
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 43, NO. 1, JANUARY 2024 321
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Abstract— Magnetic particle imaging (MPI) offers unpar-
alleled contrast and resolution for tracing magnetic
nanoparticles. A common imaging procedure calibrates a
system matrix (SM) that is used to reconstruct data from
subsequent scans. The ill-posed reconstruction problem
can be solved by simultaneously enforcing data consistency
based on the SM and regularizing the solution based on an
image prior. Traditional hand-crafted priors cannot capture
the complex attributes of MPI images, whereas recent MPI
methods based on learned priors can suffer from extensive
inference times or limited generalization performance. Here,
we introduce a novel physics-driven method for MPI recon-
struction based on a deep equilibrium model with learned
data consistency (DEQ-MPI). DEQ-MPI reconstructs images
by augmenting neural networks into an iterative optimiza-
tion, as inspired by unrolling methods in deep learning.
Yet, conventional unrolling methods are computationally
restricted to few iterations resulting in non-convergent solu-
tions, and they use hand-crafted consistency measures
that can yield suboptimal capture of the data distribution.
DEQ-MPI instead trains an implicit mapping to maximize
the quality of a convergent solution, and it incorporates
a learned consistency measure to better account for the
data distribution. Demonstrations on simulated and experi-
mental data indicate that DEQ-MPI achieves superior image
quality and competitive inference time to state-of-the-art
MPI reconstruction methods.

Index Terms— Magnetic particle imaging, reconstruction,
equilibrium, implicit, data consistency, deep learning.
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I. INTRODUCTION

MAGNETIC particle imaging (MPI) is a powerful modal-
ity with high clinical prospect in applications such as

angiography, cell tracking, cancer imaging, and neurovascular
imaging [1], [2], [3], [4], [5], [6], [7], [8], [9]. MPI maps the
spatial distribution of magnetic nanoparticles (MNPs) based on
their magnetization responses [10], [11]. A selection field (SF)
creates a field free region for localized encoding, while a drive
field (DF) evokes responses [12]. The point spread function
(PSF) in MPI is spatially variant and anisotropic due to system
non-idealities (e.g., inhomogeneities in applied fields) and
trajectory-dependent response of the MNPs. To account for
these variations, a system matrix (SM) is typically utilized
to characterize the PSF across the field-of-view (FOV) [13],
[14], [15]. While analytical estimation is possible [16], exper-
imentally measuring the SM with a calibration scan improves
reliability against non-idealities [17], [18]. SM measurements
are taken point by point, by traversing an MNP sample
on a spatial grid covering the FOV at a desired resolution.
Relatively compact grids are common in MPI given practical
constraints on FOV and resolution due to hardware limitations
(e.g., limited coil sensitivity, gradient strength), MNP proper-
ties (e.g., weak or wide responses, relaxation), and excessive
calibration times (e.g., ∼12 hours for a 32×32×32 grid) [19].

Following calibration, an imaging scan is performed to
map the MNP distribution in the anatomy of interest. For
efficient encoding of the anatomical volume, field-free-line
(FFL) scans can be performed by acquiring responses from
an ensemble of MNPs located across a selected line [20].
By traversing the selected line along a trajectory, MNP
responses can be acquired across the FOV. Since acquired
data are linearly related to the MNP distribution via the SM,
image reconstruction can be achieved by solving an inverse
problem [13]. That said, MPI measurements carry significant
correlations across the frequency dimension as the frequency
response is governed by the MNP characteristics, and they
are corrupted by high levels of correlated noise [21]. These
factors cause the SM to be rank deficient with respect to grid
size, so the resultant inverse problem is underdetermined [22].
As an underdetermined inverse problem, MPI reconstruction
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has high potential to benefit from regularization priors in order
to recover high-quality images [23], [24].

Traditional MPI reconstructions seek a solution that embod-
ies both physical constraints related to the SM and acquired
data, and attributes of high-quality images. While non-iterative
solvers exist [25], [26], optimization algorithms are prominent
that iteratively enforce data consistency (DC) based on the
SM and regularize the image [17], [27]. For DC, hand-crafted
measures based on energy or intensity differences between
reconstructed and acquired data are common [13], [28]. For
regularization, hand-crafted priors are used to promote desired
attributes (e.g., smoothness, sparsity) via ℓ2 [29], [30], ℓ1 [31],
TV [17] losses or their combinations [32]. While they have
been pervasive in MPI reconstruction, hand-crafted priors can-
not fully capture the image distribution, they show suboptimal
performance especially in regions with low signal (e.g., due to
low coil sensitivity), and their performance depends on careful
tuning of regularization weights that can vary substantially
across scans [32], [33].

In recent years, learning-based priors have received inter-
est in MPI reconstruction as a powerful alternative. Purely
data-driven methods train neural networks to directly recover
images from frequency- or time-domain data [34], [35], [36],
[37]. Although they enable efficient inference, neglecting the
physical constraints embodied in the SM can limit general-
izability. To improve generalization, deep image prior (DIP)
methods instead use untrained networks whose parameters are
learned at test time by minimizing a DC loss [33], [38].
Yet, extensive inference times and difficulty in identifying
appropriate architectures per dataset can limit utility [39].
A recent plug-and-play method (PP-MPI) pre-trains an image
prior for denoising and later combines it with the SM for
reconstruction [40]. The plug-ang-play framework offers a
flexible compromise between efficiency and generalization in
solution of inverse problems [23], [41]. Yet, transferring a prior
from the denoising to the reconstruction task can potentially
elicit performance limitations.

Here, we introduce a novel deep equilibrium model,
DEQ-MPI, for improved performance and efficiency in MPI
reconstruction. Inspired by physics-driven unrolling meth-
ods [24], DEQ-MPI augments neural networks into an iter-
ative optimization to rapidly alternate between regularization
and DC projections. Conventional unrolled methods produce
non-convergent solutions following a small number of itera-
tions due to computational and memory constraints [42], and
they use hand-crafted DC measures that can elicit suboptimal
performance [43]. DEQ-MPI instead trains an iterative archi-
tecture to maximize image quality at convergence for improved
performance, and it introduces a novel learned consistency
block to better conform to the MPI data distribution. Initial-
ization strategies are also proposed for both regularization and
learned consistency blocks to improve model training. Demon-
strations show that DEQ-MPI achieves superior performance
to state-of-the-art methods for MPI reconstruction, while also
maintaining superior or on par efficiency.

Contributions:
• We introduce the first physics-driven deep iterative archi-

tecture for performant and efficient MPI reconstruction.

• DEQ-MPI leverages the first deep equilibrium model and
the first learned consistency measure in MPI.

• We propose initialization strategies for regularization
and learned consistency blocks in DEQ-MPI to improve
model training.

II. RELATED WORK

Learned image priors have recently been adopted as a
promising approach in MPI tasks such as SM or image
super-resolution [44], [45], [46], view imputation in projection
imaging [47], and image reconstruction [34], [35], [36], [37],
[38], [39], [40]. For image reconstruction, purely data-driven
methods provide fast inference by directly mapping acquired
data onto images without explicitly considering the SM [34],
[35], [36], [37]. As these methods do not explicitly integrate
physical constraints, reliability against system variability can
be limited. Moreover, previous data-driven methods include
dense layers whose complexity grows substantially with data
dimensions. DIP methods instead use untrained networks
with convolution filters serving as native regularizers, and
learn network parameters to optimize DC on individual test
scans [38], [39]. Although DIP methods promise enhanced
generalization by incorporating the SM, they require thousands
of inference iterations and face challenges in network selection
as ideal architectures are often image specific [48]. PP-MPI
pre-trains a convolutional network for image denoising, and
combines it with the SM during an inference optimization [40].
While PP-MPI offers improved efficiency compared to DIP,
transferring a model from the denoising to the reconstruction
task can limit performance [49]. Thus, learning-based methods
with improved efficiency and generalization are needed in MPI
reconstruction.

A powerful framework for learning-based reconstruction
employs physics-driven unrolled methods that perform a fixed
number of iterated projections through a convolutional net-
work block to regularize the image and a DC block to enforce
the system’s physical constraints [24]. While no previous study
has considered unrolled methods for MPI, state-of-the-art
results have been reported with them in other modalities [24],
[50]. That said, as computational complexity grows rapidly
when more blocks are cascaded, unrolled methods are typically
trained to optimize image quality after a small number of
iterations. This limitation results in suboptimal performance,
and image quality degrades significantly when inference is
sought at a different number of iterations than that prescribed
for training as suggested by recent image reconstruction stud-
ies [51], [52], [53], [54]. Moreover, DC in MPI and other
modalities is commonly performed by projecting reconstructed
data onto the ℓ2-ball of acquired data to alleviate bias due
to noise [13], [28], [55], [56]. This procedure ignores the
underlying data distribution as it does not consider correlations
among acquired data samples that can help lower such biases
more effectively. In turn, the use of suboptimal DC measures
can elicit performance losses during image reconstruction [43].

Our proposed DEQ-MPI model leverages three technical
novelties to address the limitations of conventional unrolled
methods in the context of MPI reconstruction. First, DEQ-MPI
is not trained to optimize performance within a fixed number
of iterations, but rather upon convergence as inspired by
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recent deep equilibrium models in machine learning [42]. Sec-
ond, DEQ-MPI introduces a novel learned consistency block
based on a convolutional module as opposed to hand-crafted
measures. Third, DEQ-MPI employs a novel initialization
strategy for the learned consistency block to improve model
training. DEQ-MPI introduces the first physics-driven iterative
architecture, the first deep equilibrium model, and the first
learned consistency measure for MPI in the literature. These
technical advances enable DEQ-MPI to outperform state-of-
the-art methods in MPI reconstruction.

III. THEORY

A. MPI Reconstruction
Receive coils in MPI measure time-domain voltage wave-

forms that reflect the magnetization responses of MNPs. The
acquired data can be transformed to frequency domain to
define a linear system of equations [10]:

Ax + n = y (1)

where A ∈ CM×N is the SM, x ∈ RN is the image vector,
n ∈ CM is the noise vector, y ∈ CM are frequency-domain
data, M is the number of frequency components, and N is the
number of voxels in the imaging grid. While M is typically
greater than N , both the SM A and the measurement noise n
carry strong correlations across the frequency dimension [20],
[21]. As such, the inverse problem in Eq. (1) is underdeter-
mined [22], [57]. A common approach to solve Eq. (1) uses
iterative optimization [17], [27]:

arg min
x≥0

R(x) s.t ∥Ax − y∥2 < ϵ, (2)

where R(·) is the regularization operator, ϵ is the error bound
for the ℓ2-based DC measure that can be selected based on
the estimated SNR [17], [20]. Conventional methods adopt
R(x) =

∑
i αiri (x), where ri (x) is a hand-crafted function

such as ∥x∥
2
2, ∥x∥1, or T V (x) [29], [30], [31], [32].

An efficient algorithm is alternating direction method of
multipliers (ADMM) that solves problems of type [17]:

arg min
x,z

g(x) + f (z) s.t. Hx + Gz = c, (3)

by splitting them into simpler sub-problems [58], [59].
To arrive at an ADMM formulation equivalent to Eq. (2),
H =

[
AT , I

]T
∈ R(M+N )×N , G = −I ∈ R(M+N )×(M+N ), c =

0 with z =
[
(z(0))T , (z(1))T ]T and g(x) = 0 can be selected:

arg min
x,z

f (z) s.t. x = z(1), and Ax = z(0), (4)

where z ∈ RM+N is the auxiliary variable vector used for
splitting, and f (z) = χ(z(0)) + R(z(1)) where χ(t) is the
indicator function of the set {t|∥t − y∥2 ≤ ϵ} for the DC
constraint. The following iterations are used to solve Eq. 4:

z(0)
k+1 = 9χ (Axk − d(0)

k , y), (5)

z(1)
k+1 = 9R(xk − d(1)

k ), (6)

xk+1 = M(AT (z(0)
k+1 + d(0)

k ) + z(1)
k+1 + d(1)

k ), (7)

d(0)
k+1 = d(0)

k + z(0)
k+1 − Axk+1, (8)

d(1)
k+1 = d(1)

k + z(1)
k+1 − xk+1, (9)

where k is the iteration index, M=(I + AT A)−1 can be pre-
computed, d=

[
(d(0))T , (d(1))T ]T

∈ RM+N contains Lagrange
multiplier terms for the constraints in Eq. 4. To incorporate
the constraints flexibly, d(0) captures data residuals due to
deviation of Ax from y following DC, and d(1) captures image
residuals due to regularization of x. The proximal mappings
for DC and regularization are given as:

9χ (v, y) = y +

{
v − y if ∥v − y∥2 ≤ ϵ

ϵ
v−y

∥v−y∥
o.w.

, (10)

9R(v) = arg min
x

R(x) +
µ

2
∥x − v∥

2
2. (11)

with µ scaled inversely with step size. Performance is limited
by the capacity of 9χ to describe MPI data distribution and
the capacity of 9R to describe MPI image features.

B. DEQ-MPI

Unrolled methods use iterated projections through a network
operator, xk+1=hθ (xk; y, A), with parameters θ commonly
shared across iterations [24]. After a fixed number of iterations
Ni t , hθ is trained to optimize the quality of xNi t :

arg min
θ

∥∥hθ (. . . hθ (hθ (x0; ·); ·); ·) − x̂r
∥∥

1 , (12)

where x̂r is the ground truth image, and x0 is an initial recon-
struction estimate provided to the network at k=1 (Fig. 1a).
Using large Ni t improves performance by yielding solutions
closer to the convergence point. Yet, while forward passes can
be computed efficiently, backpropagation requires computation
and storage of model gradients across all iterations, rendering
large Ni t prohibitive [24]. Thus, a small Ni t is typically used
that yields non-convergent solutions of limited quality.

Unlike unrolled methods, DEQ-MPI leverages an implicit
mapping x∗=hθ (x∗; y, A) based on a convergent solution x∗,
as inspired by recent deep equilibrium models in machine
learning [42]. In theory, an infinite number of iterations
through hθ might be required to obtain x∗. For efficiency, here
we adopt an empirical convergence criterion to stop iterations
when the relative change in x between consecutive iterations
falls below a small non-zero threshold [42], [60]. Training is
then performed to maximize the quality of x∗ (Fig. 1a):

arg min
θ

∥∥hθ (x∗; y, A) − x̂r
∥∥

1 , (13)

Because a convergent solution is attained, DEQ-MPI can
perform efficient backpropagation via implicit differentiation,
where gradients have to be computed only at the convergent
iteration for x∗ [61]. Since gradient terms for other iterations
are not required, DEQ-MPI can improve performance without
the computational overhead of unrolled methods.

Here we integrate the implicit mapping in DEQ-MPI into
an ADMM algorithm with fixed-point iterations given as: x

d(0)

d(1)


k+1

= hθ

 x
d(0)

d(1)


k

; y, A

 . (14)
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Fig. 1. (a) Conventional unrolled methods versus the deep equilibrium model in DEQ-MPI. Unrolled methods express reconstruction as repeated
projections through a network operator, xk+1=hθ(xk ; y,A) where xk is the image at iteration k, y are acquired data, A is the system matrix, and network
parameters θ are shared across iterations. hθ is trained to optimize performance afterNit iterations whereNit is fixed and small to limit computational
burden, resulting in suboptimal performance. DEQ-MPI instead leverages an implicit mapping x∗ = hθ(x∗; y,A) to compute a convergent solution
based on repeated injection of acquired data. In this case, hθ is trained to maximize image quality upon convergence as opposed to an adhoc Nit .
(b) Proposed DEQ-MPI implementation. DEQ-MPI integrates the implicit mapping into an ADMM algorithm with fixed-point iterations expressed
in Eq. (14) for the image x and Lagrange multipliers d(0),d(1). Each iteration involves projection through a learned regularization block (9RDN),
projection through a learned consistency block (9LC), and reconciliation in a least-squares step to compute the output xk+1.

Mapping through hθ (·) is then operationalized as (Fig. 1b):

z(0)
k+1 = 9LC (Axk − d(0)

k , y), (15)

z(1)
k+1 = 9RDN (xk − d(1)

k ), (16) x
d(0)

d(1)


k+1

=

 M(AT (z(0)
k+1 + d(0)

k ) + z(1)
k+1 + d(1)

k )

d(0)
k + z(0)

k+1 − Axk+1

d(1)
k + z(1)

k+1 − xk+1

 . (17)

A solution for convergent [xT , d(0),T , d(1),T
]
T
∗ is computed

via fixed-point iterations accelerated with Anderson’s method
for efficiency [62]. During these iterations, the proximal
mapping 9RDN (·) is implemented as projection through a
residual dense network (RDN) block, where d(1) captures
image residuals after regularization. The proximal mapping
9LC (·) is implemented as projection through a novel learned
consistency (LC) block, where d(0) captures data residuals
after enforcement of consistency. As deep equilibrium methods
can be sensitive to model initialization, we also introduce
initialization strategies for both blocks. Details of model
architecture and training procedures are discussed below.

1) Model Architecture: RDN block: 9RDN (·) projects its
input through a cascade of residual dense modules [63]. The
input in 2D form v = xk − d(1)

k ∈ RH×W , where d(1)
k captures

image residuals, and H , W are image height and width, passes
through two convolutional layers Z0(·):

u0 = Z0(v). (18)

The feature map u0 ∈ RFR×H×W , where FR is the number of
channels, is then processed with nres residual modules:

um = Zm(um−1), (19)

where Zm(·) is the mth module with nconv convolutional layers
that receive concatenated outputs from previous layers:

um,l = Zm,l([um−1; um,1; um,2; · · · ; um,l−1]), (20)

where um,l ∈ RFS×H×W is the output of l th convolutional
layer, Zm,l with 1 ≤ l ≤ nconv . The output of mth residual
module um is then computed by adding the module input to
the output of a final convolutional layer, Zm,out :

um = Zm,out ([um−1; um,1; · · · ; um,nconv ]) + um−1. (21)

The outputs of all residual modules are fused via a 1 × 1 con-
volutional layer, Z f use:

u f use = Z f use([u1; u2; · · · ; unres ]), (22)

where u f use ∈ RFR×H×W . The output image z(1)
k+1 ∈ RH×W is

computed by a convolutional layer, Zout , with ReLU activation
to integrate a non-negativity constraint for MPI:

z(1)
k+1 = ReLU(Zout (u f use) + v) (23)

LC block: A common approach to implement 9χ (·) in
Eq. (5) is to project onto the ℓ2-ball of acquired data y.
In contrast, DEQ-MPI leverages the LC block based on a
convolutional module to better account for the MPI data
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distribution. LC receives a frequency-domain input v = Axk −

d(0)
k ∈ CM , where d(0)

k captures data residuals, along with y:

z(0)
k+1 = 9LC (v, y), (24)

where z(0)
k+1 are output data, and LC is implemented as:

9LC (v, y) = y +

{
Z(v, y) − y if ∥Z(v, y) − y∥2 ≤ ϵ

ϵ
Z(v,y)−y

∥Z(v,y)−y∥
o.w. (25)

In Eq. (25), Z(·) is a convolutional module with nLC hidden
layers and FLC hidden units per layer. The ϵ-bounded con-
straint prevents the output from diverging away from acquired
data undesirably. Assuming field-free-line (FFL) scans with a
single receive channel, data can be ordered in two dimensions
as y( f, φ), where f is the frequency component and φ is the
FFL angle, and processed with 1D convolutional kernels across
the frequency dimension. For field-free-point (FFP) scans with
multiple receive channels, 2D kernels may instead be used over
frequency and receive channel dimensions.

2) Training Procedures: Model initialization: Multiple con-
vergent outputs x∗ can exist for the implicit mapping in
DEQ-MPI, and the quality of a particular solution depends
on the initialization of model parameters. Here, we propose to
initialize the RDN block based on a plug-and-play approach as
inspired by [51]. To do this, independent identically distributed
(IID) Gaussian noise n1 ∈ RN with standard deviation σ1 is
added onto a training set of MPI images x̂r , to generate images
xn = x̂r +n1. RDN is pre-trained to suppress the additive noise
in xn :

arg min
θRDN

∥∥9RDN (xn) − x̂r
∥∥

1 . (26)

For the LC block, we propose a novel initialization procedure
based on noise-added MPI data. First, noise-free data are
generated using the SM and training MPI images, ŷr = Ax̂r .
IID Gaussian noise is added at σ2 and σ3 to generate yn =

ŷr + n2 and vn = ŷr + n3 with n2,3 ∈ CM , respectively. LC is
pre-trained to mimic a canonical unlearned DC block:

arg min
θLC

∥∥9LC (vn, yn) − 9χ (vn, yn)
∥∥

1 , (27)

where 9χ is implemented as in Eq. (10) based on projections
onto the ℓ2-ball. We observed that pre-training to align the out-
puts of 9LC and 9χ improves performance over pre-training
to strictly align the output of 9LC with ŷr . While RDN and
LC are initialized with the pre-trained weights for 9RDN (·)

and 9LC (·), x is initialized with the least-squares solution
xL S = A†y based on the pseudo-inverse of the SM, and
d(0), d(1) are initialized as zero vectors.

Implicit differentiation: In a forward pass, a convergent
solution of x∗ = hθ (x∗; y, A) is computed via fixed-point iter-
ations in Eq. (14) accelerated using Anderson’s method [62].
An empirical convergence criterion is set as the ℓ2-norm differ-
ence between consecutive iterations falling below 10−4. Here,
a maximum of 25 iterations were observed to be sufficient for
reaching convergence. In a backward pass based on Eq. (13),
the Jacobian of the convergent solution ∂x∗/∂θ is computed
by differentiating the implicit mapping:

∂x∗

∂θ
=

∂hθ (x∗)

∂x∗

∂x∗

∂θ
+

∂hθ (x∗)

∂θ
, (28)

where the arguments y, A are omitted for brevity. The follow-
ing solution for the Jacobian ∂x∗/∂θ is then obtained:

∂x∗

∂θ
=

(
I −

∂hθ (x∗)

∂x∗

)−1
∂hθ (x∗)

∂θ
. (29)

Automatic differentiation tools for backpropagation require
multiplication of the Jacobian with an arbitrary vector b [61]:(

∂x∗

∂θ

)T

b =

(
∂hθ (x∗)

∂θ

)T (
I −

∂hθ (x∗)

∂x∗

)−T

b. (30)

To solve Eq. (30), an intermediate vector can be defined as:

s∗ = (I − ∂hθ (x∗)/∂x∗)
−T b, (31)

where ∂hθ (x∗)/∂x∗ can be computed trivially. Eq. (31) can be
rearranged to compute s via fixed-point iterations [61]:

si+1 = (∂hθ (x∗)/∂x∗)
T si + b. (32)

The expression in Eq. (30) can then be evaluated based on s∗:

(∂x∗/∂θ)T b = (∂hθ (x∗)/∂θ)T s∗. (33)

As such, the implicit mapping enables calculation of the
Jacobian ∂x∗/∂θ in terms of ∂hθ (x∗)/∂x∗ and ∂hθ (x∗)/∂θ .

IV. METHODS

A. Competing Methods

DEQ-MPI was demonstrated against state-of-the-art meth-
ods based on hand-crafted and learned priors. For each
method, hyperparameters were selected based on peak SNR
(pSNR) performance on a validation set. The number of
inference iterations was selected according to the L-curve
criterion to achieve a favorable trade-off between performance
and computation time [60]. Methods were implemented in
PyTorch on a Tesla V100 GPU. Except DIP, learning-based
models were trained for 200 epochs via the ADAM optimizer
(β1 = 0.9, β2 = 0.999). Code to implement DEQ-MPI is
available at https://github.com/icon-lab/DEQ-MPI.

DEQ-MPI: Architectural parameters were taken as nres =

4, FR = 12, nconv = 12 for the RDN block, nLC = 1, FLC =

8 for the LC block. Cross-validated parameters included a
learning rate of 10−3, 25 inference iterations. ϵ =

√
M for

data consistency, and σ1 = 0.1, σ2 = 0.05, σ3 = 0.02 for
model initialization were used.

ℓ1-ADMM, TV-ADMM, Hyb-ADMM: Three ADMM-based
methods were implemented with ℓ1, TV, and a hybrid ℓ1+TV
regularizer in the image domain, respectively [17]. For each
variant and each measurement SNR level, µ was selected
to ensure convergence. µ = 250 for the ℓ1, µ = 50 for
the TV, and µ = 10 for the hybrid variant were used.
For the hybrid variant, αT V = 1 − α1 was prescribed, and
cross-validated values were α1 = 0.1 for SNR<20, α1 =

0.8 for 20≤SNR<30, α1 = 0.9 for 30≤SNR. Cross-validated
number of iterations were 200 for the ℓ1, and 100 for the TV
and hybrid variants. ϵ =

√
M was used.

ℓ2-ART : Algebraic reconstruction technique (ART), i.e. the
Kaczmarz method, with a Tikhonov regularizer was imple-
mented [29]. Cross-validated parameters included 10 inference
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Fig. 2. (a) Open-sided ASELSAN FFL scanner. (b) A cylindrical phantom
with two parallel tubes was filled with Perimag MNPs at a dilution of 1:20.
(c) A Y-shape phantom was filled with Perimag at a dilution of 1:100 and
contained a central air bubble.

iterations, and a regularization weight of λ = 10 for SNR<15,
λ = 1 for 15≤SNR<35, λ = 0.1 for 35≤SNR.

DIP: The DIP method based on an untrained network
was implemented as described in [38], albeit a mean-square
error loss was adopted as it was observed to yield higher
performance on the analyzed data. Inference was performed
with the ADAM optimizer. Cross-validated parameters were
10−3 learning rate and 20000 inference iterations.

PP-MPI: The PP-MPI method based on a denoising prior
was implemented [40]. The network architecture and loss func-
tion were adopted from [40]. Cross-validated parameters were
10−3 learning rate, additive noise with a standard deviation of
0.1, and 150 inference iterations.

B. MPI Phantoms
Vessel phantoms are commonly used in demonstrating MPI

reconstructions. Here, we generated simulated vessel phan-
toms based on time-of-flight magnetic resonance angiograms
(MRA) [40]. MRA images from 95 healthy subjects in the
ITKTubeTK dataset were used [64]. Data were split into non-
overlapping training, validation, test sets of 77, 9, 9 subjects,
respectively. 10 × 26×52 volumetric patches were randomly
cropped, followed by a maximum-intensity projection (MIP)
along the first dimension, and downsampling in other dimen-
sions onto 13 × 26 images. The maximum pixel intensity in
each image was randomly scaled to a number between 0.5 and
1.5. A total of 33692 training, 3377 validation and 3730 test
images were obtained. Vessel phantoms were also generated
at a larger grid size of 26×52 following the same procedures,
with the difference of starting from 10 × 52×104 volumetric
patches.

We also generated simulated torus-shaped phantoms to
systematically assess the resolvability of fine-grained image
features. Three separate phantoms were generated with 4-
mm tube diameter and 1, 2, or 3-mm inner torus diameters,
corresponding to outer torus diameters of 5, 6, or 7 mm,
respectively. The torus contained MNPs while the background
was void. A continuous torus model was initially sampled
at 0.1-mm resolution and then downsampled onto 1-mm
resolution, resulting in 26 × 52 images. Noise was added
to attain 15 dB measurement SNR. Multiple images were
generated from each phantom by using 100 independent noise
realizations.

For the experiments, two different phantoms were used
(Fig. 2b,c). The first included two parallel cylindrical tubes

Fig. 3. Comparison of DEQ-MPI against an end-to-end model that used
an RDN block and omitted DC, an unrolled model with Nit=5 iterations,
and an LC-ablated variant based on an unlearned DC block. Separate
models were trained at measurement SNRs of 5-45 dB, testing was
performed under 35 dB SNR. Average pSNR across the test set is shown
for each model.

filled with Perimag (Micromod GmbH, Germany) MNPs at
a dilution ratio of 1:20. Each tube had 20-mm length, 2-mm
inner radius, 4-mm outer radius, and the tubes were attached
together without a gap, so their center-to-center distance was
8 mm. The second included a 3D-printed ‘Y-shape’ filled with
Perimag MNPs at a dilution ratio of 1:100, and contained a
central air bubble with 1.1-mm radius. Two arms of 10.7-mm
length with 3.5-mm spacing at one end, and one arm of 8.8-
mm length formed the Y-shape. All arms were 3.5-mm wide.

C. Experimental Procedures

Experimental SM and phantom measurements were
performed on the open-sided ASELSAN FFL scanner
(Fig. 2a) [20]. For the SM acquisition, an undiluted Perimag
sample of size 2 × 2×2 mm3 was scanned with 2-mm steps
while the FFL was rotated in the transverse plane over a
26 × 52 mm2 FOV. A DF of 9 mT amplitude and 10 ms
duration per angle was applied at a 10% duty cycle. An SR-
560 pre-amplifier (SRS, MA, USA) amplified the signal at a
gain of 5, filtered it at a frequency cut-off of 10-300 kHz, and
the signal was then sampled at 5 MS/s. Frequency components
around the 2nd -to-11th harmonics were selected over 500 Hz
bandwidths. Whitening and background subtraction were per-
formed based on background measurements. High-SNR rows
were selected (SNR>5). Two separate experimental sessions
were conducted. In a first session, SM and Y-shape phantom
measurements were performed at an SF gradient strength of
0.5 T/m. In a second session that was held two months later,
SM measurements were taken at SF gradient strengths of 0.3,
0.5 and 0.6 T/m, while cylindrical phantom measurements
were taken at 0.5 and 0.6 T/m.

D. Simulation and Analysis Procedures

For experimental phantoms, no ground-truth images exist
to quantify reconstruction performance. Thus, to perform
quantitative assessments in a setup that respects system non-
idealities, we emulated MPI data by coupling simulated
phantoms with experimental SMs. MPI measurements reflect
a superposition integral between the continuously-varying sys-
tem function and MNP distribution. Assuming that Ac and xc
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Fig. 4. Convergence behaviors of DEQ-MPI, unrolled model, and LC-
ablated variant. Models were trained and tested at 35 dB SNR. Average
pSNR across the test set is shown for each model. The zoom-in window
highlights performance during initial iterations.

denote finely discretized SM and MNP distribution that closely
approximate the underlying continuous variables:

y = Acxc + n. (34)

We do not have access to Ac, but instead calibration scans
capture SM on a discretized grid for a relatively large
MNP sample size, Ameas = AcD where D ∈ Rs2 N×N

is the box-downsampling matrix by a factor of s in two-
dimensions [45]. Given Ameas , one can approximate the sys-
tem function by bicubic upsampling, Ãc = AmeasU where U ∈

RN×s2 N . However, during reconstruction xrec = m(y, Ãc),
this elicits a discrepancy between the underlying SM that gives
rise to the MPI data versus the estimated SM input to the
reconstruction:

xrec = m(Acxc + n, AcDU). (35)

Ignoring this discrepancy can lead to an inverse crime for sim-
ulation studies involving image reconstruction [65]. To avoid
this problem, we generated MPI data by multiplying the simu-
lated phantom with the SM measured during a calibration scan,
i.e., ŷr = Ameas x̂r . We then reconstructed the noise-added data
y = ŷr + n assuming a modified SM, AmeasUD, to mimic the
discrepancy highlighted in Eq. (35).

For training DEQ-MPI, MPI data were generated by cou-
pling simulated vessel phantoms from the training-validation
sets with a single SM from the second experimental session.
Separate models were trained for 13 × 26 and 26 × 52 phan-
toms, using the SM at SF gradient strength of 0.3, 0.5 or
0.6 T/m. To quantify model performance, simulated phantoms
from the test set were coupled with the measured SMs from
both experimental sessions. The DEQ-MPI models trained
on simulated phantoms were also tested on experimental
phantoms. During training and testing with 26×52 phantoms,
the measured SMs were upsampled by a factor of 2 via bicubic
interpolation to have 1-mm/pixel resolution.

To describe the noise level in the generated MPI data, the
measurement SNR was computed as:

SN R(y) = 20 log10
(
∥ŷr∥2/∥y − ŷr∥2

)
, (36)

where ŷr and y are noise-free and noisy data. To assess
reconstruction performance for simulated phantoms, pSNR

TABLE I
SIMULATED VESSEL PHANTOMS (13 × 26) RECONSTRUCTED AT

VARYING MEASUREMENT SNRS. AN SM AT 0.5 T/M SF GRADIENT

WAS USED IN TRAINING AND TESTING. PSNR (DB) / SSIM (%) ARE

REPORTED AS MEAN±STD. ACROSS THE TEST SET. BOLDFACE

MARKS THE TOP-PERFORMING METHOD

TABLE II
PSNR (DB) / SSIM (%) OF THE SIMULATED VESSEL PHANTOMS

(13 × 26) RECONSTRUCTED AT VARYING MEASUREMENT SNRS. THE

SM AT 0.5 T/M WAS USED IN TRAINING, AND THE SM AT 0.6 T/M WAS

USED IN TESTING

and structural similarity (SSIM) were computed:

pSN R(x) = 20 log10

(√
N∥x̂r∥∞/∥x − x̂r∥2

)
, (37)

SSI M(x) =
(2µxµx̂r + c1)(2σx x̂r + c2)

(µ2
x + µ2

x̂r
+ c1)(σ 2

x + σ 2
x̂r

+ c2)
, (38)

where x is the reconstructed image, x̂r is the ground truth,
µ, σ 2 denote image mean and variance, σx x̂r is the covari-
ance of x and x̂r , c1,2 are scalars that prevent division
by zero [66].

V. RESULTS

A. Ablation Studies

We conducted a set of ablation studies to assess the value
of the individual design elements in DEQ-MPI. The abla-
tion studies were conducted using 13 × 26 simulated vessel
phantoms and measured SMs. To assess the value of physics-
driven learning, an end-to-end model was built where an RDN
block without DC was trained to directly map the least-squares
solution onto ground-truth images. To assess the value of deep
equilibrium modeling, an unrolled model with conventional
unlearned DC block was built with Ni t = 5 iterations
(selected via cross validation). To assess the value of learned
consistency, an LC-ablated variant of DEQ-MPI was built with
a conventional unlearned DC block. Training was performed
at measurement SNRs of 5-45 dB, and testing was performed

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on February 09,2024 at 11:13:26 UTC from IEEE Xplore.  Restrictions apply. 



328 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 43, NO. 1, JANUARY 2024

Fig. 5. Reconstructions of three simulated vessel phantoms (13×26) and
respective error maps (see colorbar) are shown for competing methods,
along with the reference images. A measurement SNR of 35 dB was
used. The SM at 0.5 T/m SF gradient was used for training, and the SM
at 0.6 T/m was used for testing.

Fig. 6. Reconstructions of a simulated vessel phantom (13 × 26) at
SNR=15-35 dB and respective error maps are shown for competing
methods, along with the reference image. The SM at 0.5 T/m was used
for training, and the SM at 0.6 T/m was used for testing.

under 35 dB SNR. For brevity, pSNR assessments are reported,
while the same conclusions are valid based on SSIM. DEQ-
MPI achieves the highest performance (Fig. 3), with pSNR
improvement of 2.1 dB over the end-to-end, 3.4 dB over
the unrolled, and 0.9 dB over the LC-ablated model across
training SNRs. The only exception is at SNR=5 dB where
the LC-ablated variant yields a moderately higher pSNR, best
attributed to the relatively low training SNR that mismatches
the test SNR limiting the performance of the LC block.

We also examined the convergence behaviors of the iterative
models, when the training and test SNRs were both 35 dB
(Fig. 4). The non-iterative end-to-end model was not consid-
ered. The unrolled model begins to suffer dramatically when
the number of iterations exceeds Ni t assumed during training,
and the LC-ablated variant has relatively slow convergence to
a suboptimal performance level. In contrast, DEQ-MPI shows
fast convergence where it exceeds the performance of the
unrolled model beyond Ni t = 5.

Next, we assessed the importance of the proposed initializa-
tions for the RDN and LC blocks in DEQ-MPI. Accordingly,
a variant based on a randomly initialized RDN, a variant
based on a randomly initialized LC, and a variant with
randomly initialized RDN and LC were built. To demonstrate
the proposed LC initialization, an additional variant with LC
pre-trained to estimate noise-free data was also built. The
training and test SNRs matched (35 dB). We find that the
average pSNR is 37.6 dB for DEQ-MPI, 29.9 dB when RDN is
randomly initialized, 20.2 dB when LC is randomly initialized,
20.1 dB when both RDN and LC are randomly initialized,
and 29.9 dB with LC pre-trained to estimate noise-free data.

TABLE III
PSNR (DB) / SSIM (%) OF THE SIMULATED VESSEL PHANTOMS

(26 × 52) RECONSTRUCTED AT VARYING MEASUREMENT SNRS. THE

UPSAMPLED SM AT 0.5 T/M WAS USED IN TRAINING, AND THE

UPSAMPLED SM AT 0.6 T/M WAS USED IN TESTING

Fig. 7. Reconstructions of three simulated vessel phantoms (26 × 52)
and respective error maps are shown for competing methods, along with
the reference images. A measurement SNR of 35 dB was used. The
upsampled SM at 0.5 T/m was used for training, and the upsampled SM
at 0.6 T/m was used for testing.

TABLE IV
PSNR (DB) / SSIM (%) OF THE SIMULATED TORUS-SHAPED

PHANTOMS (26 × 52) RECONSTRUCTED AT SNR = 15 DB.
ID DENOTES INNER TORUS DIAMETER. THE UPSAMPLED SM AT

0.5 T/M WAS USED IN TRAINING, AND THE UPSAMPLED SM AT

0.6 T/M WAS USED IN TESTING

These results indicate that the proposed model initializations
contribute substantially to reconstruction performance.

B. Simulated Phantoms

DEQ-MPI was first demonstrated against traditional
(ℓ1-ADMM, TV-ADMM, Hyb-ADMM, ℓ2-ART) and
learning-based methods (DIP, PP-MPI) via quantitative
assessments on 13 × 26 simulated vessel phantoms. pSNR
and SSIM were computed across the test set for variable
measurement SNRs, with training and test sets having
matching SNR for each case for DEQ-MPI. When the same
SM was used for both training and testing (the SM at
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Fig. 8. Reconstructions of three torus-shaped phantoms (26 × 52) and
respective error maps with inner torus diameters of ID=1-3 mm are shown
for competing methods, along with the reference images. A measurement
SNR of 15 dB was used. The upsampled SM at 0.5 T/m SF gradient was
used for training, and the upsampled SM at 0.6 T/m was used for testing.

0.5 T/m SF gradient from the second session), DEQ-MPI
outperforms the top-contending traditional method by 2.8 dB
pSNR / 6.8% SSIM, and the top-contending learning-based
method by 1.7 dB pSNR / 4.5% SSIM (Table I). When the
SM differed across training-test sets (the SMs at 0.5 versus
0.6 T/m SF gradient), DEQ-MPI again outperforms the
top-contending traditional method by 2.5 dB pSNR / 6.2%
SSIM, and the top-contending learning-based method by
1.3 dB pSNR / 3.7% SSIM (Table II). For each competing
method, performance levels are comparable across Tables I-II
because both cases utilized the same underlying phantoms
in the test set and the same SNR levels. Note, however, that
this does not imply that the SMs at 0.5 and 0.6 T/m are
interchangeable, since reconstructing the data measured with
the SM at 0.5 T/m using the SM at 0.6 T/m would result in
substantial performance loss (e.g. 15.5 dB pSNR / 7.3% SSIM
loss for Hyb-ADMM).

Representative reconstructions and the respective error maps
from competing methods under 35 dB SNR are displayed in
Fig. 5 for the case with different SMs across the training-
test sets. ℓ1-ADMM yields a grainy image with residual noise
and background signal; TV-ADMM, Hyb-ADMM, and ℓ2-
ART suffer from spatial blurring; and DIP can suffer from
noise amplification. While PP-MPI yields relatively higher
performance, it shows elevated errors in regions of low signal
near the upper and lower right corners, where the experimental
SM has limited sensitivity due to the limits of receive coil
coverage. In contrast, DEQ-MPI yields superior performance
with lower errors than competing methods. Reconstructions for
varying measurement SNRs for the case with different SMs
across the training-test sets are shown in Fig. 6. As expected,
performance improves for all methods as measurement SNR
increases. Among competing methods, ℓ1-ADMM and partic-
ularly DIP that are relatively amenable to noise amplification
show limited performance towards lower SNR levels. Overall,
DEQ-MPI produces high image quality with lower artifacts
and noise than competing methods.

Demonstrations were also performed on simulated vessel
phantoms at a larger grid size of 26 × 52. To account for
the larger grid size, the measured SMs were upsampled via
bicubic interpolation to 1 mm/pixel resolution. Performance
was quantified for variable measurement SNRs, while the
SMs differed between the training and test sets. DEQ-MPI

outperforms the top-contending traditional method by 2.7 dB
pSNR / 5.2% SSIM, and the top-contending learning-based
method by 0.9 dB pSNR / 2.0% SSIM (Table III). Representa-
tive reconstructions under 35 dB SNR are displayed in Fig. 7.
Among the competing methods, ℓ1-ADMM and DIP show
noise amplification, TV-ADMM and Hyb-ADMM show block
artifacts, and ℓ2-ART shows blurring. In contrast, DEQ-MPI
recovers images with higher spatial acuity and lower errors
than competing methods.

To systematically assess resolvability of fine structure,
DEQ-MPI was demonstrated using 26 × 52 simulated torus-
shaped phantoms. Separate phantoms were generated with an
MNP-free torus diameter gradually reduced from 3-mm to
1-mm. Performance was quantified for 15 dB measurement
SNR and mismatched SMs between the training and test sets.
DEQ-MPI outperforms the top-contending traditional method
by 5.5 dB pSNR while offering similar SSIM, and the top-
contending learning-based method by 2.9 dB pSNR / 2.3%
SSIM (Table IV). Note that the phantoms examined in this
analysis are highly sparse with MNPs located only within
a small torus. pSNR is based on absolute pixel-wise errors
without any local normalization, whereas SSIM is based on
relative window-wise similarities with window-level normal-
ization. As such, pSNR values remain more sensitive to errors
near the torus region, while SSIM values are dominated by the
close match between reconstructed and reference images in
void background regions. Hence, we deduce that pSNR better
reflects the performances of the competing methods in this
case. Representative reconstructed phantom images are shown
in Fig. 8. The torus-shaped phantom was placed off-centered
within the FOV to present a more challenging case for
all methods, as the measured SMs had reduced sensitivity
in the peripheries of the FOV. Among competing methods,
TV-ADMM and Hyb-ADMM show blocking artifacts, ℓ2-
ART shows blurring, and DIP shows pixel artifacts due to
noise amplification that limit spatial acuity. Although ℓ1-
ADMM yields visually sharp reconstructions, close inspection
of reconstructed images reveals that it suffers from amplitude
errors due to undershooting or overshooting of pixel inten-
sities. Meanwhile, PP-MPI yields relatively lower artifacts,
but it shows geometric distortions in the recovered torus,
particularly visible at larger inner diameters. In comparison,
DEQ-MPI recovers the torus shape with minimal artifacts and
distortions, and successfully resolves the reduced intensity in
the MNP-free inner region for inner torus diameter as low as
1 mm.

C. Experimental Phantoms
Next, DEQ-MPI was demonstrated on two experimental

phantoms. Due to lack of ground-truth images in experimental
settings, assessments were performed qualitatively via visual
inspection [20], [32]. DEQ-MPI was trained using emulated
MPI data from simulated phantoms at an assumed SNR level,
whereas testing was performed on experimental MPI data at
SNR≈20 dB (estimated based on multiple signal and back-
ground measurements). To assess reliability against SNR and
SM mismatches between the training-test sets, reconstructions
of measurements at 0.5 and 0.6 T/m SF gradients were
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Fig. 9. Reconstructions of the experimental cylindrical phantom with DEQ-MPI trained at SNR levels in 5-40 dB. (a) Approximate geometry of the
phantom. Scale bar indicates 10 mm. (b) Reconstructions at (top-row) 0.5 T/m and (bottom-row) 0.6 T/m SF gradients. The SM at 0.5 T/m was
used for training DEQ-MPI. Testing utilized the SM corresponding to each case. Red box denotes the case where the training and testing SNRs
match.

Fig. 10. Reconstructions of the experimental cylindrical phantom with
DEQ-MPI trained at SF gradients of 0.3, 0.5, or 0.6 T/m. In all cases,
testing utilized the SM at 0.5 T/m.

obtained separately using models independently trained for
SNRs in 5-40 dB (Fig. 9). Training was performed using
the SM at 0.5 T/m, whereas testing was performed using
the SM corresponding to each SF gradient. In general, DEQ-
MPI shows reliability against moderate deviations between the
training and test SNRs, albeit residual reconstruction errors
occur when the difference between the two SNRs reaches
towards 20 dB. In particular, residual artifacts become apparent
in reconstructed images when the model trained at 40 dB SNR
is tested at 20 dB SNR. This finding is best attributed to
the large mismatch between the training and test SNR levels,
which can limit generalization and cause over-sensitivity to
noise. To further assess reliability against SM mismatches
between the training-test sets, separate reconstructions of the
cylindrical phantom measurement at 0.5 T/m SF gradient
were obtained using models trained separately with SMs at
SF gradients of 0.3, 0.5 or 0.6 T/m (Fig. 10). We observe
minimal differences in reconstructions for models trained at
0.3-0.6 T/m, suggesting that DEQ-MPI demonstrates a degree
of robustness against SM deviations.

Reconstructions of the cylindrical phantom were then com-
pared for the competing methods at 0.5 and 0.6 T/m (Fig. 11).
Again, training for DEQ-MPI was performed using the SM
at 0.5 T/m, whereas testing was performed using the SM
corresponding to each case. The other methods utilized the
SM corresponding to each case, as well. ℓ1-ADMM and DIP
yield over-sparsified images with artefactual bright/dark pixels
due to amplified noise; TV-ADMM and Hyb-ADMM yield
over-smoothed images with block artifacts; and ℓ2-ART shows
blurring and residual noise. While PP-MPI mostly avoids these
issues, it reconstructs cylindrical tubes at an incorrect geomet-
ric orientation compared to remaining methods. In contrast,
DEQ-MPI yields lower artifacts/noise and higher resemblance
to the designed phantom than competing methods.

Images of the Y-shape phantom were also reconstructed
(Fig. 12). The SM at 0.5 T/m from the second experimental
session was used for training DEQ-MPI, whereas testing was
performed using the SM at 0.5 T/m from the first session.
A recalibration was performed on the FFL system between
the two sessions that were 2 months apart, so the resultant

TABLE V
INFERENCE ITERATIONS (NUMBER OF ITERATIONS) AND

RECONSTRUCTION TIMES (MILLISECONDS) FOR A SINGLE 13 × 26
MPI IMAGE

SMs differed. The measured SM (sampled at 2-mm/pixel)
was used to reconstruct images at the original 13 × 26 grid
size, and bicubic interpolated version of the SM (upsampled
to 1-mm/pixel) was used to reconstruct images at 26×52 grid
size [20], [67]. ℓ1-ADMM and DIP suffer from artefactual
pixels due to noise amplification; TV-ADMM, Hyb-ADMM,
and ℓ2-ART suffer from spatial blurring; and PP-MPI does
not faithfully capture the geometry of the phantom including
the central air bubble. In comparison, DEQ-MPI offers high
quality reconstructions in both the original and upsampled
resolutions.

D. Reconstruction Time

The number of inference iterations and reconstruction times
for all competing methods are listed in Table V. Reconstruc-
tion performance as a function of run time is plotted in Fig. 13.
Among competing methods, ℓ2-ART and particularly DIP
require prolonged inference, and ADMM variants with TV
regularization (TV-ADMM, Hyb-ADMM) and PP-MPI have
moderate run times. In comparison, DEQ-MPI yields efficient
reconstructions with relatively fast convergence and run times
competitive with ℓ1-ADMM.

VI. DISCUSSION

DEQ-MPI integrates an implicit mapping into an opti-
mization algorithm for performance and efficiency in MPI
reconstruction. The implicit mapping is based on learned
regularization and DC blocks to better conform to the data
distribution, and accelerated fixed-point iterations are used
to rapidly compute a convergent solution. Demonstrations on
simulated and experimental phantoms indicate that DEQ-MPI
trained using a single acquired SM outperforms previous
traditional and learning-based methods. As a physics-driven
method, DEQ-MPI shows reliability against deviations in the
SM and in SNR levels between the training and test sets.
While reconstruction errors occur when the training SNR is
dramatically higher than the test SNR, this scenario can be
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Fig. 11. Reconstructions of experimental cylindrical phantom with competing methods. (a) Approximate geometry of the phantom. (b) Reconstructed
images at (top-row) 0.5 T/m and (bottom-row) 0.6 T/m SF gradients. The SM at 0.5 T/m was used for training DEQ-MPI. Testing utilized the SM
corresponding to each case.

Fig. 12. Reconstructions of experimental Y-shape phantom with competing methods. (a) Approximate geometry of the phantom. (b) Reconstructed
images based on (top-row) the original 13 × 26 SM and (bottom-row) the upsampled 26 × 52 SM. The SM at 0.5 T/m from the second session
was used for training DEQ-MPI. The SM at 0.5 T/m from the first session was used for testing.

Fig. 13. Performance of competing methods as a function of inference
time. ℓ2-ART and DIP that have markedly prolonged run times are
omitted. Average pSNR across the test set is shown for each method.

avoided by performing a rough SNR estimation on given
data.

MPI reconstruction involves the solution of an
ill-conditioned inverse problem due to significant measurement
correlations and high noise levels. Ill-conditioning can notably
degrade image quality, and in turn restrict the use of MNPs
with suboptimal characteristics (e.g., spatially-broad PSF,
weak responses at high harmonic frequency components).
Physics-driven deep learning methods integrate data-driven
image priors with physical constraints of the imaging
system to effectively regularize reconstructions, while
maintaining reasonable robustness against changes in the
system constraints [41], [56]. By enhancing image quality
over traditional reconstructions, physics-driven methods such
as DEQ-MPI can enable high-performance imaging even
when utilizing MNPs with less desirable characteristics.
Future studies are warranted to systematically assess the
utility of DEQ-MPI in enabling use of a broader variety of
MNPs in MPI.

The SMs acquired on our in-house MPI scanner had a res-
olution of 2 mm/pixel given limitations related to the SF gra-
dient strength and MNP characteristics, as typically encoun-
tered in MPI systems [12]. For assessments at 1-mm/pixel
resolution, the measured SMs were upsampled via bicubic
interpolation and 26×52 images were reconstructed. Analyses

on simulated vessel and torus-shaped phantoms suggest that
DEQ-MPI can faithfully reconstruct features at spatial scales
down to 1 mm. Yet, the ability to resolve fine features depends
on various critical factors beyond the reconstruction method,
including the compatibility between the upsampled SM and
the actual high-resolution SM, distribution of the singular
values of the SM, measurement SNR, and position of the MNP
sample within the FOV. Thus, future studies are warranted to
experimentally investigate the ability of DEQ-MPI in resolving
features below 1-mm scale by measuring higher-resolution
SMs, and the benefits of DEQ-MPI over competing methods
in recovering images of larger sizes.

Traditional methods can show high sensitivity to weights
for hand-crafted regularizers [50]. MPI studies have reported
that ideal weights can vary drastically across scans, sug-
gesting that parameter tuning on each test image might be
useful [20], [32]. Such optimization is infeasible in pre-clinical
or clinical scenarios as no a priori knowledge would be
available on the MNP distribution. To address this challenge,
here we optimized model hyperparameters on a validation
set, and the selected values were used thereafter in the
test set. Learning-based methods were observed to be more
forgiving against suboptimal parameters (results not shown),
so they might alleviate the need for exhaustive parameter
tuning.

While performant reconstructions have been reported based
on untrained networks in MPI literature [38], [39], here
we observed relatively limited performance with DIP. Note
that DIP directly minimizes a conventional DC loss between
recovered and acquired test data. This loss function intrin-
sically assumes that data contain negligible noise compared
to the signal. Because this assumption is violated for mod-
erate to low SNR levels as considered in the current study,
DIP can perform suboptimally in relatively limited SNR
regimes.

Few recent studies have considered deep equilibrium models
for undersampled MRI reconstruction [51], [52], [54], and
low-dose CT reconstruction [53]. In addition to address-
ing a distinct problem in MPI, our proposed approach is
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unique in the following aspects: (1) Instead of integrat-
ing an implicit mapping into a projection-onto-convex-sets
algorithm as in [52] or into a proximal gradient algorithm
as in [54], DEQ-MPI leverages an ADMM algorithm that
can offer improved reliability for non-convex or non-smooth
problems. (2) While [51] uses ADMM with Anderson accel-
eration similar to the proposed method, the two methods
differ in their variable splitting procedures for ADMM. Ref-
erence [51] uses a single-component auxiliary variable dedi-
cated to the proximal mapping for regularization. In contrast,
DEQ-MPI leverages a two-component auxiliary variable with
sub-components dedicated to the proximal mappings for data
consistency and regularization, respectively. In initial phases of
the study, we observed that this splitting procedure facilitates
implementation of a constrained ADMM formulation based
on a learned consistency measure. (3) Unlike [53] that uses
Jacobian-free backpropagation, DEQ-MPI employs implicit
differentiation for model training. (4) [51], [52], [53], [54]
all employ a conventional unlearned DC block. In contrast,
DEQ-MPI leverages a learned consistency (LC) block to
better conform to the data distribution. (5) While [52], [53]
do not report non-standard initialization and [51], [54] only
consider initialization for the regularization block, DEQ-MPI
employs dedicated initialization methods for its regulariza-
tion and LC blocks that improve model performance. (6)
Lastly, [51], [52], [54] use a residual connection between
the input and output layers of a convolutional architecture,
and [53] uses four residual convolutional blocks with a
residual connection between the input and output of each
block. Instead, DEQ-MPI adopts multiple residual connec-
tions densely distributed across layers in a convolutional
architecture that have been reported to offer performance
benefits [63].

Several developments can be considered to improve DEQ-
MPI. First, we generated training data using MRA images
under the assumption that they have similar features to
MPI images. When the imaged anatomy is non-vascular,
this approach might yield suboptimal performance. While
public datasets of MPI images are rare, DEQ-MPI can in
principle be enhanced by training the model on large amounts
of experimental data to better capture application-specific
image features. Second, MPI data include a non-stationary
background that was separately measured and subtracted from
acquired data prior to reconstruction. The need for background
measurements can be avoided by extending DEQ-MPI to
separately reconstruct the foreground and background signals.
To do this, a dictionary-based approach can be adopted to
estimate the background signal from acquired data [68]. Third,
DEQ-MPI was trained based on convolutional networks and
a pixel-wise loss term. Performance improvements might be
achieved with attention-based architectures to capture con-
textual features [69], and diffusion processes to increase
reliability in model training [70]. Fourth, DEQ-MPI was
demonstrated for reconstructing experimental phantoms at 2×

higher spatial resolution by bicubic SM upsampling. Visual
acuity of resultant MPI images scales up well, suggesting
that upsampled SMs are reasonably accurate. To enhance
accuracy, learning-based super-resolution methods can also be

adopted [44], [45]. It remains an important future work to
evaluate the utility of upsampling methods via comparisons
against SMs acquired at high resolution. Fifth, DEQ-MPI
was trained via common backpropagation, where the Jaco-
bian of the convergent solution was computed via implicit
differentiation. A powerful alternative is the Jacobian-free
backpropagation framework that improves training efficiency
and numerical stability [71], [72], which can be utilized in
DEQ-MPI to lower training costs and enhance reconstruction
performance. Finally, imaging over large FOVs can be attained
by performing patch-wise reconstructions with DEQ-MPI and
fusing the multi-patch outputs [73].

VII. CONCLUSION

Here, we introduced a novel deep equilibrium reconstruction
for MPI with learned consistency. For improved perfor-
mance and reliability, DEQ-MPI follows a physics-driven
approach that integrates network blocks that regularize the
image and enforce DC into an iterative algorithm. Simu-
lated and experimental demonstrations indicate clear perfor-
mance benefits and competitive efficiency over both traditional
and recent learning-based methods. Thus, DEQ-MPI holds
great promise for fast, high-fidelity image reconstruction
in MPI.
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