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Abstract: Segmentation of lung regions is of key importance for the automatic analysis of Chest X-Ray (CXR) images,
which have a vital role in the detection of various pulmonary diseases. Precise identification of lung regions is the basic
prerequisite for disease diagnosis and treatment planning. However, achieving precise lung segmentation poses significant
challenges due to factors such as variations in anatomical shape and size, the presence of strong edges at the rib cage
and clavicle, and overlapping anatomical structures resulting from diverse diseases. Although commonly considered as
the de-facto standard in medical image segmentation, the convolutional UNet architecture and its variants fall short
in addressing these challenges, primarily due to the limited ability to model long-range dependencies between image
features. While vision transformers equipped with self-attention mechanisms excel at capturing long-range relationships,
either a coarse-grained global self-attention or a fine-grained local self-attention is typically adopted for segmentation
tasks on high-resolution images to alleviate quadratic computational cost at the expense of performance loss. This
paper introduces a focal modulation UNet model (FMN-UNet) to enhance segmentation performance by effectively
aggregating fine-grained local and coarse-grained global relations at a reasonable computational cost. FMN-UNet first
encodes CXR images via a convolutional encoder to suppress background regions and extract latent feature maps at
a relatively modest resolution. FMN-UNet then leverages global and local attention mechanisms to model contextual
relationships across the images. These contextual feature maps are convolutionally decoded to produce segmentation
masks. The segmentation performance of FMN-UNet is compared against state-of-the-art methods on three public CXR
datasets (JSRT, Montgomery, and Shenzhen). Experiments in each dataset demonstrate the superior performance of
FMN-UNet against baselines.

Key words: Focal modulation, lung segmentation, chest x-ray, transformer, attention

1. Introduction

Pulmonary diseases, notably tuberculosis, and lung cancer remain prominent causes of global mortality despite
the potential for effective interventions following early detection [1]. Most pulmonary nodules are detected
accidentally on chest X-ray (CXR) images acquired for other assessments, as the characteristic symptoms
associated with pulmonary disease are typically not evident until later stages. While CXR is a pervasive
diagnostic modality given its low operational cost and widespread availability compared to other modalities

such as computer tomography (CT) and magnetic resonance imaging (MRI) [2], detection of abnormalities on
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CXR images is still a challenging task [3]. In particular, a high level of expertise and focus is required to identify
relatively smaller nodules under the immense diagnostic workload for radiologists [4]. The globally increasing
workload of radiologists is anticipated to pose a significant diagnostic challenge in the long run, not only in low-
but also high-income countries [5]. Therefore, having an automated computer-aided diagnostic (CAD) system
to read CXR images is highly desirable to effectively reduce processing times and improve diagnostic accuracy,
especially in the early stages of the disease where the imaging markers of progression might require more careful

inspection [6].

To achieve accurate assessment and diagnosis of pulmonary diseases, a proficient CAD system should
possess the ability to automatically detect and identify regions exhibiting pathological abnormalities [7]. Char-
acteristic structural properties of the lungs, including their shape, size, and area, form the primary focus of
investigation for CXR-CAD systems, as they offer crucial insights into pulmonary disease progression. An im-
portant stage in CAD systems is the localization of the lung tissues in CXR images by segregation of background
regions, such that the focus can be directed to disease-related regions [8]. This lung segmentation procedure
is a challenging task due to several reasons. First, there are variations in the shape and size of the lung and
pathological abnormalities based on factors such as gender, age, genetic differences, and heart size. Second,
there are shape distortions caused by severe lung disease or opacities and consolidations resulting from various
infections. Third, overlapping structures can be present in lung regions due to projection-based imaging in CXR.
Lastly, foreign objects such as cardiac pacemakers and other implanted devices can be present [9]. These factors
present a significant challenge in the delineation of the lung boundaries and they can compromise segmentation

performance [10].

Over the years, numerous important approaches have been proposed in the literature to improve per-
formance in automatic lung segmentation based on traditional and learning-based techniques. Traditional
segmentation methods typically rely on hand-crafted features extracted via predefined image filters. A group
of methods has focused on edge detection for segmentation. Saad et al. [11] employ the Canny edge detection
filter and morphological operations, Xu et al. [12] utilize a principal component analysis-based active shape
model for global edge detection, and Liu et al. [13] apply a multi-scale Sobel operator based approach for
edge detection. Other studies have focused on clustering to achieve segmentation. Ahmad et al. [14] employed
the Fuzzy C-Means (FCM) clustering approach, and Sangamithraa and Govindaraju [15] utilized the EK-mean
clustering approach. Intensity-thresholding methods have also been proposed to delineate lung tissue. Leader
et al. [16] employed a slice-based pixel-value thresholding method, while Annangi et al. [17] utilized the Otsu
thresholding method. Candemir et al. [18] employed a nonrigid registration-driven method for the segmenta-
tion of retrieval-based patient-specific lung model segmentation. Traditional methods for lung segmentation in
CXR images commonly depend on a limited set of hand-crafted features that fail to capture a comprehensive

representation of the image distribution [19].

To address shortcomings of traditional methods, recent studies have instead focused on learning-based
methods for lung segmentation [20]. In particular, various deep learning architectures have been proposed
including fully-connected [23, 24|, convolutional [21, 22, 25-27, 31, 37, 39|, adversarial [28-30], recurrent
[9, 32, 34], and graphical models [33]. Yet, the majority of the studies in the literature adopt UNet-based
architectures following an hourglass structure that offers a good compromise between performance and efficiency
[35]. The vanilla UNet model is based on the convolutional encoder and decoder stages with skip connections. As

such, it shows limited sensitivity to long-range context between distant image features, and limited adaptation to
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sample-specific image features. Several enhanced designs have been proposed to boost segmentation performance
further. Arora et al. [36] incorporated channel and spatial attention blocks. Ghali and Akhloufi [38] incorporated
attention gates between the deconvolutional layers of the UNet decoder stage. Cao and Zhao [40] introduced a
three-terminal attention mechanism that combines the channel and spatial attention modules. While attention-
augmented UNet models typically show improved adaptation to sample-specific features, they can still suffer
from limited capture of long-range context. Recently, vision transformer (ViT) architectures have been adopted
to capture long-range context between image patches [41, 44]. Chen et al. [42] introduced the TransUNet
architecture by integrating the ViT between the encoder and decoder stages of UNet. Chen et al. [43] enhanced
the TransUNet architecture by incorporating ViT into an already attention-augmented UNet. Although ViT
modules excel in capturing long-range relationships in CXR images, their practical use is limited by the quadratic
computational complexity with respect to input image size. As such, ViT-based methods commonly adopt either
a coarse-grained global self-attention mechanism with limited resolution or a fine-grained local self-attention
mechanism with limited coverage. In turn, this compromises either the spatial precision or the contextual
sensitivity of transformer modules.

To address the abovementioned limitations, here we propose a novel segmentation method named FMN-
UNet that combines convolutional modules with a focal modulation network (FMN) [45]. By leveraging a
focal attention mechanism as opposed to the regular self-attention mechanism in ViT, FMN-UNet effectively
captures the relationships between both fine-grained local and coarse-grained global features while alleviating
computational costs. Receiving as input a high-resolution CXR image, FMN-UNet projects the input through
a convolutional encoder stage to extract a relatively compact latent representation. An FMN stage further
processes encoded feature maps at the lowest and highest resolutions to capture both global and local contextual
relationships between image features. Finally, the feature maps are projected through a convolutional decoder
stage to produce segmentation masks. To the best of our knowledge, this is the first study that investigates
the potential of focal modulations combined with UNet for CXR lung segmentation. The main contributions of

FMN-UNet can be summarized as follows:

e FMN-UNet leverages focal attention mechanisms at multiple resolutions to effectively capture both fine-

grained local and coarse-grained global visual features.

¢ The focal attention mechanism is incorporated into a convolutional encoder-decoder architecture, ensuring

computational efficiency without compromising performance.

¢ FMN-UNet is demonstrated on three public CXR datasets to showcase its superiority over state-of-the-art
lung segmentation methods.

The rest of this paper is structured as follows: Section 2 provides notations and details of the FMN-Unet
architecture. Section 3 encompasses information about the datasets, model implementation details, evaluation
metrics, and competing methods. Section 4 presents the ablation study and comparative analyses with other

methods. Lastly, Section 5 discusses the implications of our findings.

2. Methodology

2.1. Notations

N

n—1, Where N represents the total number of images

Given a CXR image repository denoted by D = {z,, yn}

in D, z, € REXWXC denotes the input CXR image, ¥, € {O,I}HXW represents the lung segmentation
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mask, HxW indicates the image resolution, and C' denotes the number of channels in the input image.
The main objective of the FMN-UNet architecture is to achieve a high-performance lung segmentation task

by generating a detailed segmentation mask directly from the input CXR image in an end-to-end manner,

fFMN-—UNet & T, € REEWXC g ¢ {0, 1}HXW, where ), represents predicted output mask. To fulfill this
objective, the FMN-UNet architecture can be dissected into three primary components: the encoder stage
(fenc), the FMN stage ( frasn ), and the decoder stage (fgec). In the encoder stage, features are extracted
from the CXR image and mapped down, fen. : x, € RTWXC ¢ RP¥PXCm where P denotes map
dimensions and C, denotes the number of map channel. The FMN stage reveals the fine-grained local and

coarse-grained global relationships of the feature map, frayn : my € REPEPXCm 5 € RPXPXCm - Finally,

decoder stage creates a predicted output lung mask, fge. : 1, € RPXP*Cm 5 g € {0, 1}HXW.

2.2. FMIN-UNet
In this study, we proposed the FMN-UNet model for improved performance and efficiency in lung segmentation
tasks. Inspired by UNet, FMN-UNet uses convolutional encoder and decoder stages with progressively lowered
and elevated spatial resolution to follow an hourglass shape, and it uses skip connections to propagate encoded
features maps at each resolution to the decoder layers at corresponding levels. To improve the capture of
contextual representations, FMN-UNet incorporates an FMN stage in between the encoder and decoder stages.
The FMN stage comprises single FMN stages between the encoder and decoder stages at the lowest and
highest resolutions. FMN stages leverage a focal attention mechanism to capture contextual features without
introducing a substantial computational burden. Figure 1 illustrates the basic architecture of FMN-UNet and
its submodules. The remaining parts of this section describe in detail the encoder, FMN, and decoder stages of
FMN-UNet along with its loss function.

The encoder stage of the FMN-UNet architecture serves to embed the input CRX image into a relatively
lower dimensional latent representation, which is expected to suppress noise and other artifactual features
irrelevant to the segmentation task. The encoder stage comprises four down-sampling blocks, with each block

composed of two convolution layers, one batch normalization layer, one dropout layer, and one max pooling

PxPxC,, HxWxC

" , for an input sample, x,’

layer. The down-sampled feature map, m

1, my = fenc(l'n)~

, is calculated as in Equation

M = Punaz (Drop (BN (Conv (Conv (,)))) (1)

where P,,,; represents the max pooling operator, Drop denotes the dropout operation, BN represents batch
normalization, and Conv denotes the 2D convolution operation. To reveal the feature map’s fine-grained local
and coarse-grained global feature relationships, m,, is first split into tokens, m,; with J tokens. Then the

focal modulation mechanism is used to compute contextual representations as described in Equation 2.

My, = Q(mnj)Qh(S (]7mn)) (2)

where ¢(.) denotes a query projection function, h(.) is a linear layer to obtain the modulator, s(.) represents

context aggregation function and ® is the element-wise multiplication. s(.) can be expressed using spatial- and

level-aware gating weights G, and linear layer Z with focal level [ as in Zl]fll gé» . zg To calculate G and Z:

G'=GeLU (Z'71) (3)
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Figure 1. The basic structure of the proposed FMN-UNet model for lung segmentation. The encoder stage is represented
in blue and consists of four convolutional down-sampling blocks. The FMN stage is shown in green and consists of a single
FMN stage inserted between feature maps at the highest and lowest resolution levels. The decoder stage is depicted in
orange and consists of four convolutional up-sampling blocks. The layers within each block are detailed in the bottom
part of the figure.

Z' = GeLU (DW Conv (Z'71)) (4)

where DW Conv is a depth-wise convolution operator and the GeLU activation function is used. Equation 2

can be rewritten at the token level as in Equation 5.

L+1
mn:CI(mnj)Qh(Zg;'Z;‘) (5)

=1

The decoder stage of FMN-UNet serves to synthesize high-resolution segmentation maps from the ex-
tracted contextual feature representations. In other words, m, is converted to a lung segmentation mask in
the original image dimensions (HxWxC'). The decoder stage comprises four up-sampling blocks, with each
block composed of one transposed convolution layer, one concatenate layer, and two convolution layers. The
concatenate layer combines each up-sampling layer with the corresponding layer in the encoder stage. The skip
connections between corresponding encoder-decoder stages allow for the transmission of low-level features from
the encoder to the decoder, enabling the capture of fine details and local information in the segmentation maps.

Equation 6 described the overall derivation of the segmented lung mask g, by up-sampling the feature map
mePme
. .

In = Conv (Conv (Concat (TransConv (my,)))) (6)
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where Concat denotes concatenate layer and TransConv represents transposed convolution layer.

Since CXR lung segmentation is a binary segmentation task, each pixel in the segmentation mask at the
output of the decoder stage should be in the range of 0, 1. To achieve this, the tangent hyperbolic function
(tanh) is used at the decoder stage. As the tanh function produces values in the range of [-1, 1], negative values
are thresholded to 0 to obtain the final segmentation mask. In order for each pixel in the segmentation mask to
converge the ground truth value, we utilize Binary Cross Entropy loss (BCE) as depicted in Equation 7. The
BCE loss, which penalizes binary values on a pixel-by-pixel basis, has been reported in the literature to offer a

detailed capture of task-relevant features for lung segmentation.

1 n
BCE ym yz = E Z yzl()g yz ]- - yl) log (1 - yl)] (7)
=1

3. Experimental design

3.1. Datasets

To comprehensively evaluate the lung segmentation performance of FMN-UNet, three publicly available CXR
datasets are utilized: the Japanese Society of Radiological Technology (JSRT) dataset [47], the Montgomery
County X-ray (MC) dataset [48], and The Shenzhen (SZ) dataset [48]. These datasets offer diverse and
representative samples for assessing the effectiveness and generalization of FMN-UNet.

The JSRT dataset comprises a total of 247 posterior-anterior CXR images with dimensions of 2048x2048
pixels. Among these, 90 images depict healthy lungs without any abnormalities, while the remaining images
contain various lung nodules. The MC dataset, created by the Department of Health and Human Services in
Montgomery County, Maryland, USA, consists of 138 frontal CXR images with dimensions of either 4020x4892
or 4892x4020 pixels. Among these, 80 cases are healthy, while the remaining 58 cases show tuberculosis. The SZ
dataset, collected by Shenzhen No.3 People’s Hospital, Guangdong Medical College, Shenzhen, China, consists
of 662 frontal CXR images with an average size of 3000x3000 pixels. Within this dataset, 326 cases are healthy,
while the remaining 336 cases exhibit tuberculosis. To ensure consistency, all images were downsampled to
256x256 pixels using the nearest neighbor interpolation technique. The datasets are split into 80% for training,

10% for validation, and 10% for testing, while evaluation is conducted using the 10-fold cross-validation.

3.2. Architectural details and model implementation

The FMN-UNet takes input images of size 256x256 pixels with 3 channels representing RGB in CXR images. It
generates lung segmentation masks of size 256x256x1 as the output. The encoder stage of FMN-UNet consists
of down-sampling blocks, each comprising two convolution layers with 3x3 filters, one batch normalization layer,
one dropout layer with a dropout factor of 0.3, and one max pooling layer with 2x2 filters. The ReLU activation
function is applied to the convolution layers. The decoder stage of FMN-UNet includes up-sampling blocks,
which consist of one transposed convolution layer, one concatenate layer, and two convolution layers, all with
3x3 filters and ReLU activation. The transposed convolution layer uses a 3x3 convolution kernel. The tanh
function is used as output activation at the decoder output. For the FMN stage, the token patch size is set
to 8x8 pixels, and the embedding dimensions are set to 768. Three basic focal layers are used in FMN, with a
depth configuration of [2,3,2]. These layers have a focal level of 2 and a focal window size of 3. The classification

layer and softmax activation are removed from the FMN output, allowing it to generate embedding vectors.
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FMN-UNet was implemented using TensorFlow and executed on two NVidia RTX 3090 GPUs. The model
was trained using the Adam optimization algorithm with a batch size of 24 and a learning rate of 5 x 10~* for
a total of 90 epochs. The base filter number for UNet was set to 48, and it automatically adjusted as per the
original UNet multipliers in each block. The datasets are split into 80% for training, 10% for validation, and
10% for testing. A 10-fold validation technique is employed for evaluation.

3.3. Performance evaluation

The performance of FMN-UNet and other competing lung segmentation techniques is assessed using three
common metrics, Dice Similarity Coefficient (DSC), Jaccard Index (JI), and Accuracy metric (ACC). The ACC
evaluates the correctness of each pixel, while DSC and JI measure the spatial overlap between the binary ground

truth and the predicted segmentation masks. DSC, JI, and ACC are calculated as in Equations 8, 9, and 10,

respectively.
N 2 [yn N |
R |yn N :ljn|
JI YnsYn) = ~ ~ 9
TP+ TN
ACC (Yn, Un) = 10
Wnsln) = T TN FP T FN (10)

where TP represents true positive (correctly predicted white pixel), FP represents false positive (incorrectly
predicted white pixel), TN represents true negative (correctly predicted black pixel), and F'N represents false
negative (incorrectly predicted black pixel).

3.4. Competing methods

To provide a comprehensive evaluation of FMN-UNet and emphasize FMN’s unique contribution to the UNet
architecture, we employed both UNet-based competing methods and other segmentation methods. The network
architecture and training procedures for all methods were adapted from their respective original works. We
strictly adhered to the hyperparameters specified in the original studies for each competing method. If there
were any missing hyperparameters or incomplete experimental results in the competing methods, we conducted
experiments using the relevant datasets to address these gaps.

For UNet-based competing segmentation models, we first use a medical image analysis guided UNet
method [49]. Dense-UNet [50] enhances lung segmentation performance by incorporating dense connectivity
between various layers. The improved UNet (i-UNet) [51] method uses pretrained Efficientnet-b4 as the encoder
and the LeakyReLU activation function in the decoder to efficiently extract lung region and avoid gradient
instability. The modified UNet (M-UNet) method [5] divides the image into smaller patches and performs the
segmentation task using the information from two branches: a classifier CNN and a patch-based modified UNet.
This approach leverages the advantages of both branches to achieve accurate segmentation results. TransUNet
[42] architecture integrates the ViT between the encoder and decoder stages of the UNet architecture.

The A-LugSeg [9] technique consists of two subnetworks, an RCNN-based segmentation subnetwork and
a refinement subnetwork for coarse segmentation. The AC-RegNet [52] provides an anatomically constrained

neural networks-based contribution to CXR lung segmentation performance using anatomical priors into deep
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learning-based image registration. RecBSeg [2] is an automatic lung segmentation technique consisting of four
steps: image acquisition, linear CNN-based initial segmentation, reconstruction using residual blocks in CNN,

and final segmentation.

4. Experimental results
4.1. Ablation study

This section provides a detailed analysis of the effects of various components of the FMN-UNet architecture
on lung segmentation performance. All ablation experiments have been performed using the JSRT dataset.
Firstly, ablation experiments originating from UNet architecture are presented in Table 1. Table 1 (a) presents
a comparison between the performance metrics of UNet, which was chosen as the segmentation backbone, and
FCN, a popular structure that does not include skip connections. UNet outperforms FCN, achieving a 0.8%
higher DSC, 1.5% higher JI, and 0.6% higher ACC with a moderate computational increase. In Section (b) of
Table 1, the impact of UNet depth on the performance of FMN-UNet is examined. The number of trainable
weights and memory consumption increases with increasing depth. Yet, the benefits from elevated degrees of
depth might not influence performance beyond a certain level. Our results suggest that a depth of 5 offers a
favorable compromise between complexity and performance, so FMN-UNet(5) has been selected as the main

segmentation model in this study.

Table 1. Ablation experiments on UNet backbone. (a) Performance comparison between UNet and FCN architectures.
(b) Impact of UNet depth on FMN-UNet.

DSC JI ACC Parameters
FCN 96.440.2 | 93.240.4 | 97.840.1 | 17.5 M
2 UNet 97.940.3 | 94.740.6 | 98.440.2 | 195 M

FMN-UNet(4) | 97.3+0.3 | 94.940.6 | 98.440.2 230.2 M
b | FMN-UNet(5) | 98.0+0.3 | 95.5+0.5 | 98.8+0.1 2444 M
FMN-UNet(6) | 97.94+0.2 | 95.5+0.4 | 98.7+0.1 2711 M

In Figure 2, the segmentation results obtained for the FCN, UNet, and FMN-UNet methods are shown
using randomly selected test samples from the test dataset. In Figure 2, (a) and (d) show the lung segmentation
masks, (b) and (e) depict the comparison of the boundaries of the lung segmentation masks with the ground
truth, and (c) and (f) demonstrate the correctly and incorrectly identified regions by the competing methods
and FMN-UNet on the original images. It can be observed that the segmentation mask generated by FCN is
relatively smooth and fails to capture sharp transitions. UNet outperforms FCN in accurately identifying lung
regions. However, among all the methods, FMN-UNet stands out as the most effective in capturing fine details
and preserving intricate features. Upon examining the contours of each method’s masks, it can be observed
that the FMN-UNet’s segmentation closely matches the original CXR image.

The impact of different variables in the FMN stage of the FMN-UNet architecture on performance is
analyzed in Table 2. In Section (a) of Table 2, the depth and number of focal modulation layers are examined.
While there is a noticeable improvement in performance with increasing depth, it also leads to a significant
increase in computational complexity due to the growing number of parameters. Therefore, a focal modulation
depth of (2,3,2) was selected to strike a balance. Furthermore, as the number of parameters to be trained

increases, it becomes crucial to augment the training dataset size to mitigate the risk of overfitting. Section (b)
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Original CXR Ground Truth FCN UNet FMN-UNet

—

Figure 2. The segmentation performance of FCN, UNet, and FMN-UNet is evaluated. (a) and (d) show the lung
segmentation masks, (b) and (e) depict the comparison of the boundaries of the lung segmentation masks with the
ground truth, and (c) and (f) demonstrate the correctly and incorrectly identified regions. In (b) and (e), the green lines
represent the ground truth information, while the red lines represent the segmentation mask produced by the relevant
method. In (¢) and (f), the green regions represent correctly identified, while the red regions represent incorrectly
identified regions. Among the methods, FMN-UNet stands out as the most effective in capturing fine details and
preserving intricate features.

of Table 2 investigates the impact of the embedding dimension parameter on performance. Choosing a higher

embedding dimension, such as 1024, results in a considerable increase in trainable parameters, potentially
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leading to overfitting. Hence, an embedding dimension of 768 was preferred to maintain optimal performance

without encountering overfitting issues.

Table 2.  Ablation experiments on FMN stage. (a) Performance evaluation based on depth and number of focus
modulation layers. (b) Performance evaluation based on embedding dimension parameter.

DSC JI ACC Parameters
FMN(2,2) | 97.84£0.2 | 95.44+0.4 | 98.740.1 75.2 M
a | FMN(2,3,2) | 98.0+0.3 | 95.5+0.5 | 98.8+0.1 244.4 M
FMN(4,6,4) | 98.1+0.3 | 95.5+0.5 | 98.8+0.1 323.3 M
FMN(256) | 97.7£0.3 | 95.44+0.6 | 98.640.1 59.6 M
b | FMN(768) | 98.0+£0.3 | 95.5+0.5 | 98.840.1 244.4 M
FMN(1024) | 97.5+0.2 | 94.9+0.4 | 98.5+0.2 644.5 M

4.2. Comparative analysis

This section presents a comparative analysis of FMN-UNet against other UNet-based methods and other com-
peting segmentation methods. To achieve this, the section is divided into two parts: competing segmentation
methods and UNet-based segmentation methods. Firstly, in Section (a) of Table 3, three competing segmen-
tation techniques, A-LugSeg, AC-RegNet, and RecBSeg, are compared with FMN-UNet for the CXR lung
segmentation task. Compared to competing segmentation techniques, FMN-UNet demonstrates superior per-
formance against competing segmentation methods by an average of 2.8% on the DSC metric, an average of
1.5% on the JI metric, and an average of 1.4% on the ACC metric on the JSRT dataset. In the MC dataset,
it demonstrates superior performance against competing segmentation methods by an average of 2.9% on the
DSC metric and an average of 1.4% on the ACC metric. In the JI metric, it lags behind other techniques by
0.6% on average. In the SZ dataset, it demonstrates superior performance against competing segmentation
methods by an average of 3.8% on the DSC metric, an average of 4.0% on the JI metric, and an average of 1.0%
on the ACC metric. According to the average of all datasets, FMN-UNet demonstrates superior performance
against competing segmentation methods by an average of 3.1% on the DSC metric, an average of 1.6%, and
an average of 1.5% on the ACC metric.

In Section (b) of Table 3, five UNet-based segmentation techniques, namely UNet, Dense-UNet, i-UNet,
M-UNet, and TransUNet, are compared with FMN-UNet for CXR lung segmentation task. Compared to UNet-
based segmentation techniques, FMN-UNet demonstrates superior performance against competing segmentation
methods by an average of 0.7% on the DSC metric, an average of 0.4% on the JI metric, and an average of 0.6%
on the ACC metric on the JSRT dataset. In the MC dataset, it demonstrates superior performance against
competing segmentation methods by an average of 0.8% on the DSC metric, an average of 0.7% on the JI
metric, and an average of 0.6% on the ACC metric. In the SZ dataset, it demonstrates superior performance
against competing segmentation methods by an average of 0.2% on the DSC metric, an average of 0.2% on the
JI metric, and an average of 0.2% on the ACC metric. According to the average of all datasets, FMN-UNet
demonstrates superior performance against competing segmentation methods by an average of 0.6% on the DSC

metric, an average of 0.4%, and an average of 0.5% on the ACC metric.
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Table 3. Evaluation of AUC performance in relation to competing methods. (a) Competing segmentation techniques,
(b) UNet-based techniques.

JSRT MC S7
DSC| JI | ACC |[DSC| JI | ACC | DSC | JI | ACC
A-LugSeg [9] 973 | 95.8 | 97.2 | 97.1 | 95.5 | 97.0 -
a | AC-RegNet [52] | 94.3 - - 95.3 - - 93.1 - -
RecBSeg [2] 94.1 1 922 | 976 | 93.6 | 98.1 | 97.0 | 90.6 | 87.8 | 97.1
UNet [49] 97.2 1 94.7 | 984 | 979 | 959 | 99.0 | 954 | 91.6 | 97.9

Dense-UNet [50] | 97.6 | 95.3 - 97.9 | 95.9 - - - -
b i-UNet [51] 97.9 | 95.8 | 98.5 | 97.7 | 95.5 | 98.9 - - -
M-UNet [5] 96.5 | 95.0 | 974 | 96.1 | 94.3 | 97.3

TransUNet [42] | 97.4 | 94.7 | 98.4 | 98.1 | 96.0 | 99.1 | 954 | 91.7 | 97.9
FMN-UNet 98.0 | 95.5 | 98.8 | 983 | 96.2 | 99.2 | 95.6 | 91.8 | 98.1

5. Discussion and conclusion

This study proposes an end-to-end CAD approach named FMN-UNet, which achieves high performance and
relatively low computational complexity for lung segmentation in CXR images. To build FMN-UNet, we
conducted an initial set of explorations to comparatively evaluate FCN and UNet backbones for encoding input
images into a compact latent space. Corroborated by the result in Table 1, the UNet backbone was found superior
to FCN for subsequent performance in the downstream segmentation tasks, so our proposed model leverages the
UNet encoder in its initial stage. The traditional UNet architecture lacks sensitivity to long-range context and
adaptation to sample-specific features. While attention-augmented CNN approaches can improve adaptation,
they still show suboptimal sensitivity to a long-range context [36-38]. To boost sensitivity to long-range
dependencies, vision transformer (ViT) models have been proposed for lung segmentation in CXR images [42—
44]. Yet, canonical ViT models suffer from quadratic computational burdens with respect to image size, so direct
integration of ViT and CNN modules can be challenging. To improve the capture of contextual representations
while alleviating computational costs, FMN-UNet leverages local and global attentional mechanisms cascaded
with convolutional encoding/decoding blocks. Note that FMN-UNet demonstrates superior performance against
the TransUNet method, which directly inserts a ViT module in the midpoint of a UNet architecture, by an
average of 0.3% on the DSC metric, an average of 0.4% on the JI metric, and an average of 0.2% on the ACC
metric.

To comprehensively analyze the performance of FMN-UNet, a comparative analysis with both UNet-
based segmentation techniques and other segmentation techniques is presented in Table 3. Since the proposed
technique is implemented with 256x256 image dimensions, comparable techniques from the literature that
include similar resolutions have been used in the comparisons. Overall, FMN-UNet demonstrates superior
performance against baselines by an average of 1.8% on the DSC metric, an average of 1.0% on the JI metric,
and an average of 1.0% on the ACC metric. Upon examining the visual results in Figure 2, it can be observed
that FMN-UNet outperforms competing methods in capturing fine details.

Several avenues of development can further enhance the performance of FMN-UNet. The ability of
the image feature maps or embedding vectors generated by the encoder stage to represent the original image
significantly impacts the segmentation performance of the FMN-Unet. Therefore, robust deep learning models
such as diffusion models can bring significant performance improvements in this area [53, 54]. Increasing

image resolutions or utilizing feature dependencies at each stage to better model spatial context can improve
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performance, but it also significantly increases computational complexity. Managing this trade-off, especially
when using high-resolution original images, will greatly enhance performance.

In future studies, our focus will be on generating more representative embedding vectors in the early
network stages to address the mentioned limitations. Specifically, we will work on developing a deep encoder
capable of producing more representative feature maps while managing the computational load for higher-

resolution images and deeper architectures.
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