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A B S T R A C T

Magnetic resonance imaging (MRI) is an essential diagnostic tool that suffers from prolonged scan times.
Reconstruction methods can alleviate this limitation by recovering clinically usable images from accelerated
acquisitions. In particular, learning-based methods promise performance leaps by employing deep neural
networks as data-driven priors. A powerful approach uses scan-specific (SS) priors that leverage information
regarding the underlying physical signal model for reconstruction. SS priors are learned on each individual test
scan without the need for a training dataset, albeit they suffer from computationally burdening inference with
nonlinear networks. An alternative approach uses scan-general (SG) priors that instead leverage information
regarding the latent features of MRI images for reconstruction. SG priors are frozen at test time for efficiency,
albeit they require learning from a large training dataset. Here, we introduce a novel parallel-stream fusion
model (PSFNet) that synergistically fuses SS and SG priors for performant MRI reconstruction in low-data
regimes, while maintaining competitive inference times to SG methods. PSFNet implements its SG prior
based on a nonlinear network, yet it forms its SS prior based on a linear network to maintain efficiency.
A pervasive framework for combining multiple priors in MRI reconstruction is algorithmic unrolling that
uses serially alternated projections, causing error propagation under low-data regimes. To alleviate error
propagation, PSFNet combines its SS and SG priors via a novel parallel-stream architecture with learnable
fusion parameters. Demonstrations are performed on multi-coil brain MRI for varying amounts of training
data. PSFNet outperforms SG methods in low-data regimes, and surpasses SS methods with few tens of training
samples. On average across tasks, PSFNet achieves 3.1 dB higher PSNR, 2.8% higher SSIM, and 0.3 × lower
RMSE than baselines. Furthermore, in both supervised and unsupervised setups, PSFNet requires an order
of magnitude lower samples compared to SG methods, and enables an order of magnitude faster inference
compared to SS methods. Thus, the proposed model improves deep MRI reconstruction with elevated learning
and computational efficiency.
1. Introduction

The unparalleled soft-tissue contrast and non-invasiveness of MRI
render it a preferred modality in many diagnostic applications [1,2],
and downstream imaging tasks such as classification [3] and segmen-
tation [4,5]. However, the adverse effects of low spin polarization at

∗ Corresponding author at: Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey.
E-mail address: cukur@ee.bilkent.edu.tr (T. Çukur).

1 Equal contribution.

mainstream field strengths on the signal-to-noise ratio make it slower
against alternate modalities such as CT [6]. Since long scan durations
inevitably constrain clinical utility, there is an ever-growing interest in
accelerated MRI methods to improve scan efficiency. Accelerated MRI
involves an ill-posed inverse problem with the aim of mapping under-
sampled acquisitions in k-space to high-quality images corresponding
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to fully-sampled acquisitions. The traditional framework for solving
this problem relies on parallel imaging (PI) capabilities of receive coil
arrays [7,8], in conjunction with hand-constructed MRI priors [9,10].
A joint objective is iteratively optimized comprising a data-consistency
(DC) term based on the physical signal model, and a regularization
term that enforces the MRI prior [9]. The physical model constrains
reconstructed data to be consistent with acquired data while consid-
ering coil sensitivities and undersampling patterns [11]. Meanwhile,
the regularization term, often based on a linear transform where data
are assumed to be compressible [9]. Traditional methods typically
suffer from high computational burden and suboptimal performance
as the distribution of actual MRI data diverges from the distribution
parametrized by the hand-constructed MRI prior.

The deep learning (DL) framework based on data-driven priors has
recently been adopted to address the limitations of traditional meth-
ods [12–16]. DL methods can be broadly categorized into two classes
depending on whether they employ scan-specific (SS) or scan-general
(SG) priors. SS priors promise improved generalization performance by
leveraging the physical signal model to learn a reconstruction specific
to each test scan, i.e. undersampled k-space data from a given test
subject. Similar to autocalibration procedures in PI, a first group of
SS methods perform training using a fully-sampled calibration region
and then exercise learned dependencies in broader k-space [15–18].
For instance, [19] proposed a calibration consistency framework to
derive scan-specific features from calibration data in central k-space,
and integrate these features into the reconstruction model. [20] pro-
posed a multiple-weighting approach to improve the performance of
SS priors for high acceleration rates and small calibration regions in
k-space. [21] proposed a Bayesian framework and nonlinear inversion
to enable the capture of SS priors in the absence of a calibration region.
Following the deep image prior technique, a second group of methods
use unconditional CNNs as a native MRI prior [22–24]. These CNNs
map low-dimensional latent variables onto MR images, and latents and
network weights are optimized to ensure consistency to acquired data
based on the physical signal model. For example, [25] introduced a
generative neural network whose weights were optimized during infer-
ence. [26] performed reconstruction via an implicit neural network that
mapped low-dimensional latent variables onto MR images. Typically,
SS priors are learned on each subject at test time to avoid the need
for separate training datasets and offer enhanced reliability in handling
atypical anatomy. Nevertheless, they suffer from long inference times
that can be prohibitive particularly when deep networks have to be
optimized [27–29].

As an alternative DL approach, SG priors can offer more efficient
inference by learning latent features of MR images from a dedicated
dataset at training time and keeping the learned features frozen at test
time [12–14,30–38]. Numerous successful architectures have been re-
ported including perceptrons [39], basic convolutional neural networks
(CNNs) [40–43], residual or recurrent CNNs [34,44–46], generative ad-
versarial networks (GANs) [47–51], transformers [22,52] and diffusion
models [53,54]. Physics-guided unrolled methods have received partic-
ular attention that combine the physical signal model as in traditional
frameworks and regularization via a deep network serving as an SG
prior [13,32,55–57]. Reconstruction is achieved via serially alternated
projections through the physical signal model and the SG prior [43,45,
58–60]. For instance, [36] combined a convolutional recurrent neural
network with an optimization algorithm that included the physical
signal model. [61] instead used a hybrid deep network composed of
convolutional and transformer blocks to improve the capture of long-
range context. [62] inserted a quality-control module into an unrolled
architecture to guide the network regarding the success of the recon-
struction process. [63] introduced a noise-parameter in each cascade of
an unrolled architecture to help improve reconstruction performance
by adapting to varying noise levels. These SG priors are reported to
be performant when trained on relatively large datasets, containing
2

on the order of several thousand image samples or more [33,64,65].
Meeting this data demand can require scanning up to several hundreds
of subjects. Unfortunately, extensive scanning proves difficult in many
practical scenarios, resulting in training sets that are a few orders of
magnitude smaller in size (e.g., containing several tens of samples).
Under such low-data regimes, the performance of SG priors can be
compromised due to suboptimal training [6,66,67].

To address the drawbacks associated with stand-alone use of SS
or SG priors, here we propose a novel parallel-stream fusion model
(PSFNet) that consolidates SS and SG priors to enable data-efficient
training and computation-efficient inference in deep MRI reconstruc-
tion2. PSFNet leverages an SS stream to perform linear reconstruction
based on the physical signal model, and an SG stream to perform
nonlinear reconstruction based on a deep network. Unlike conventional
unrolled methods based on serial projections that can cause error
accumulation across cascades, PSFNet is based on a parallel stream ar-
chitecture with learnable fusion of SS and SG priors. Fusion parameters
are adapted across cascades and training iterations to emphasize task-
critical information. By integrating SS and SG priors in this manner,
PSFNet aims to benefit from the short inference times of SG priors
and generalization performance of SS priors under low-data regimes.
Through these achievements, PSFNet alleviates the dependency on
large training sets, improving its practicality. Comprehensive exper-
iments on brain MRI datasets are reported to demonstrate PSFNet
under both supervised and unsupervised settings [69–73]. PSFNet is
compared against an unrolled SG method [32], two SS methods [17,
74], and conventional SPIRiT reconstructions [11]. Compared to the
unrolled model, PSFNet lowers training data requirements an order of
magnitude. Compared to SS models, PSFNet offers significantly faster
inference times. Our main contributions are:

• A novel cascaded network architecture is introduced that adap-
tively fuses SS and SG priors across cascades and training itera-
tions to improve learning-based MRI reconstruction in low-data
regimes.

• The SS prior facilitates learning of the SG prior with limited data,
and empowers PSFNet to successfully generalize to out-of-domain
samples.

• The SG prior improves performance by capturing nonlinear resid-
uals, and enhances resilience against suboptimal hyperparameter
selection in the SS component.

• Parallel-stream fusion of SS and SG priors yields robust perfor-
mance with limited training data in both supervised and unsu-
pervised settings.

2. Theory

2.1. Image reconstruction in accelerated MRI

MRI reconstruction is an inverse problem that aims to recover an
image from a respective undersampled acquisition:

𝑀𝐹𝑥 = 𝑦 (1)

where 𝐹 is the Fourier transform, 𝑀 is the sampling mask defining
acquired k-space locations, 𝑥 is the multi-coil image to be reconstructed
and 𝑦 are acquired multi-coil k-space data. To improve problem condi-
tioning, additional prior information regarding the expected distribu-
tion of MR images is incorporated in the form of a regularization term:

̂ = argmin
𝑥

𝜆‖𝑀𝐹𝑥 − 𝑦‖22 + 𝑅(𝑥) (2)

where the first term enforces DC between reconstructed and acquired
k-space data, 𝑅(𝑥) reflects the MRI prior, and 𝜆 controls the balance
between the DC and regularization terms.

2 see [68] for a preliminary version of this work presented at ISMRM 2021.
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The DC term can be implemented by injecting the acquired values
of k-space data into the reconstruction [13]. Thus, mapping through a
DC block is given as:

𝑓𝐷𝐶 (𝑥) = 𝐹−1𝛬𝐹𝑥 + 𝜆
1 + 𝜆

𝐹−1𝑦 (3)

here 𝛬 is a diagonal matrix with diagonal entries set to 1
1+𝜆 at

cquired k-space locations and set to 1 in unacquired locations.
In traditional methods, the regularization term is based on a hand-

onstructed transform domain where data are assumed to have a sparse
epresentation [9]. For improved conformation to the distribution of
RI data, recent frameworks instead adopt deep network models to

apture either SG priors learned from a large MRI database with
undreds of subjects, or SS priors learned from individual test scans.
earning procedures for the two types of priors are discussed below.
SG priors: In MRI, SG priors are typically adopted to suppress

liasing artifacts in the zero-filled reconstruction (i.e., inverse Fourier
ransform) of undersampled k-space acquisitions [32]. A deep network
odel that performs de-aliasing can be learned from a large train-

ng dataset of undersampled and corresponding fully-sampled k-space
cquisitions, and then employed to implement 𝑅(.) in Eq. (2) during
nference. The regularization term based on an SG prior is given as:

𝑆𝐺 (𝑥) = argmin
𝑥

∥ 𝐶𝑆𝐺(𝐹−1𝑦; 𝜃̂𝑆𝐺) − 𝑥 ∥22 (4)

here 𝐶𝑆𝐺 is an image-domain deep network with learned parameters
̂𝑆𝐺. The formulation in Eq. (4) assumes that 𝐶𝑆𝐺 recovers multi-
oil output images provided multi-coil input images. The parameters
𝑆𝐺 for 𝐶𝑆𝐺 can be learned based on a pixel-wise loss between re-
onstructed and ground-truth images. Training is conducted offline
ia an empirical risk minimization approach based on Monte Carlo
ampling [13]:

𝑆𝐺(𝜃𝑆𝐺) =
𝑁
∑

𝑛=1
∥ 𝐶𝑆𝐺(𝐹−1𝑦𝑛; 𝜃𝑆𝐺) − 𝑥̆𝑛 ∥𝑝 (5)

here 𝑁 is the number of training scans, 𝑛 is the training scan in-
ex, ‖.‖𝑝 denotes 𝓁𝑝 norm, 𝑥̆𝑛 is the ground-truth multi-coil image
erived from the fully-sampled acquisition for the 𝑛th scan, and 𝑦𝑛 are
espective undersampled k-space data.

A common approach to build 𝐶𝑆𝐺 is based on unrolled architectures
hat perform cascaded projections through CNN blocks to regularize
he image and DC blocks to ensure conformance to the physical signal
odel [32]. Given a total of 𝐾 cascades with tied CNN parameters

cross cascades, the mapping through the 𝑘th cascade is [13,75,76]:

𝑥𝑟𝑘 = 𝑓𝐷𝐶
(

𝑓𝑆𝐺
(

𝑥𝑟𝑘−1; 𝜃𝑆𝐺
))

(6)

where 𝑥𝑟𝑘 is the image for the 𝑟th scan (that could be a training or
test scan) at the output of the 𝑘th cascade (𝑘 ∈ [1, 2,… , 𝐾]), and
𝑥𝑟0 = 𝐹−1𝑦𝑟 where 𝑦𝑟 are the acquired undersampled data for the 𝑟th
scan. Meanwhile, 𝑓𝑆𝐺 is the CNN block embedded in the 𝑘th cascade
with parameters 𝜃𝑆𝐺.

As the parameters of SG priors are trained offline and then frozen
during inference, deeper network architectures can be used for en-
hanced reconstruction performance along with fast inference. However,
learning deep networks requires substantial training datasets that may
be difficult to collect. Moreover, since SG priors learn aggregate rep-
resentations of MRI data across training subjects, they may show poor
generalization to subject-specific variability in anatomy [22].

SS priors: Unlike SG priors, SS priors are not learned from a
dedicated training dataset but instead they are learned directly for
individual test scans to improve generalization [15]. The SS prior
can also be used to implement 𝑅(.) in Eq. (2) with the respective
regularization term expressed as:

𝑅𝑆𝑆 (𝑥) = argmin ∥ 𝐶𝑆𝑆 (𝐹−1𝑦; 𝜃̂𝑆𝑆 ) − 𝑥 ∥2 (7)
3

𝑥 2 i
where 𝐶𝑆𝑆 is an image-domain network with parameters 𝜃̂𝑆𝑆 . In the
bsence of ground-truth images, the parameters 𝜃𝑞𝑆𝑆 for the 𝑞th test scan
an be learned based on proxy k-space losses between reconstructed
nd acquired undersampled data [27]. Learning is conducted online to
inimize this proxy loss:

𝑆𝑆 (𝜃
𝑞
𝑆𝑆 ) = ‖𝑀𝐹𝐶𝑆𝑆 (𝐹−1𝑦𝑞 ; 𝜃𝑞𝑆𝑆 ) − 𝑦𝑞‖𝑝 (8)

where 𝑦𝑞 are acquired undersampled k-space data for the 𝑞th scan.
An unrolled architecture can be adopted to build 𝐶𝑆𝑆 by performing
cascaded projections through network and DC blocks, resulting in the
following mapping for the 𝑘th cascade:

𝑥𝑞𝑘 = 𝑓𝐷𝐶
(

𝑓𝑆𝑆
(

𝑥𝑞𝑘−1; 𝜃
𝑞
𝑆𝑆

))

(9)

𝑓𝑆𝑆 can be operationalized as a linear or nonlinear network [27,28].
As the parameters of SS priors are learned independently for each
test scan, they promise enhanced generalization to subject-specific
anatomy. However, since training is performed online during inference,
SS priors can introduce substantial computational burden, particularly
when deep nonlinear networks are used that also increase the risk of
overfitting [78].

2.2. PSFNet

Here, we propose to combine SS and SG priors to maintain a
favorable trade-off between generalization performance and computa-
tional efficiency under low-data regimes. In the conventional unrolling
framework, this requires computation of serially alternated projections
through the SS, SG and DC blocks:

𝑥𝑟𝑘 = 𝑓𝐷𝐶
(

𝑓𝑆𝐺
(

𝑓𝑆𝑆
(

𝑥𝑟𝑘−1; 𝜃
𝑟
𝑆𝑆

)

; 𝜃𝑆𝐺
))

(10)

The unrolled architecture with 𝐾 cascades can be learned offline using
the training set. Note that scarcely-trained SG blocks under low-data
regimes can perform suboptimally, introducing residual errors in their
output. In turn, these errors will accumulate across serial projections
to degrade the overall performance.

To address this limitation, here we introduce a novel architecture,
PSFNet, that performs parallel-stream fusion of SS and SG priors as
opposed to the serial combination in conventional unrolled methods.
PSFNet utilizes a nonlinear SG prior for high performance, and a linear
SS prior to enhance generalization without excessive computational
burden. The two priors undergo parallel-stream fusion with learnable
fusion parameters 𝜂 and 𝛾, as displayed in Fig. 1. These parameters
adaptively control the relative weighting of information extracted by
the SG versus SS streams during the course of training in order to
alleviate error accumulation. As such, the mapping through the 𝑘th
cascade in PSFNet is:

𝑥𝑟𝑘 = 𝜂𝑘𝑓𝐷𝐶 (𝑓𝑆𝑆 (𝑥𝑟𝑘−1; 𝜃
𝑟
𝑆𝑆 )) + 𝛾𝑘𝑓𝐷𝐶 (𝑓𝑆𝐺(𝑥𝑟𝑘−1; 𝜃𝑆𝐺)) (11)

In Eq. (11), the learnable fusion parameters for the SS and SG blocks
at the 𝑘th cascade are 𝜂𝑘 and 𝛾𝑘, respectively. To enforce fidelity to
cquired data, DC projections are performed on the outputs of SG and
S blocks.

The parallel-stream topology in PSFNet serves as the architectural
ubstrate for segregating SG and SS priors, where each prior has its own
ranch as shown in Fig. 1. A fundamental distinction between these
riors is the way that their parameters are learned. In PSFNet, learning
s performed via a nested optimization procedure with subproblems
or SG and SS priors. In the outer subproblem, parameters of the SG
rior are learned via optimization across all samples in the training
et, and these parameters are frozen during inference on the test set.
n the inner subproblem, parameters of the SS prior are learned via
ndependent optimization for each individual sample in the training
nd test sets, so these parameters are not frozen during inference. This
ested optimization enables segregation of SG and SS priors, as detailed
n the training and inference procedures described below.



Computers in Biology and Medicine 167 (2023) 107610S.U.H. Dar et al.
Fig. 1. (a) PSFNet comprises a parallel-stream cascade of sub-networks where each sub-network contains (b) a scan-general (SG) block, and (c) a scan-specific (SS) block. The two
parallel blocks are each succeeded by (d) a data-consistency (DC) block, and their outputs are aggregated with learnable fusion weights, 𝜂𝑘 and 𝛾𝑘 where 𝑘 is the cascade index. At
the end of 𝐾 cascades, coil-combination is performed on multi-coil data using sensitivity maps estimated via ESPIRiT [77]. The SG block is implemented as a deep convolutional
neural network (CNN) and the SS block was implemented as a linear projection layer.
𝑥

𝑥

Training : PSFNet involves a training phase to learn model param-
eters for the SG prior as well as its fusion with the SS prior. For
each individual scan in the training set, PSFNet learns a dedicated SS
prior for the given scan. Since learning of a nonlinear SS prior has
substantial computational burden, we adopt a linear SS prior in PSFNet.
In particular, the SS block performs dealiasing via convolution with a
linear kernel [77]:

𝑓𝑆𝑆 (𝑥𝑛𝑘−1; 𝜃
𝑛
𝑆𝑆 ) = 𝐹−1{𝜃𝑛𝑆𝑆 ⊛ 𝐹𝑥𝑛𝑘−1} (12)

where 𝜃𝑛𝑆𝑆 ∈ C(𝑧×𝑧×𝑤×𝑤) with 𝑛 denoting the training scan index, 𝑧
denoting the number of coil elements, and 𝑤 denoting the kernel size
in k-space. The SS blocks contain unlearned Fourier and inverse Fourier
transformation layers as their input and output layers, respectively,
and convolution is computed over the spatial frequency dimensions
in k-space. Meanwhile, the SG prior is implemented as a deep CNN
operating in image domain:

𝑓𝑆𝐺(𝑥𝑛𝑘−1; 𝜃𝑆𝐺) = 𝐶𝑁𝑁(𝑥𝑛𝑘−1) (13)

Across the scans in the training set, the training loss for PSFNet can
then be expressed in constrained form as:

𝑃𝑆𝐹𝑁𝑒𝑡(𝜃𝑆𝐺 , 𝛾𝛾𝛾, 𝜂𝜂𝜂) =
𝑁
∑

𝑛=1
∥ 𝜂𝐾𝑓𝐷𝐶 (𝑓𝑆𝑆 (𝑥𝑛𝐾−1; 𝜃̂

𝑛
𝑆𝑆 ))

+𝛾𝐾𝑓𝐷𝐶 (𝑓𝑆𝐺(𝑥𝑛𝐾−1; 𝜃𝑆𝐺)) − 𝑥̆𝑛 ∥𝑝
s.t. 𝜃̂𝑛𝑆𝑆 = argmin

𝜃𝑛𝑆𝑆

∥ 𝐹−1𝑊 𝑛𝑦𝑛 − 𝑓𝑆𝑆 (𝐹−1𝑊 𝑛𝑦𝑛; 𝜃𝑛𝑆𝑆 ) ∥
2
2 (14)

The constraint in Eq. (14) corresponds to the inner optimization sub-
problem to learn the parameters of the SS prior per individual samples
𝜃̂𝑛𝑆𝑆 . The learned parameters of the SS prior are then used to solve
the outer subproblem for the SG prior across samples in the training
set. Assuming that the linear relationships among neighboring spatial
frequencies are similarly distributed across k-space [77], 𝜃̂𝑛𝑆𝑆 is learned
by solving a self-regression problem on the subset of fully-sampled data
in central k-space, where 𝑊 𝑛 is a mask operator that selects data within
this calibration region.

Note that, unlike deep reconstruction models purely based on SG
priors, the SG prior in PSFNet is not directly trained to remove artifacts
in zero-filled reconstructions of undersampled data. Instead, the SG
prior is trained to concurrently suppress artifacts in reconstructed im-
ages along with the SS prior; and the relative importance attributed to
4

the two priors is determined by the fusion parameters at each cascade.
As such, the SS prior can be given higher weight during initial training
iterations where the SG prior is scarcely trained, whereas its weight
can be relatively reduced during later iterations once the SG prior has
been sufficiently trained. This adaptive fusion approach thereby lowers
reliance on the availability of large training sets.

Inference: During inference on the 𝑞th test scan, the respective SS
prior is learned online as:

𝜃̂𝑞𝑆𝑆 = argmin
𝜃𝑞𝑆𝑆

∥ 𝐹−1𝑊 𝑞𝑦𝑞 − 𝑓 𝑞
𝑆𝑆 (𝐹

−1𝑊 𝑞𝑦𝑞 ; 𝜃𝑞𝑆𝑆 ) ∥
2
2 (15)

Afterwards, the learned 𝜃̂𝑞𝑆𝑆 is used along with the previously trained
𝜃̂𝑆𝐺 to perform repeated projections through 𝐾 cascades as described
in Eq. (11). The multi-coil image recovered by PSFNet at the output of
the 𝐾 cascade is:

̂𝑞 = 𝜂𝐾𝑓𝐷𝐶 (𝑓𝑆𝑆 (𝑥
𝑞
𝐾−1; 𝜃̂

𝑞
𝑆𝑆 )) + 𝛾𝐾𝑓𝐷𝐶 (𝑓𝑆𝐺(𝑥

𝑞
𝐾−1; 𝜃̂𝑆𝐺)) (16)

where 𝑥̂𝑞 denotes the recovered image. The final reconstruction can be
obtained by performing combination across coils:

̂𝑞𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝐴∗𝑥̂𝑞 (17)

where 𝐴 are coil sensitivities, and 𝐴∗ denotes the conjugate of 𝐴.

3. Methods

3.1. Implementation details

In each cascade, PSFNet contained two parallel streams with SG
and SS blocks. The SG blocks comprised an input layer followed by
a stack of 4 convolutional layers with 64 channels and 3 × 3 ker-
nel size each, and an output layer with ReLU activation functions.
They processed complex images with separate channels for real and
imaginary components. The SS blocks comprised a Fourier layer, 5
projection layers with identity activation functions, and an inverse
Fourier layer. They processed complex images directly without splitting
real and imaginary components. The linear convolution kernel used
in the projection layers was learned from the calibration region by
solving a Tikhonov regularized self-regression problem [11]. The DC
blocks comprised 3 layers respectively to implement forward Fourier
transformation, restoration of acquired k-space data and inverse Fourier
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transformation. PSFNet was implemented with 5 cascades, 𝐾 = 5. The
weights of SG, SS, and DC blocks were tied across cascades to limit
model complexity [32]. The only exception were fusion coefficients
that determine the relative weighting of the SG and SS blocks at
each stage (𝛾1,… , 𝛾𝑘,… , 𝛾5 𝜂1,… 𝜂𝑘,… , 𝜂5). These fusion parameters

ere kept distinct across cascades. Coil-combination on the recovered
ulti-coil images was performed using sensitivity maps estimated via
SPIRiT [77].

.2. MRI dataset

Experimental demonstrations were performed using brain MRI scans
rom the NYU fastMRI database [79]. Here, contrast-enhanced T1-
eighted (cT1-weighted) and T2-weighted acquisitions were consid-
red. The fastMRI dataset contains volumetric MRI data with varying
mage and coil dimensionality across subjects. Note that a central aim
f this work was to systematically examine the learning capabilities of
odels for varying number of training samples. To minimize potential

iases due to across-subject variability in MRI protocols, here we se-
ected subjects with matching imaging matrix size and number of coils.
o do this, we only selected subjects with at least 10 cross-sections
nd only the central 10 cross-sections were retained in each subject.
e further selected subjects with an in-plane matrix size of 256 × 320

or cT1 acquisitions, and of 288 × 384 for T2 acquisitions. Background
egions in MRI data with higher dimensions were cropped. Lastly, we
estricted our sample selection to subjects with at least 5 coil elements,
nd geometric coil compression [80] was applied. Experiments were
onducted following compression onto 5 or 3 virtual coils.

Fully-sampled acquisitions were retrospectively undersampled to
chieve acceleration rates of R = 4x, 6x and 8x. Random undersampling
atterns were designed via either a bi-variate normal density function
eaking at the center of k-space, or a uniform density function across
-space. The standard deviation of the normal density function was
djusted to maintain the expected value of R across k-space. The fully-
ampled calibration region spanned a 40 × 40 window in central
-space.

.3. Competing methods

PSFNet was compared against several state-of-the-art approaches
ncluding SG methods, SS methods, and traditional PI reconstructions.
or methods containing SG priors, both supervised and unsupervised
ariants were implemented.
PSFNet: A supervised variant of PSFNet was trained using paired

ets of undersampled and fully-sampled acquisitions.
PSFNetUS: An unsupervised variant of PSFNet was implemented

sing self-supervision based on only undersampled training data. Ac-
uired data were split into two non-overlapping sets where 40% of
amples was reserved for evaluating the training loss and 60% of
amples was reserved to enforce DC [71].
MoDL: A supervised SG methods based on an unrolled architecture

ith tied weights across cascades was used [32]. MoDL serially inter-
eaves SG and DC blocks. The number of cascades and the structure of
G and DC blocks were identical to those in PSFNet.
MoDLUS: An unsupervised variant of MoDL was implemented using

elf-supervision. A 40%–60% split was performed on acquired data
o evaluate the training loss and enforce data consistency, respec-
ively [71].
sRAKI-RNN: An SS method was implemented based on the MoDL

rchitecture [74]. Learning was performed to minimize DC loss on
he fully-sampled calibration region. Calibration data were randomly
plit with 75% of samples used to define the training loss and 25%
f samples reserved to enforce DC. Multiple input–output pairs were
roduced for a single test sample by utilizing this split.
SPIRiT: A traditional PI reconstruction was performed using the

PIRiT method [11]. Reconstruction parameters including the regu-
5

arization weight for kernel estimation (𝜅), kernel size (𝑤), and the e
umber of iterations (𝑁𝑖𝑡𝑒𝑟) were independently optimized for each
econstruction task via cross-validation.
SPARK: An SS method was used to correct residual errors from an

nitial SPIRiT reconstruction [17]. Learning was performed to minimize
C loss on the calibration region. The learned SS prior was then used

o correct residual errors in the remainder of the k-space.
rGAN: A conditional GAN model that used adversarial learning was

mplemented using the architecture, loss functions, and hyperparame-
ers outlined in [48].
DDPM: An unconditional diffusion model was implemented using

he architecture, loss functions, and hyperparameters outlined in [81].
uring inference, reverse diffusion steps were interleaved with data-
onsistency projections.

.4. Optimization procedures

For all methods, hyperparameter selection was performed via cross-
alidation on a three-way split of data across subjects. There was no
verlap among training, validation and test sets in terms of subjects.
ata from 10 subjects were reserved for validation, and data from a

eparate set of 40 subjects were reserved for testing. The number of
ubjects in the training set was varied from 1 to 50. Hyperparameters
hat maximized peak signal-to-noise ratio (PSNR) on the validation set
ere selected for each method.

Training was performed via the Adam optimizer with learning rate
= 10−4, 𝛽1 = 0.90 and 𝛽2 = 0.99 [82]. All deep learning methods
ere trained to minimize hybrid 𝓁1 − 𝓁2-norm loss between recov-
red and target data (e.g., between reconstructed and ground truth
mages for PSFNet, between recovered and acquired k-space samples for
SFNetUS) [71]. For PSFNet and MoDL, the selected number of epochs
as 200, batch size was set to 2 for the limited number of training

amples (𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 <10), and to 5 otherwise. In DC blocks, 𝜆 = ∞ was
sed to enforce strict data consistency. For PSFNet and SPIRiT, the
ernel width (𝑤) and regularization parameter (𝜅) values were set as
𝜅, 𝑤) = (10−2, 9) at R = 4 and (10−2, 9) at R = 8 for cT1-weighted
econstructions, and as (100, 17) at R = 4 and (10−2, 17) at R = 8 for
2-weighted reconstructions. For SPIRiT, the number of iterations 𝑁𝑖𝑡𝑒𝑟
as set as 13 at R = 4 and 27 at R = 8 for cT1-weighted reconstructions,
0 at R = 4 and 38 at R = 8 for T2-weighted reconstructions. For
RAKI-RNN, the selected number of epochs was 500 and batch size was
et to 32. All other optimization procedures were identical to MoDL.
or SPARK, network architecture and training procedures were adopted
rom [17], except for the number of epochs (𝑁𝑒𝑝𝑜𝑐ℎ) and learning rate
𝜁) which were optimized on the validation set as (𝑁𝑒𝑝𝑜𝑐ℎ, 𝜁)= (100,
0−2) For cT1-weighted reconstructions, and (𝑁𝑒𝑝𝑜𝑐ℎ, 𝜁)= (250, 10−3)
or T2-weighted reconstructions.

All competing methods were executed on an NVidia RTX 3090 GPU,
nd models were coded in Tensorflow except for SPARK which was
mplemented in PyTorch. SPARK was implemented using the toolbox at
ttps://github.com/YaminArefeen/spark_mrm_2021. The code to im-
lement PSFNet will be available publicly at https://github.com/icon-
ab/PSFNet upon publication.

.5. Performance metrics

Performance assessments for reconstruction methods were carried
ut by visual observations and quantitative metrics. PSNR and struc-
ural similarity index (SSIM) were used for quantitative evaluation. For
ach method, metrics were computed on coil-combined images from
he reconstruction and from the fully-sampled ground truth acquisition.
tatistical differences between competing methods were examined via
on-parametric Wilcoxon signed-rank tests.

.6. Experiments

Several different experiments were conducted to systematically

xamine the performance of competing methods. Assessments aimed

https://github.com/YaminArefeen/spark_mrm_2021
https://github.com/icon-lab/PSFNet
https://github.com/icon-lab/PSFNet
https://github.com/icon-lab/PSFNet
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to investigate reconstruction performance under low training data
regimes, generalization performance in case of mismatch between
training and testing domains, contribution of the parallel-stream design
to reconstruction performance, sensitivity to hyperparameter selection,
performance in unsupervised learning, and computational complexity.

Performance in low-data regimes: Deep SG methods for MRI
reconstruction typically suffer from suboptimal performance as the
size of the training dataset is constrained. To systematically examine
reconstruction performance, we trained supervised variants of PSFNet
and MoDL while the number of training samples (𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠) was varied
n the range [2–500] cross sections. To attain a given number of
amples, sequential selection was performed across subjects and across
ross-sections within each subject. Thus, the number of unique subjects
ncluded in the training set roughly corresponded to 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠∕10 (since

there were 10 cross-sections per subject). SS reconstructions were also
performed with sRAKI-RNN, SPIRiT and SPARK. In the absence of
fully-sampled ground truth data to guide the learning of the prior,
unsupervised training of deep reconstruction models may prove rela-
tively more difficult compared to supervised training. In turn, this may
elevate requirements on training datasets for unsupervised models. To
examine data efficiency for unsupervised training, we compared the
reconstruction performance of PSFNetUS and MoDLUS as 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 was
varied in the range of [2–500] cross sections. Comparisons were also
provided against sRAKI-RNN, SPIRiT and SPARK.

Generalization performance: Deep reconstruction models can suf-
fer from suboptimal generalization when the MRI data distribution
shows substantial variation between the training and testing domains.
To examine generalizability, PSFNet models were trained on data from
a source domain and tested on data from a different target domain. The
domain-transferred models were then compared to models trained and
tested directly in the target domain. Three different factors were altered
to induce domain variation: tissue contrast, undersampling pattern, and
acceleration rate. First, the capability to generalize to different tissue
contrasts was evaluated. Models were trained on data from a source
contrast and tested on data from a different target contrast. Domain-
transferred models were compared to target-domain models trained
on data from the target contrast. Next, the capability to generalize to
different undersampling patterns was assessed. Models were trained
on data undersampled with variable-density patterns and tested on
data undersampled with uniform-density patterns. Domain-transferred
models were compared to target-domain models trained on uniformly
undersampled data. Lastly, the capability to generalize to different
acceleration rates was examined. Models were trained on acquisitions
accelerated at R = 4x and tested on acquisitions accelerated at R = 8x.
Domain-transferred models were compared to target-domain models
trained at R = 8x.

Computational complexity: Finally, we assessed the computa-
tional complexity of competing methods. For each method, training
and inference times were measured for a single subject with 10 cross-
sections. Each cross-section had an imaging matrix size of 256 × 320
and contained data from 5 coils. For all methods including SS priors,
hyperparameters optimized for cT1-weighted reconstructions at R = 4
were used.

Ablation studies: To assess the contribution of the parallel-stream
design in PSFNet, a conventional unrolled variant of PSFNet was
formed, named as PSFNetSerial. PSFNetSerial combined the SG and SS
priors via serial projections as described in Eq. (10). To assess the
contribution of the SS and SG prior in PSFNet, an SS-only variant was
formed that ablated the SG prior and an SG-only variant was formed
that ablated the SS prior. Modeling procedures were kept identical for
fair comparison. We also examined the relative influence of the SS and
SG priors in PSFNet as a function of the training set size by observing
the fusion weights for the two priors. 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 was varied in the range
of [2–500] cross sections.

SS priors might show elevated sensitivity to hyperparameter se-
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lection as they are learned from individual test scans. We assessed
the reliability of reconstruction performance against suboptimal hy-
perparameter selection for SS priors. For this purpose, analyses were
conducted on SPIRiT, SPARK and PSFNet that embody SS methods to
perform linear reconstructions in k-space. The set of hyperparameters
examined included regularization parameters for kernel estimation (𝜅)
and kernel size (𝑤). Separate models were trained using 𝜅 in range
[10-3-100] and 𝑤 in range [5–17].

4. Results

4.1. Performance in low-data regimes

Common SG methods for MRI reconstruction are based on deep
networks that require copious amounts of training data, so performance
can substantially decline on limited training sets [33,64]. In contrast,
PSFNet leverages an SG prior to concurrently reconstruct an image
along with an SS prior. Therefore, we reasoned that its performance
should scale favorably under low-data regimes compared to SG meth-
ods. We also reasoned that PSFNet should yield elevated performance
compared to SS methods due to residual corrections from its SG prior.
To test these predictions, we trained supervised variants of PSFNet and
MoDL along with SPIRiT, sRAKI-RNN, and SPARK while the number of
training samples (𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠) was systematically varied. Fig. 2 displays av-
erage PSNR, SSIM and RMSE performance across cT1- and T2-weighted
reconstructions as a function of 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠. PSFNet outperforms the scan-
general MoDL method for all values of 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑝 < 0.05). As expected,
performance benefits with PSFNet become more prominent towards
lower values of 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠. PSFNet also outperforms traditional SPIRiT
nd scan-specific sRAKI-RNN and SPARK methods broadly across the
xamined range of 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑝 < 0.05). Note that while MoDL requires
𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 30 (3 subjects) to offer on par performance to SS methods,
SFNet yields superior performance with as few as 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 2.

Representative reconstructions for cT1- and T2-weighted images are
depicted in Figs. 3 and 4, where 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 10 from a single subject were
used for training. PSFNet yields lower reconstruction errors compared
to all other methods in this low-data regime, where competing methods
either show elevated noise or blurring.

We then questioned whether the performance benefits of PSFNet
are also apparent during unsupervised training of deep network mod-
els. For this purpose, unsupervised variants PSFNetUS and MoDLUS
were trained via self-supervision [71]. PSFNetUS was compared against
MoDLUS, SPIRiT, sRAKI-RNN, and SPARK while the number of training
samples (𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠) was systematically varied. Fig. 5 displays average
PSNR, SSIM and RMSE performance across cT1- and T2-weighted re-
constructions as a function of 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠. Similar to the supervised setting,
PSFNetUS outperforms MoDLUS for all values of 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑝 < 0.05),
and the performance benefits are more noticeable at lower 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠.
In this case, however, MoDLUS is unable to reach the performance
of the best performing SS method (SPARK) even at 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 500.
In contrast, PSFNetUS starts outperforming SPARK with approximately
𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 40 (4 subjects). The enhanced reconstruction quality with
PSFNetUS is corroborated in representative reconstructions for cT1- and

2-weighted images depicted in Figs. 6 and 7, where 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 100
were used for training. Taken together, these results indicate that
the data-efficient nature of PSFNet facilitates the training of both
supervised and unsupervised MRI reconstruction models.

4.2. Generalization performance

An important advantage of SS priors is that they allow model
adaptation to individual test samples, thereby promise enhanced per-
formance in out-of-domain reconstructions [27]. Yet, SG priors with
fixed parameters might show relatively limited generalizability dur-
ing inference [28,83]. To assess generalization performance, we in-

troduced domain variations by altering three experimental factors:
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Fig. 2. Average (a) PSNR, (b) SSIM and (c) RMSE across test subjects for cT1- and
T2-weighted image reconstructions at R = 4x. Model training was performed for
varying number of training samples (𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠, lower x-axis) and thereby training subjects
(𝑁𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠, upper x-axis). Results are shown for SPIRiT, SPARK, sRAKI-RNN, MoDL and
PSFNet.

tissue contrast, undersampling pattern, and acceleration rate. For meth-
ods comprising SG components, we built both target-domain mod-
els that were trained in the target domain, and domain-transferred
models that were trained in a non-target domain. We then com-
pared the reconstruction performances of the two models in the target
domain.

First, we examined generalization performance when the tissue con-
trast varied between training and testing domains (e.g., trained on cT1,
tested on T2). Analyses were conducted for 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 500, and varying
configurations of acceleration rate and number of coils. Performance
metrics for competing methods are listed for R = 4x, 5 coils in Table 1,
for R = 6x, 5 coils in Table 2, and for R = 4x, 3 coils in Table 3.
Performance losses incurred during domain transfer for methods based
on SG priors are rather modest. Compared to PSFNet, PSFNet-DT shows
a slight loss of 0.3 dB PSNR, 0.1% SSIM and 0.1 × RMSE (𝑝 < 0.05).
Similarly, compared to MoDL, MoDL-DT shows a loss of 0.3 dB PSNR,
0.2% SSIM and 0.1 × RMSE (𝑝 < 0.05). Note that PSFNet-DT is
the top-contender for the best performing PSFNet, and it outperforms
the closest competing SS method by 2.2 dB PSNR, 2.8% SSIM and
0.4 × RMSE (𝑝 < 0.05).
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Table 1
Generalization across tissue contrasts. PSNR, SSIM, RMSE values (mean±s.e.) across
test subjects. Results are shown for scan-specific models (SPIRiT, SPARK, sRAKI-RNN),
target-domain models (MoDL, PSFNet) and domain-transferred models (MoDL-DT,
PSFNet-DT) at R = 4x, 5 coils. The tissue contrast in the target domain is listed in the
left-most column (cT1 or T2), domain-transferred models were trained for the non-target
tissue contrast.

SPIRiT SPARK sRAKI-RNN MoDL MoDL-DT PSFNet PSFNet-DT

PSNR

cT1
37.6 37.6 36.8 38.5 38.2 39.9 39.4
±1.5 ±1.5 ±1.3 ± 1.5 ±1.5 ±1.7 ±1.6

T2
35.8 36.5 35.2 37.9 37.5 39.0 39.0
±1.0 ±1.0 ±1.1 ± 1.0 ±1.1 ±1.0 ±0.9

SSIM

cT1
93.1 93.3 93.8 95.1 94.8 95.8 95.6
±1.5 ±1.4 ±1.0 ±1.0 ±1.1 ±1.0 ±1.0

T2
90.8 93.1 94.9 96.2 96.2 96.7 96.8
±1.2 ±1.0 ±0.6 ±0.5 ±0.5 ±0.4 ±0.4

RMSE (×100)

cT1
1.4 1.4 1.5 1.2 1.3 1.0 1.1
±0.2 ±0.2 ±0.2 ±0.2 ±0.3 ±0.2 ±0.2

T2
1.6 1.5 1.9 1.3 1.5 1.1 1.2
±0.2 ±0.2 ±0.2 ±0.2 ±0.4 ±0.1 ±0.2

Table 2
Generalization across tissue contrasts. PSNR, SSIM, RMSE values for competing methods
at R = 6x, 5 coils.

SPIRiT SPARK sRAKI-RNN MoDL MoDL-DT PSFNet PSFNet-DT

PSNR

cT1
35.8 35.8 35.4 36.7 36.1 37.8 37.4
±1.4 ±1.4 ±1.5 ± 1.5 ±1.4 ±1.2 ±1.2

T2
34.8 34.8 33.6 35.7 35.4 37.0 36.6
±1.0 ±1.0 ±0.9 ± 1.1 ±1.1 ±1.1 ±1.1

SSIM

cT1
91.6 91.7 92.5 93.4 93.1 94.4 94.2
±1.6 ±1.6 ±1.2 ±1.3 ±1.3 ±1.2 ±1.2

T2
90.1 91.0 93.7 94.7 94.6 95.5 95.3
±1.3 ±1.1 ±0.7 ±0.6 ±0.6 ±0.6 ±0.6

RMSE (×100)

cT1
1.1 1.1 1.1 1.0 1.0 0.9 0.9
±0.2 ±0.2 ±0.2 ±0.2 ±0.2 ±0.1 ±0.1

T2
1.2 1.2 1.3 1.0 1.1 0.9 1.0
±0.2 ±0.2 ±0.2 ±0.2 ±0.2 ±0.1 ±0.1

Second, we examined generalization performance when models
were trained with variable-density and tested on uniform-density un-
dersampling patterns. Table 4 lists performance metrics for competing
methods. Compared to MoDL, MoDL-DT suffers a notable performance
loss of 3.6 dB PSNR, 2.5% SSIM and 0.3 × RMSE (𝑝 < 0.05). Meanwhile,
compared to PSFNet, PSFNet-DT shows a relatively limited loss of
0.4 dB PSNR, 0.2% SSIM and 0.5 × RMSE (𝑝 < 0.05). Note that PSFNet-
DT is again the second-best method after PSFNet, and it outperforms
the closest competing SS method by 3.4 dB PSNR, 3.7% SSIM and
0.3 × RMSE (𝑝 < 0.05).

Third, we examined generalization performance when models were
trained at R = 4x and tested on R = 8x. Table 5 lists performance
metrics for competing methods. Compared to MoDL, MoDL-DT suffers a
notable performance loss of 1.0 dB PSNR (𝑝 < 0.05), on par RMSE and
SSIM. Compared to PSFNet, PSFNet-DT shows a lower loss of 0.6 dB
PSNR and 0.1 × RMSE (𝑝 < 0.05) and on par SSIM. Note that PSFNet-
DT is the second-best method following PSFNet, and it outperforms
the closest competing SS method by 1.2 dB PSNR, 1.9% SSIM and
0.2 × RMSE (𝑝 < 0.05). Taken together, these results clearly suggest
that the SS prior in PSFNet contributes to its improved generalization
performance over the scan-general MoDL method, while the SG prior
in PSFNet enables it to outperform competing SS methods.
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Fig. 3. cT1-weighted image reconstructions at R = 4x via SPIRiT, SPARK, sRAKI-RNN, MoDL, and PSFNet along with the zero-filled reconstruction (ZF) and the reference image
obtained from the fully-sampled acquisition. Error maps for each method are shown in the bottom row. Zoom-in windows display the region annotated with the green box. MoDL
and PSFNet were trained on 10 cross-sections from a single subject. SPIRiT, SPARK and sRAKI-RNN directly performed inference on test data without a priori model training.
PSFNet shows superior performance to competing methods in terms of residual reconstruction errors.
Fig. 4. T2-weighted image reconstructions at R = 4x via SPIRiT, SPARK, sRAKI-RNN, MoDL, and PSFNet along with the zero-filled reconstruction (ZF) and the reference image
obtained from the fully-sampled acquisition. Error maps for each method are shown in the bottom row. MoDL and PSFNet were trained on 10 cross-sections from a single subject.
SPIRiT, SPARK and sRAKI-RNN directly performed inference on test data without a priori model training. PSFNet shows superior performance to competing methods in terms of
residual reconstruction errors.
Table 3
Generalization across tissue contrasts. PSNR, SSIM, RMSE values for competing methods
at R = 4x, 3 coils.

SPIRiT SPARK sRAKI-RNN MoDL MoDL-DT PSFNet PSFNet-DT

PSNR

cT1
35.1 35.1 35.8 36.8 36.5 37.9 37.6
±2.8 ±2.8 ±1.6 ± 1.8 ±1.8 ±1.9 ±1.9

T2
35.7 35.7 34.5 36.4 36.1 37.6 37.4
±1.3 ±1.3 ±1.2 ± 1.2 ±1.3 ±1.3 ±1.3

SSIM

cT1
91.6 91.6 92.9 94.5 94.1 95.2 95.1
±4.3 ±4.3 ±1.1 ±1.1 ±1.2 ±1.1 ±1.1

T2
94.0 94.0 94.2 95.5 95.5 96.2 96.1
±1.3 ±1.3 ±0.7 ±0.6 ±0.6 ±0.5 ±0.5

RMSE (×100)

cT1
2.0 2.0 1.7 1.5 1.6 1.3 1.4
±1.3 ±1.3 ±0.3 ±0.3 ±0.3 ±0.3 ±0.3

T2
1.7 1.7 2.0 1.6 1.6 1.4 1.4
±0.3 ±0.3 ±0.4 ±0.2 ±0.3 ±0.2 ±0.2
8

Table 4
Generalization across undersampling patterns. PSNR, SSIM, RMSE values for competing
methods at R = 4x, 5 coils. Domain-transferred models were trained with variable-
density undersampling, and tested on uniform-density undersampling. Target-domain
models were trained and tested with uniform-density undersampling.

SPIRiT SPARK sRAKI-RNN MoDL MoDL-DT PSFNet PSFNet-DT

PSNR

cT1
37.1 37.1 33.6 37.0 33.6 40.2 39.9
±1.8 ±1.7 ±1.4 ± 1.7 ±1.8 ±1.6 ±1.6

T2
35.1 35.6 31.6 37.0 33.2 40.2 39.7
±1.3 ±1.3 ±1.5 ± 1.1 ±1.2 ±1.1 ±1.2

SSIM

cT1
92.9 93.0 91.2 93.4 91.2 95.9 95.6
±1.5 ±1.5 ±1.5 ±1.3 ±2.0 ±1.2 ±1.2

T2
90.6 92.1 91.5 95.6 92.7 97.1 96.9
±1.5 ±1.5 ±1.2 ±0.7 ±1.1 ±0.6 ±0.6

RMSE (×100)

cT1
1.0 1.0 1.4 1.0 1.5 0.7 0.7
±0.2 ±0.2 ±0.3 ±0.2 ±0.4 ±0.1 ±0.1

T2
1.6 1.5 1.9 1.3 1.5 1.1 1.2
±0.2 ±0.2 ±0.2 ±0.2 ±0.4 ±0.1 ±0.2
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Table 5
Generalization across acceleration rates. PSNR, SSIM, RMSE values for competing
methods with 5 coils. Domain-transferred models were trained R = 4x and tested at R
= 8x. Target-domain models were trained and tested at R = 8x.

SPIRiT SPARK sRAKI-RNN MoDL MoDL-DT PSFNet PSFNet-DT

PSNR

cT1
34.7 34.8 34.3 35.3 34.5 36.5 36.2
±1.5 ±1.5 ±1.5 ± 1.4 ±1.7 ±1.5 ±1.5

T2
33.6 33.7 32.6 34.6 33.4 35.6 34.6
±1.0 ±1.0 ±0.9 ± 1.0 ±1.2 ±1.1 ±1.2

SSIM

cT1
89.8 90.8 91.4 92.1 92.2 93.3 93.3
±1.9 ±1.6 ±1.4 ±1.5 ±1.4 ±1.4 ±1.4

T2
89.0 90.1 92.7 93.5 93.7 94.6 94.5
±1.3 ±1.1 ±0.9 ±0.8 ±0.8 ±0.7 ±0.7

RMSE (×100)

cT1
1.2 1.2 1.2 1.1 1.2 1.0 1.0
±0.3 ±0.3 ±0.3 ±0.2 ±0.3 ±0.2 ±0.2

T2
1.3 1.3 1.4 1.2 1.3 1.0 1.2
±0.2 ±0.2 ±0.2 ±0.2 ±0.2 ±0.2 ±0.2

Table 6
Computational complexity of competing methods. Training and inference times for data
from a single subject, with 10 cross-sections, imaging matrix size 256 × 320 and 5 coils

SPIRiT SPARK sRAKI-RNN MoDL PSFNet

Training (s) – – – 132 337
Inference (s) 0.85 23.35 285.00 0.25 1.13

Table 7
Generalization across tissue contrasts. PSNR, SSIM, RMSE values (mean±s.e.) across test
subjects. Results are shown for SPARK, sRAKI-RNN, MoDL, rGAN, DDPM and PSFNet
at R = 4x, 5 coils.

SPARK sRAKI-RNN MoDL rGAN DDPM PSFNet

PSNR

cT1
37.6 36.8 38.5 33.5 34.8 39.9
±1.5 ±1.3 ±1.5 ±1.2 ±2.1 ±1.7

T2
36.5 35.2 37.9 33.8 34.2 39.0
±1.0 ±1.1 ±1.0 ±0.9 ±2.0 ±1.0

SSIM

cT1
93.3 93.8 95.1 91.5 92.5 95.8
±1.4 ±1.0 ±1.0 ±1.3 ±1.7 ±1.0

T2
93.1 94.9 96.2 93.7 94.7 96.7
±1.0 ±0.6 ±0.5 ±0.6 ±0.7 ±0.4

RMSE (×100)

cT1
1.4 1.5 1.2 1.4 1.3 1.0
±0.2 ±0.2 ±0.2 ±0.3 ±0.4 ±0.2

T2
1.5 1.9 1.3 1.3 1.3 1.1
±0.2 ±0.2 ±0.2 ±0.2 ±0.4 ±0.1

4.3. Computational complexity

Next, we assessed the computational complexity of competing meth-
ods. Table 6 lists the training times of methods with SG priors, MoDL
and PSFNet. Note that SS-based methods do not involve a pre-training
step. As it involves learning of an SS prior on each training sample,
PSFNet yields elevated training time compared to MoDL. In return, it
offers enhanced generalization performance and data-efficient learn-
ing. Table 6 also lists the inference times of SPIRiT, SPARK, sRAKI-
RNN, MoDL and PSFNet. MoDL and PSFNet that employ SG priors
with fixed weights during inference offer fast run times. In contrast,
SPARK and sRAKI-RNN that involve SS priors learned on individual
9

Fig. 5. Average (a) PSNR, (b) SSIM and (c) RMSE across test subjects for cT1- and
T2-weighted image reconstructions at R = 4x. Model training was performed for
varying number of training samples (𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠, lower x-axis) and thereby training subjects
(𝑁𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠, upper x-axis). Results are shown for SPIRiT, SPARK, sRAKI-RNN, MoDLUS and
PSFNetUS.

test samples have a high computational burden. Although PSFNet also
embodies an SS prior, its uses a relatively lightweight linear prior
as opposed to the nonlinear priors in competing SS methods. There-
fore, PSFNet benefits from data-efficient learning while maintaining
computationally-efficient inference.

4.4. Radiological assessments

Radiological assessments were conducted on reconstructed images
to assess the visual quality of tissue depiction in reference to the
ground-truth images derived from fully-sampled acquisitions (Fig. 8).
On a 5-point Likert scale, we examined the performance of PSFNet
against competing methods, SPIRiT, SPARK, sRAKI-RNN, and MoDL.
This evaluation was conducted for cT1- and T2 -weighted images at
R = 4x. PSFNet outperforms all competing methods in opinion scores
(𝑝 < 0.05). On average across tasks, PSFNet achieves 4.4 opinion score,
whereas the opinion score is 3.0 for SPIRiT, 2.9 for SPARK, 2.6 for
sRAKI-RNN, and 3.5 for MoDL.
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Fig. 6. cT1-weighted image reconstructions at R = 4x via SPIRiT, SPARK, sRAKI-RNN, MoDLUS, and PSFNetUS along with the zero-filled reconstruction (ZF) and the reference
image obtained from the fully-sampled acquisition. Error maps for each method are shown in the bottom row. MoDLUS and PSFNetUS were trained on 100 cross-sections (from 10
subjects). SPIRiT, SPARK and sRAKI-RNN directly performed inference on test data without a priori model training. PSFNetUS shows superior performance to competing methods
in terms of residual reconstruction errors.
Fig. 7. T2-weighted image reconstructions at R = 4x via SPIRiT, SPARK, sRAKI-RNN, MoDLUS, and PSFNetUS along with the zero-filled reconstruction (ZF) and the reference
image obtained from the fully-sampled acquisition. Error maps for each method are shown in the bottom row. MoDLUS and PSFNetUS were trained on 100 cross-sections (from 10
subjects). SPIRiT, SPARK and sRAKI-RNN directly performed inference on test data without a priori model training. PSFNetUS shows superior performance to competing methods
in terms of residual reconstruction errors.
Fig. 8. Radiological opinion scores of SPIRiT, SPARK, sRAKI-RNN, MoDL, and PSFNet
on a 5-point Likert scale. Bar plots show mean±s.e. score for cT1-weighted (left) and
T2-weighted (right) images at R = 4x.

4.5. Comparison to other deep learning methods

We also performed focused comparisons of generalization perfor-
mance between deep learning methods for MRI reconstruction. For
this purpose, PSFNet was compared against SPARK, sRAKI-RNN and
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MoDL, as well as recent generative methods rGAN [48] and DDPM [81].
Table 7 lists performance metrics for PSFNet and competing methods.
PSFNet outperforms all competing methods in each metric (𝑝 < 0.05).
On average over competing methods, PSFNet improves PSNR by 4.5 dB,
SSIM by 3.0%, and RMSE by 0.5×10−2 . These results suggest that,
under low-data regimes, PSFNet not only outperforms SS and SG priors
but also recent generative techniques.

4.6. Ablation studies

To demonstrate the value of the parallel-stream fusion strategy in
PSFNet over conventional unrolling, PSFNet was compared against a
variant model PSFNetSerial that combined SS and SG priors through
serially alternated projections. Separate models were trained with
number of training samples in the range 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = [2–500]. Perfor-
mance in cT1- and T2 -weighted image reconstruction is displayed in
Fig. 9. PSFNet significantly improves reconstruction performance over
PSFNetSerial across the entire range of 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 considered (𝑝 < 0.05),
and the benefits grow stronger for smaller training sets. On average
across contrasts for 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 < 10, PSFNet outperforms PSFNetSerial by
1.8 dB PSNR, 0.6% SSIM and 0.2 × RMSE (𝑝 < 0.05). These results
indicate that the parallel-stream fusion of SG and SS priors in PSFNet
is superior to the serial projections in conventional unrolling.

We also examined the contribution of the SS prior and SG prior in
PSFNet to reconstruction performance. To do this, an SS-only variant
was formed by ablating the SG prior, and an SG-only variant was
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Fig. 9. Average (a) PSNR, (b) SSIM and (c) RMSE values for cT1- and T2-weighted
image reconstructions at R = 4x. Model training was performed for varying number of
training samples (𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠, lower x-axis) and thereby training subjects (𝑁𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠, upper
x-axis). Results are shown for SS-only, SG-only, PSFNet and PSFNetSerial.

Fig. 10. Weighting of the SG (𝛾) and SS (𝜂) blocks in the final cascade of PSFNet.
Weights were averaged across models trained for cT1- and T2-weighted reconstructions
at R = 4x. Model training was performed for varying number of training samples
(𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠, lower x-axis) and thereby training subjects (𝑁𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠, upper x-axis). Both
blocks are equally weighted with very limited training data. As 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 increases, the
weighting of the SG prior becomes more dominant over the weighting of the SS prior.
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formed by ablating the SS prior from PSFNet. Separate models were
trained with number of training samples in the range 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = [2–
500]. Reconstruction performance for PSFNet variants is displayed in
Fig. 9. PSFNet significantly improves reconstruction performance over
the variants across 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑝 < 0.05). On average, PSFNet outperforms
the SS-only variant by 2.8 dB PSNR, 4.3% SSIM and 0.5 × RMSE
(𝑝 < 0.05), and the SG-only variant by 1.3 dB PSNR, 0.6% SSIM and
0.2 × RMSE (𝑝 < 0.05). These results clearly demonstrate that both
the SS and SG priors contributed significantly to the performance of
PSFNet.

Next, we assessed the relative influence of the SS versus SG priors
in the reconstructions computed by PSFNet as a function of training set
size. Since the SS prior is independently learned for individual samples,
it should not elicit systematic performance variations depending on
𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠. Thus, we reasoned that the influence of the SG prior should
increase towards larger training sets. To test this prediction, we in-
spected the weightings of the SG (𝛾) and SS (𝜂) streams as the training
set size was varied. Fig. 10 displays weightings at the last cascade as
a function of 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠. For lower values of 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 where the quality
of the SG prior is relatively limited, the SG and SS priors are almost
equally weighted. In contrast, as the learning of the SG prior improves
with higher 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠, the emphasis on the SG prior increases while the
SS prior is less heavily weighted.

Parameters of deep networks that implement SS priors are to be
learned from a single test sample, so the resultant models can show
elevated sensitivity to the selection of hyperparameters compared to
SG priors learned from a collection of training samples. Thus, we
investigated the sensitivity of PSFNet to key hyperparameters of its SS
prior. SPIRiT, SPARK and PSFNet methods all embody a linear k-space
reconstruction, so the relevant hyperparameters are the regularization
weight and width for the convolution kernel. Performance was evalu-
ated for models were trained in the low-data regime (i.e., 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 10,
1 subject) for varying hyperparameter values.

Fig. 11 displays PSNR measurements for SPIRiT, SPARK and PSFNet
across 𝜅 in range (10-3-100). While the performance of SPIRiT and
SPARK is notably influenced by 𝜅, PSFNet is minimally affected by sub-
optimal selection. On average across contrasts, the difference between
the maximum and minimum PSNR values is 8.4 dB for SPIRiT, 4.5 dB
for SPARK, and a lower 0.7 dB for PSFNet. Note that PSFNet outper-
forms competing methods across the entire range of 𝜅 (𝑝 < 0.05). Fig. 12
shows PSNR measurements for competing methods across 𝑤 in range
(5–17). In this case, all methods show relatively limited sensitivity to
the selection of 𝑤. On average across contrasts, the difference between
the maximum and minimum PSNR values is 1.5 dB for SPIRiT, 0.5 dB
for SPARK, and 0.2 dB for PSFNet. Again, PSFNet outperforms compet-
ing methods across the entire range of 𝑤 (𝑝 < 0.05). Overall, our results
indicate that PSFNet yields improved reliability against sub-optimal
hyperparameter selection than competing SS methods.

5. Discussion and conclusion

In this study, we introduced PSFNet for data-efficient training of
deep reconstruction models in accelerated MRI. PSFNet is based on
synergistic fusion of SS and SG priors in a parallel-stream architecture.
The linear SS prior optimizes learning efficiency while maintaining a
relatively low computational footprint, whereas the nonlinear SG prior
contributes to improved reconstruction performance. In both super-
vised and unsupervised learning setups, PSFNet notably offers high
performance under low-data regimes against baselines. It also main-
tains competitive inference times to efficient SG methods and reliably
generalizes across tissue contrasts, sampling patterns, and acceleration
rates. Here PSFNet was primarily for reconstruction of brain images,
and it remains important future work to examine its performance in
other anatomies.

Several prominent approaches have been introduced in the lit-
erature to address the training requirements of deep models based
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Fig. 11. PSNR measurements were performed on recovered cT1- and T2-weighted
images at R = 4x. Bar plots in blue color show average PSNR across 𝜅 ∈ 10-3-101

(i.e., the regularization parameter for kernel estimation). Error bars denote the 90%
interval across 𝜅. Bar plots in red color show PSNR for methods that do not depend
on the value of 𝜅.

Fig. 12. PSNR measurements were performed on recovered cT1- and T2-weighted
images at R = 4x. Bar plots in blue color show the average PSNR across 𝑤 ∈ 5–17
(i.e., the kernel size). Error bars denote the 90% interval across 𝑤. Bar plots in red
color show PSNR for methods that do not depend on the value of 𝑤.

on SG priors. One approach is to pre-train models on readily avail-
able datasets from a separate source domain and then to fine-tune
on several tens of samples from the target domain [33,64] or else
perform SS fine-tuning [84]. This transfer learning approach relaxes
the domain requirements for training datasets. However, the domain-
transferred models might be suboptimal when training and testing
data distributions are divergent. In such cases, additional training for
domain-alignment might be necessary to mitigate performance losses.
In contrast, PSFNet contains an SS prior enabling it to better generalize
to out-of-domain data without further training. Another approach is to
build unsupervised models to alleviate dependency on training datasets
with paired undersampled, fully-sampled acquisitions. Model training
can be performed either directly on undersampled acquisitions via
self-supervision [71] or on unpaired sets of undersampled and fully-
sampled acquisitions via cycle-consistent learning [85]. This approach
can prove beneficial when fully-sampled acquisitions are costly to
collect. Nonetheless, the resulting models still require relatively large
datasets form tens of subjects during training [71]. Our experiments on
self-supervised variants of PSFNet and MoDL reveal that unsupervised
models may require more data compared to their supervised counter-
parts. As a result, the data-efficiency advantages offered by PSFNet
can be especially valuable in the context of unsupervised deep MRI
reconstruction.

A fundamentally different framework to lower requirements on
training datasets while offering improved generalizability is based on
SS priors. In this case, learning can be performed directly on test data
and models can be adapted to each scan [15,17]. A group of stud-
ies have proposed SS methods based on relatively compact nonlinear
models to facilitate learning during inference [15,17,18,86]. However,
because learning is performed in central k-space, these methods implic-
itly assume that local relationships among spatial frequency samples
are largely invariant across k-space. While the SS prior in PSFNet also
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rests on a similar assumption, the SG components helps correct residual
errors that can be introduced due to this assumption. Another group of
studies have alternatively adopted the deep image prior (DIP) approach
to build SS methods [22,23,27,28]. In DIP, unconditional deep network
models that map latent variables onto images are used as native priors
for MR images. The priors are learned by ensuring the consistency
of reconstructed and acquired data across the entire k-space. Despite
improved generalization, these relatively more complex models require
increased inference times. In comparison, PSFNet provides faster infer-
ence since the weights for its SG prior are fixed, and its SS prior involves
a compact linear operator that is easier to learn.

Few independent studies on MRI have proposed approaches related
to PSFNet by combining nonlinear and linear reconstructions [6,17,86].
Residual RAKI and SPARK methods initially perform a linear recon-
struction, and then use an SS method to correct residual errors via
minimizing a DC loss in the calibration region [17,86]. As local rela-
tionships among data samples might vary across k-space, the learned SS
priors might be suboptimal. Moreover, these methods perform online
learning of nonlinear SS priors that introduces relatively high compu-
tational burden. In contrast, PSFNet incorporates an SG prior to help
improve reliability against sub-optimalities in the SS prior, and uses
a linear SS prior for efficiency. Another related method is GrappaNet
that improves reconstruction performance by cascading GRAPPA and
network-based nonlinear reconstruction steps [6]. While [6] intends
to improve image quality, the main aim of our study is to improve
practicality by lowering training data requirements of deep models, and
improving domain generalizability without elevating inference times.
Note that GrappaNet follows the conventional unrolling approach by
performing serially alternated projections through linear and nonlinear
reconstructions, which can lead to error propagation under low-data
regimes [87]. In contrast, PSFNet maintains linear and nonlinear re-
constructions as two parallel streams in its architecture, and learns to
optimally fuse the information from the two streams.

There are several technical limitations in the current study that
can be addressed to further improve performance and reliability. First,
PSFNet trains its SG prior with pixel-wise losses than can be amenable
to spatial blur. To improve capture of high-frequency information, an
adversarial loss term along with a discriminator subnetwork can be
included in PSFNet [88]. In this case, an important assessment would
be to explore the data-efficiency benefits of PSFNet under adversarial
learning. Second, PSFNet implements its SS prior based on linear
activation functions for efficiency, albeit this may limit expressiveness.
To improve representational capacity, shallow networks with nonlinear
activation functions can be considered [86]. While this may increase
inference time, it could foster further improvements to generalization
performance. Third, the expressiveness of both SS and SG priors might
be enhanced by incorporating attention mechanisms as reported in re-
cent studies based on transformer or diffusion models [89,90]. Fourth,
here PSFNet is implemented to reconstruct each MRI contrast inde-
pendently. Improved performance might be viable in multi-contrast
MRI protocols by adapting PSFNet to jointly reconstruct and share
information across separate MRI contrasts of the same anatomy [60,
91,92]. Fifth, PSFNet primarily lowers demand for training data by
incorporating an SS prior. Alternative approaches to reduce reliance
on large datasets such as transfer learning can be adopted where SG
priors pre-trained on natural images could be employed. It remains
important future work to examine the compatibility of the SS prior
with these alternative approaches in improving data efficiency. Lastly,
there are numerous aspects of MR images including resolution, contrast,
noise and artifact levels that can influence their diagnostic utility. For
a preliminary assessment, here we conducted a general radiological
evaluation on visual quality that implicitly reflects such underlying
aspects. More detailed evaluations are warranted in future work to
examine the success of reconstruction methods in optimizing individual

aspects of MR images.
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