significantly
faster when the visual cue was Human than it was Robot
(Fig. 6). There was no interaction between the congruency
and the visual cue on the reaction times (F(1,58) = 0.04, p
= 0.83).

3.2 Experiment 2 (Human, Android)

3.2.1 Accuracy

The data met the assumptions of ANOVA, so we ran 2 × 2
mixed-designANOVAwith awithin-subjects factor of visual
cue (human, android) and a between-subject factor of con-
gruency (congruent, incongruent) on the accuracy scores.
There was a main effect of congruency on accuracy scores
(F(1,58) = 21.61, p < 0.05, η2 = 0.27). Subjects were sig-
nificantly more accurate in congruent trials than incongruent
trials (Fig. 7). There was no significant effect of the visual
cue on accuracy scores (F(1,58) = 0.41, p = 0.53). There
was no interaction between congruency and accuracy either
(F(1,58) = 0.04, p = 0.85).

3.2.2 Reaction Times (Correct Trials)

The data met the assumptions of ANOVA, so we ran 2 × 2
mixed-designANOVAwith awithin-subjects factor of visual
cue (human, android) and a between-subject factor of con-
gruency (congruent, incongruent) on the reaction times of
correct trials. There was a main effect of congruency on the
reaction time of correct trials (F(1,58) = 20.48, p < 0.05, η2

= 0.26). Subjects were significantly faster in congruent trials
than they were in incongruent trials (Fig. 7). There was also
a main effect of the visual cue on reaction times (F(1,58) =
25.57, p < 0.05, η2 = 0.31). Subjects were significantly faster
when the visual cue was Human than it was Android (Fig. 7).
Therewas no significant interaction between congruency and
visual cue (F(1,58) = 1.16, p = 0.29).

3.3 The Human-Likeness Dimension: The
Comparison of Experiment 1 and Experiment 2

In addition to the main analyses reported above, we explored
whether the human-likeness of the agent in the spectrum
of Human-Android-Robot affected the reaction times or
accuracy. To this end, we compared the reaction times
of Experiment 1 and Experiment 2. Since we have four
agents (visual cues) in the two experiments (Experiment
1: Human–Robot and Experiment 2: Human–Android), we
included all of them as Human1, Robot, Human2, and
Android. In addition to the visual cue, we also included the
congruency and order of the experiments in a 4 × 2 × 2
mixed ANOVA.
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Fig. 7 Reaction Times (RT) on correct trials (left) and Accuracy (%) results (right) of Experiment 2. Error bars show the standard error of the mean
(SEM)

3.3.1 Accuracy

Datamet the assumptions of running anANOVA.Therewas a
main effect of congruency on the accuracy scores (F(1,56)=
23.93, p < 0.05, η2 = 0.30). Subjects were significantly more
accurate in congruent trials than incongruent trials. There
was no significant effect of the visual cue on the accuracy
scores (F(3,168)= 0.57, p= 0.64). There was no significant
effect of experiment order either (F(1,56) = 0.01,p = 0.93).
None of the interactions were significant (Cue × Congru-
ency: F(3,168) = 0.27, p = 0.85; Cue × Order: F(1,168) =
0.80, p = 0.49; Congruency × Order: F(1,56) = 0.01,p =
0.93; Cue × Congruency × Order: F(3,168) = 0.07, p =
0.98).

3.3.2 Reaction Times (Correct Trials)

Data met the assumption of homogeneity (Levene’s test p >
0.05) but violated the assumption of sphericity (Mauchly’s
test, (5)= 65.88, p < 0.05). Therefore, we used Greenhouse-
–Geisser correction wherever needed. There was a main
effect of the visual cue on the reaction times (F(1.74, 97.24)
= 6.87, p < 0.05, η2 = 0.11). Planned contrasts showed that
the reaction times for Human 1 are significantly faster than
Robot (p = 0.01, η2 = 0.11) and Android (p < 0.05, η2 =
0.31) but did not differ from Human 2 (p = 0.72); the reac-
tion times for Robot are significantly slower than Human 2
(p < 0.05, η2 = 0.22) but did not differ from Android (p =
0.97); and the reaction times for Human 2 are significantly
faster than Android (p < 0.05, η2 = 0.15).

There was a main effect of congruency on reaction times
(F(1,56) = 23.36, p < 0.05, η2 = 0.29). Subjects were sig-
nificantly more accurate in congruent trials than incongruent
trials. There was no significant effect of the experiment order
on reaction times (F(1,56) = 0.01, p = 0.96). None of the

interactions were significant (Cue × Congruency: F(1.74,
97.24) = 0.27, p = 0.85; Cue × Order: F(1.74, 97.24) =
0.10, p = 0.96; Congruency × Order: F(1,56) = 0.18, p =
0.68; Cue × Congruency x Order: F(1.74, 97.24) = 0.20, p
= 0.79).

4 Discussion

We investigated whether expectations about artificial agents
affect our perception. To this end, we used a well-
known prediction paradigm from cognitive psychology in
a human–robot interaction context. We hypothesized that
people would get faster in judging how an agent sounds
(human-like or synthetic) if it was preceded by a congru-
ent visual cue (e.g. a robot picture for a robot-like voice)
than an incongruent visual cue (e.g. a human picture for a
synthetic, robot-like voice).

Our results suggest that people form expectations about
how an agent sounds based on the visual appearance of the
agent. If the visual cue is a robot, people expect that it would
sound synthetic, as demonstrated by shorter reaction times
and more accurate responses when the appearance and voice
were congruent than when they were incongruent. This was
true whether the robot has a more human-like appearance or
a less human-like appearance. These results are consistent
with previous work that suggests that predictive processes
underlie our perception [9–11, 13, 14] including humans and
robots. In otherwords, it seems thatwe can extend our predic-
tive capabilities to perceive artificial agents, and just like our
interaction with other humans, our expectations can affect
how we perceive non-human agents.

An important contribution of our study to the previous
work on prediction inHRI is its multimodal nature. Although
there are studies that examined the effect of expectations on
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the perception of robots, most of these studies were done
in the visual modality [5, 6, 17]. Given the recent work that
highlights the importance of voice in HRI [18] and the devel-
opments in text-to-speech technology, it has becomeessential
to go beyond the visual modality and incorporate the effects
of voice on communication and interaction with artificial
agents. Studies that support this effort usually manipulate
the congruity of voice and appearance cues and measure a
variety of things regarding the artificial agents such as their
attractiveness and credibility [22], likeability and believabil-
ity [21], perceived lifelikeness and politeness [20], as well as
emotion recognition [30], embodiment [29], and the uncanny
valley [19]. Our study extends this body of work in two
ways. First, rather than presenting the visual and auditory
aspects of the stimuli simultaneously, it presents them con-
secutively in a prediction paradigmwhere the visual stimulus
serves as a prior (cue) for the upcoming auditory stimulus.
The advantage of this method is that it allows us to study
the effect of expectations on perception more directly, by
involving explicit priors, rather than making assumptions or
post hoc conclusions about predictive mechanisms. Second,
unlike previous work that used explicit measures in the form
of self-reports in the multimodal perception of robots, we
used implicit measures such as reaction times and accuracy.
One advantage of implicit measures is that they are more
objective and less susceptible to the participants’ awareness
and the ability to express their introspective states [31]. More
importantly, they are much better at providing a mechanistic
understanding of human behavior and cognition than self-
reports [31, 34], thus allowing us to make more direct links
with the perception literature in cognitive sciences. Con-
sistent with previous work on predictive processing in the
perception of simple or complex object stimuli [9–11], we
found that reaction times get longer, and accuracy scores
get lower when we encounter artificial agents that we do not
expect. This in turn suggests that our expectations affect how
we perceive non-human agents as they do with other natural
object categories.

Our study has several implications in various fields of HRI
that intersects with predictive processing. One implication
concerns the design of robots and the successful interaction
between humans and robots. Previous work suggests that it
is better to design artificial agents that do not violate our
expectations because doing otherwise may elicit undesirable
responses in humans while they interact with those agents,
such as the uncanny valley [5, 6, 19, 43–48], impairments in
emotion recognition [30], and decreased likeability [21] and
credibility [22]. A second implication concerns the specific
user groups for which the robots will be developed. Predic-
tions stem from prior knowledge, which in turn implies that
any variability in prior knowledge about robots can affect to
what extent predictive mechanisms are utilized. For instance,
an engineer in Japan who is heavily exposed to robots may

not be surprised by a metallic-looking robot speaking with a
humanlike voice, unlike a person who has never interacted
with a robot. The person in the former case would generate
minimal prediction errors while the latter would have large
prediction errors. Similar concerns may apply when we con-
sider different generations. For instance, children who are
born in the last decade in the technology era may have dif-
ferent expectations from robots compared to the elderly who
met robots in their adult life. Future work should investigate
how familiarity with robots can affect our prediction abili-
ties and their consequences. This will enable the design of
customized robots for different end users.

Our study has several limitations. The first concerns the
choice of voice stimuli. To create the synthetic, what we
called ‘robotic’, voice, we recorded and modified a natural
human voice using a variety of sound parameters (frequency
and echo).We acknowledge that there is not a natural ‘robotic
voice’ category out there. So, we did our manipulation based
on what we consider how a typical robot voice sounds like
based on our experience with voice assistants, smart devices,
science fiction movies, and video games. We also acknowl-
edge that not all robot voices are the samebut rather theremay
be a family of synthetic voices that are associatedwith robots.
An inspiration for us in creating such synthetic voices was
some available software libraries that modify sound stimuli
to create a variety of non-human-like sounds, e.g., ghost-
like, robotic, etc. While we did not run a separate study
in which we examined the discriminability of the modified
voices from a natural human voice, our pilot study gave us
some insights intowhich parameter combinations elicited the
most synthetic responses. Although we found this method as
the most systematic way of manipulating the voice stimuli,
it has some shortcomings. First, the synthetic voice trans-
formed from a real human voicemay inherently include some
human cues as compared to voices that are completely syn-
thetic, e.g., the ones generated with text-to-speech or voice
synthesis methods [49]. So, it may be difficult to categorize
themas non-human. Since the robotswe used as stimuli in the
present study were humanoid in nature, it may not be unrea-
sonable to have some human cues in the voice. Nevertheless,
text-to-speech or voice/speech synthesismethods can be con-
sidered in future studies as an alternative. Second, it may be
the way the stimuli were presented to the participants before
the experiment that biased their perception of the “modified
human voice” as a “robotic’ voice. Future work can inves-
tigate what kind of deviations from a natural human voice
would lead people to categorize voices as non-human-like
or synthetic in comparison to the natural human voices and
completely synthetic voices generated with text-to-speech or
voice/speech synthesis methods.

A related second limitation of the study is the lack of
a variety of voice stimuli that come in different degrees of
human likeness, unlike visual image stimuli. Since to the
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best of our knowledge, this is the first study that employs an
explicit prediction paradigm in a multimodal context in HRI,
we wanted to keep things simple and follow similar binary
paradigms in cognitive sciences [12, 41, 42]. Future work
can extend this work using a variety of mismatches between
voice and appearance, similar to [50].

Another line of work that was not addressed in the present
study but is worth pursuing is reversing the order of the
modalities in the prediction paradigm. That is, one can use
the auditory stimuli as the cue (prior) and the image stim-
uli as the target and investigate whether voices can influence
how we perceive the bodies of agents. This work could show
whether the predictive processing in a multimodal context is
reciprocal in nature across the two modalities involved.

5 Conclusion

We investigated whether the expectations about an agent
affect how we perceive that agent. More specifically, we
examined howwe perceive the voice of an agent if our expec-
tations based on what we see are not met. Our results show
that the present study provides insights into how we per-
ceive and interact with robots. It seems that we can extend
our predictive capabilities to the perception of robots, and
just like our interaction with other humans, our expectations
can affect how we perceive robots. In sum, we would inter-
act with artificial agents much more efficiently if they are
designed in such a way that they do not violate our expec-
tations. The use of a well-established prediction paradigm
from cognitive sciences in the present study has opened a
new avenue of research in human–robot interaction. Appear-
ance and voice are only two features among many, for which
we seek a match in agent perception. Future work should
investigate what features of artificial agents make us form
expectations, how we do that, and under what conditions
these expectations are violated.

The present study sets a good example of how the col-
laboration between human–robot interaction and cognitive
sciences can be fruitful and useful for both sides [3, 51, 52].
Our study not only suggests possible principles for robot
design but also shows how fundamental cognitive mecha-
nisms such as prediction can generalize to agents that we
have not evolved with over many generations. As such,
our study shows that artificial agents such as robots can be
great experimental tools for cognitive science to improve our
understanding of the human mind.
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