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A B S T R A C T   

Spatial cues presented prior to the presentation of a static stimulus usually improve its perception. However, 
previous research has also shown that transient exogenous cues to direct spatial attention to the location of a 
forthcoming stimulus can lead to reduced performance. In the present study, we investigated the effects of 
transient exogenous cues on the perception of briefly presented drifting Gabor patches. The spatial and temporal 
frequencies of the drifting Gabors were chosen to mainly engage the magnocellular pathway. We found better 
performance in the motion direction discrimination task when neutral cues were presented before the drifting 
target compared to a valid spatial cue. The behavioral results support the hypothesis that transient attention 
prolongs the internal response to the attended stimulus, thus reducing the temporal segregation of visual events. 
These results were complemented by applying a recently developed model for perceptual decisions to rule out a 
speed-accuracy trade-off and to further assess cueing effects on visual performance. In a model-based assessment, 
we found that valid cues initially enhanced processing but overall resulted in less efficient processing compared 
to neutral cues, possibly caused by reduced temporal segregation of visual events.   

1. Introduction 

Observers are typically faster and more accurate at detecting a target 
that appears in an attended location rather than in an unattended 
location (Posner, 1980). Furthermore, spatial attention attracted by a 
transient exogenous cue can enhance performance in tasks involving 
spatial resolution (Carrasco & Yeshurun, 2009) such as texture seg-
mentation (Yeshurun & Carrasco, 2000), Vernier stimuli, and Landolt- 
squares (Yeshurun & Carrasco, 1999). However, in some cases and 
under specific stimulus conditions, a transient exogenous cue can 
negatively affect the performance. For example, Yeshurun and Levy 
(2003) reported that an exogenous cue impairs performance in a tem-
poral gap detection task in which observers had to report whether they 
perceived two disks which appeared for 47 ms with a delay interval (ISI) 
between 11 and 34 ms, or whether they perceived only a single disk. 
Hein, Rolke and Ulrich (2006) presented a dot either in the left or right 
visual hemi-field. After a variable stimulus onset asynchrony (SOA; 

ranging from 17 to 83 ms) a second dot spatially adjacent to the first one 
was presented. The temporal order was randomly varied from trial to 
trial. Participants had to indicate which of the two dots in the temporal 
sequence was presented first. When the exogenous cue indicated the 
visual hemi-field where the two dots were going to appear (i.e., valid cue 
condition), participants’ performance significantly dropped compared 
to an un-cued condition in which there was no spatial cue indicating the 
target’s visual hemi-field. Nicol and colleagues (2009) replicated the 
findings of Hein et al. (2006) and showed that the temporal resolution 
was better in un-cued locations. Additionally, Yeshurun and Marom 
(2008) found that transient attention can prolong the apparent duration 
of an attended disk that appeared for a duration of 70 ms. Similarly, 
Yeshurun and Hein (2011) showed that when the location of a two- 
frame apparent motion sequence was cued by a transient exogenous 
cue, participants’ performance on direction discrimination significantly 
dropped. 

These results are consistent with the hypothesis that transient 
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attention prolongs the internal response to the attended stimulus (Yes-
hurun & Marom, 2008). Such attentional prolongation of the response 
reduces temporal sensitivity and thus temporal segregation. Therefore, 
events occurring at different time points might be integrated into a 
single event (Yeshurun & Hein, 2011). Yeshurun and Hein (2011) sug-
gested that transient attention directed to a spatial location facilitates 
the activity of the parvocellular system (i.e., visual cells with small 
receptive fields, with superior spatial acuity but poor temporal acuity 
and prolonged response persistence; Denison, Vu, Yacoub, Feinberg, & 
Silver, 2014; Derrington & Lennie, 1984; Livingstone & Hubel, 1988), 
and suppresses the magnocellular system (Yeshurun, 2004). 

Yeshurun (2004) used isoluminant stimuli to ensure that the per-
formance in a temporal gap detection task was mainly supported by the 
parvocellular system. They found that, under these stimulus conditions, 
the deleterious effect of the exogenous cue was attenuated or eliminated. 
Megna, Rocchi, and Baldassi (2012) evaluated the influence of transient 
spatial cues on the spatial and temporal dimensions of perceptual filters. 
They presented a spatiotemporal noise matrix in each visual hemi-field. 
The matrix was composed of bars changing in luminance over time. One 
of the matrices contained the target, which was a luminance increment 
of the middle bar spatiotemporally centered in the noise matrix. In the 
cueing conditions, a small horizontal bar, which preceded the target by 
120 or 250 ms, indicated the visual hemi-field where the target would 
appear. The observers had to report which matrix (left or right) included 
the target. When the matrices were presented at a small eccentricity (3 
deg), transient attention caused the perceptual templates to be sharper 
in space, as reflected by high spatial frequency components and a large 
temporal integration window. These results further support the parvo-
cellular explanation of transient exogenous attention by showing that in 
the presence of timed spatial exogenous cues observers rely on noisy 
evidence lasting longer and with finer spatial arrangement. Yeshurun 
and Sabo (2012) provided further evidence that transient attention fa-
cilitates parvocellular activity using two pedestal paradigms: a pulse- 
pedestal paradigm favoring parvocellular activity and a steady- 
pedestal paradigm favoring the magnocellular system. They found that 
an exogenous cue that attracts transient attention to the location of the 
upcoming target improved performance with a pulse-pedestal but had 
no effect with the steady-pedestal. Though they did not find a decrease 
in the performance with the steady-pedestal paradigm, most of the 
previous studies mentioned above showed inefficient temporal pro-
cessing in the cued region, and in line with Yeshurun’s (2004) hypoth-
esis of magnocellular suppression. 

Based on the previous findings, it is likely that transient exogenous 
attention impairs accuracy in a task mainly mediated by the magno-
cellular system and in which the temporal information is a crucial factor 
such as in motion perception. According to Adelson and Bergen (1985), 
motion processing is a combined response between spatial and temporal 
filters, therefore one would expect that if temporal resolution is reduced 
by presenting a transient cue, then even motion perception will be 
affected. Attentional modulation of motion perception was supported by 
a reversed apparent motion paradigm (Yeshurun & Hein, 2011). In this 
paradigm (Experiment 4 in Yeshurun & Hein, 2011), observers were 
briefly presented with two consecutive sine-wave gratings with a 90-deg 
phase shift, which produces the perception of motion in the direction of 
the phase shift with short ISIs between frames and in the opposite di-
rection with longer ISIs (Takeuchi & DeValois, 1997). When the location 
of the target (i.e., one of six possible locations around the fixation) was 
exogenously cued (i.e., valid cue condition), the observers were less 
likely to report reversed apparent motion compared to when spatial 
attention was not allocated to any specific location (i.e., neutral cue 
condition). Transient attention reduced the perception of reversed mo-
tion in a similar way to increasing the spatial frequency of the gratings 
(thus biasing parvo-dominated processing), implying that the temporal 
response was more sustained in this condition, allowing reversed motion 
to be perceived only with longer ISIs. On the other hand, Liu, Fuller and 
Carrasco (2006) showed that transient attention could increase 

performance in a motion task. They presented two random dot kine-
matograms (RDKs), and the observers had to judge which pattern was 
more coherent and report the motion direction. They found that an 
exogenous cue that preceded one of the two RDK increased subjective 
appearance of motion coherence and improved motion direction 
discrimination. However, the processing of global motion occurs at a 
late stage of visual processing and requires the integration of different 
local motion cues into a global motion percept (Newsome, Britten, & 
Movshon, 1989; Newsome & Paré, 1988). Therefore, one could argue 
that transient attention may alter temporal processing only at the local 
motion level. 

In the present study, we investigated whether transient attention 
negatively affects motion perception from drifting Gabor patches. 
Building on the above-mentioned studies, we tested the hypothesis that 
exogenous attention prolongs the internal response to the stimuli pre-
sented in the cued location by reducing temporal sensitivity and thus 
impairing motion direction discrimination (Yeshurun & Hein, 2011). 
This is because the prolongation of the response to the cued stimulus 
could reduce the temporal segregation of visual events. Such modulation 
in the temporal domain is expected to mainly affect the processing of 
moving stimuli which have spatiotemporal characteristics that are 
appropriate and mainly engage the magnocellular system. 

There has been extensive research on the anatomical projections and 
functional specialization of M and P cells (Denison et al., 2014; Tootell, 
Hamilton, & Switkes, 1988; Zhang, Zhou, Wen, & He, 2015) and debates 
on whether they form pathways that carry out distinct processing of 
different stimulus characteristics (Kaplan, 2012). Despite the views 
challenging parallel processing and arguing for shared magnocellular 
and parvocellular contribution in the processing of stimulus character-
istics (Sincich & Horton, 2005), studies on temporal and spatial tuning 
properties, contrast gain of P and M cells (Alitto, Moore, Rathbun, & 
Usrey, 2011; Kaplan & Benardete, 2001; Movshon, Kiorpes, Hawken, & 
Cavanaugh, 2005) and lesion studies (Merigan, Katz, & Maunsell, 1991; 
Schiller, Logothetis, & Charles, 1990) suggest that specific combinations 
of stimulus parameters can be used to index the activity of M/P system, 
or at least bias the response of either. In other words, the processing of 
certain stimuli can be not exclusively, but predominantly carried out by 
one system. 

Therefore, we used drifting Gabor patches with a temporal frequency 
(i.e., 20 Hz; see Liu, Bryan, Miki, Woo, Liu, & Elliott, 2006) and a range 
of low spatial frequencies optimally engaging magnocellular processing 
(Derrington & Lennie, 1984). The rationale was that if transient atten-
tion prolongs the temporal response to stimuli presented in the cued 
location, thus favoring the parvocellular system over the magnocellular 
system, then we would expect decreased accuracy on a motion direction 
discrimination task when valid exogenous spatial cues are used. 

2. Methods 

2.1. Participants 

Twenty-two observers with normal or corrected-to-normal vision, 
who were naïve to the purpose of the study, took part in the experiment. 
Two participants were excluded from data analysis, since their average 
accuracy scores were below the pre-determined 75% accuracy threshold 
(Aydin, Ogmen, & Kafaligonul, 2021; Hung & Carrasco, 2021). 
Accordingly, the data of the remaining 20 participants (12 females and 8 
males, with a mean age of 25.8 ± 3.9 years) were included in the further 
analysis. Prior to their participation, all observers were informed about 
experimental procedures and gave written informed consent. All 
experimental procedures were in accordance with the World Medical 
Association (2013) and approved by the local Ethics Committee at Bil-
kent University. 
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2.2. Apparatus 

Stimuli were generated using MATLAB with the Psychophysics 
Toolbox (Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997) 
and displayed on a NEC MultiSync LCD 2190UXP 21-inch monitor with 
a refresh rate of 60 Hz and a spatial resolution of 1600 × 1200 pixels. 
The screen luminance was measured and calibrated using a SpectroCAL 
(Cambridge Research Systems, Rochester, Kent, UK) photometer. The 
stimuli were presented on a gray background (30.7 cd/m2). Gaze co-
ordinates were recorded using a monocular eye-tracker (Eye Trac 6, 
Applied Science Laboratories, Bedford, MA, USA) at a sampling rate of 
50 Hz. Participants sat in a dark room at a viewing distance of 57 cm 
from the monitor. Viewing was binocular. Head movements were con-
strained by a chin and forehead rest. 

2.3. Stimuli 

Stimuli were drifting Gabor patches and consisted of a sinusoidal 
carrier enveloped by a stationary Gaussian window with σ = 0.68 deg 
(approximately 3.0 deg in diameter). Narrow Gabor patches were used 
to limit spatial summation. In fact, Tadin, Lappin, Gilroy, and Blake 
(2003), using a motion direction discrimination task, found that at high 
contrast (i.e., 92%), the direction discrimination of a drifting Gabor 
patch was impaired (i.e., higher duration thresholds) with increasing the 
stimulus size (up to 5 deg), suggesting an effect of centre-surround 
antagonism at the level of individual neurons (i.e., surround suppres-
sion; Glasser & Tadin, 2011; Tadin & Lappin, 2005). However, when 
using low contrast Gabors (2%), the authors found lower duration 
thresholds with increasing stimulus size, suggesting a shift from sur-
round suppression to spatial summation for low contrast and wide Gabor 
patches (Tadin et al., 2003). 

We used five spatial frequencies (0.15, 0.25, 0.35, 0.45, and 0.55c/ 

deg). The target Gabor patch had a Michelson contrast of 0.22 (with a 
min luminance of 26.1 cd/m2 and a max luminance of 40.8 cd/m2) and 
drifted at 20 Hz. The temporal frequency and contrast were selected to 
mainly tap the magnocellular system (Liu et al., 2006; Merigan, Byrne, & 
Maunsell, 1991; Merigan & Maunsell, 1990). The target Gabor patch 
could appear in one of eight possible locations equidistant around the 
fixation point. The distance between the central fixation point and the 
center of the Gabor patch was 7.0 deg. A cue was presented before the 
presentation of the target Gabor patch which consisted of a circular 
frame (approximately 5.0 deg in diameter) and could be either infor-
mative of the location of the target Gabor patch (i.e., valid cue condi-
tion) or uninformative (i.e., neutral cue condition) (Yeshurun & Hein, 
2011). The circular cues appeared simultaneously at all the locations 
around the fixation point. The contrast polarity of the cues (i.e., white 
cue and black cue) was counterbalanced in two separate versions of the 
experiment to limit the contribution of polarity-specific paracontrast 
masking effect, which was shown to be minimal at the stimulus onset 
asynchrony (SOA) used in the current experiment (Kafaligonul, Breit-
meyer, & Ogmen, 2009). In the white cue version of the experiment, 
neutral cues were all black whereas the valid cue was white. In the other 
version of the experiment neutral cues were white whereas the valid cue 
was black (see Fig. 1). The two versions of the experiment were coun-
terbalanced across participants. In the fixation training (see Figure S.1A 
in the Supplementary Material for details), a flickering random-dot 
pattern with half black and half white pixels was used (Guzman-Marti-
nez, Leung, Franconeri, Grabowecky, & Suzuki, 2009) together with a 
fixation marker combining bull’s eye and cross hair that was shown to 
minimize eye movements (Thaler, Schütz, Goodale, & Gegenfurtner, 
2013). 

Fig. 1. Schematic representation of the stimuli and procedure used in the experiment. The valid cue is represented by the single white/black circular frame with an 
opposite contrast polarity. In the neutral cue condition, all the circular frames were either black or white and were non-informative of the forthcoming target’s 
location. Observers had to discriminate the direction of the target Gabor patch. The red arrow indicates leftward motion direction and was not displayed during the 
experiment. The contrast of the Gabor patch was increased for illustrative purposes. 
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2.4. Procedure 

At the beginning of each session, participants completed a brief 
training to maintain central fixation. The procedure of the fixation 
training is summarized in the Supplementary Material (Figure S.1B). 
The participants also performed an initial experimental training on 
motion direction discrimination and performed as many blocks as 
needed to get an accuracy ≥ 0.75 (Aydin, Ogmen, & Kafaligonul, 2021; 
Hung & Carrasco, 2021). On average, they completed 1.15 ± 0.37 
training blocks, with the same length and procedure as the main 
experimental blocks. There were eight blocks of equal length in the main 
experiment. The eye-tracker was recalibrated using a nine-point stan-
dard procedure before each block. 

In the main experiment, each trial started with a fixation point with a 
duration of 1.0 s and a pure tone with a duration of 0.05 s (frequency: 
500 Hz). The fixation point was followed by a display including the 
circular cues for 0.05 s. After a 0.05 s blank screen (i.e., SOA of 0.1 s), the 
drifting Gabor patch appeared at one of the eight locations for 0.05 s. 
These short durations triggered a transient response and prevented eye 
movements towards the Gabor patch (Carpenter, 1988; Hein et al., 
2006; Wright & Ward, 2008). On half of the trials the cue was valid and 
indicated the location of the forthcoming drifting Gabor patch. On the 
other half of the trials, the cue was neutral and uninformative of the 
Gabor patch location (see Fig. 1). The motion direction of the Gabor 
patch (i.e., rightward, or leftward) was randomized across trials. Ob-
servers had to discriminate the motion direction of the Gabor patch 
(Method of Single Stimuli; Morgan, Dillenburger, Raphael, & Solomon, 
2012), by pressing the ‘A’ key if it was perceived to drift leftwards or the 
‘L’ key if it was perceived to drift rightwards. Observers were instructed 
to respond as accurately and quickly as possible. They had 2 s to 
respond. Feedback was provided on a trial basis after each response 
during the inter-trial interval, by displaying at the center of the screen 
the response time (in milliseconds) in green for correct responses and in 
red for incorrect responses. The trials, in which the observer did not 
respond within the specified time window, were recorded as unan-
swered. In addition, instead of the response time, a warning (i.e., 
“Please, respond faster”) was displayed at the center of the screen during 
the feedback period. Accuracy and reaction times were measured. Gaze 
coordinates were recorded simultaneously with the behavioral 
responses. 

There were 2 (valid vs. neutral cue) × 5 (spatial frequencies) con-
ditions. Observers performed 192 trials per spatial frequency for a total 
of 960 trials (i.e., 120 trials per block), which were presented in a 
random order. For each spatial frequency, there were 96 presentations 
of the valid cue and 96 presentations of the neutral cue. Gabor patches 
with each spatial frequency were displayed 24 times at each of the eight 
spatial locations. 

2.5. Analysis of eye Movements, accuracy Scores, and reaction times 

To ensure that the stimuli were processed at the periphery and covert 
attention was effectively manipulated, eye movements during the 
experiment were analyzed in ASL Results software (Applied Science 
Laboratories, Bedford, MA, USA). First, the stimulus presentation period 
(i.e., the first 1.15 s) in each trial was extracted by discarding the 
response period. Second, the fixations during this period were detected 
in each trial. If the gaze was stable for a minimum of 0.1 s within a 
maximum of 1.0 deg, then it was regarded as the start of a fixation. If 
three consecutive samples of gaze coordinates deviated from this initial 
position or pupil data was lost for longer than 0.2 s (typical length of a 
blink), then it was regarded as the end of the fixation. Following the 
detection of fixations, the fixation coordinates in each trial were 
compared to a 2 × 2 deg central square window around the fixation 
point. Finally, trials in which fixations were not detected and trials with 
fixation coordinates outside this window (a total of 15.1 ± 9.0%) were 
excluded from further analyses. After the exclusion of trials with no 

fixations and trials with excessive eye movements (i.e., trials in which 
participants failed to fixate at the central window), it was checked 
whether a similar number of trials were analyzed in each condition. A 
repeated measures ANOVA with the mean number of removed trials as 
dependent variable showed that the number of removed trials did not 
significantly differ between conditions (Mremoved = 14.5 ± 0.5 trials per 
condition, Cue type: F1, 19 = 0.154, p =.70, η2

p =.01; Spatial frequency: 
F4, 76 = 0.600, p =.66, η2

p =.03; Cue type × Spatial frequency interaction: 
F4, 76 = 0.147, p =.96, η2

p =.01). In addition, the two subgroups of 
participants, who performed different versions of the experiment (i.e., 
white cue and black cue), were compared using a Mann-Whitney U test 
due to a violation of the normality of residuals for accuracy scores. Their 
accuracy scores were comparable (U = 41.0, p =.52). 

Following trial exclusion based on eye movements, accuracy was 
calculated as the proportion of correct responses in each condition. 
Median and mean reaction times were calculated in each condition for 
correct responses only. Reaction times data for correct responses only 
were checked for outliers using the method of the median absolute de-
viation (MAD) for asymmetric distributions using a cutoff of three (Leys, 
Ley, Klein, Bernard, & Licata, 2013; Rousseeuw & Croux, 1993). On 
average we found 6.32% (SD = 1.55%) of outlier RTs. Outlier RTs were 
included in the raw RT analysis and analysis of RT distribution. Addi-
tionally, there were six participants who missed only a few trials. Missed 
trials were 0.04% of the total trials (SD = 0.06%) and were excluded 
from subsequent analyses. 

According to Shapiro-Wilk tests, residuals of accuracy scores and 
reaction times (RTs) were not normally distributed (W = 0.903, p <.001 
and W = 0.944, p <.001, for accuracy scores and reaction times, 
respectively). Since the common nonparametric tests such as Friedman 
are inadequate to evaluate interactions, we used the Aligned Rank 
Transform (ART), a procedure for the nonparametric analysis of vari-
ance in multifactor designs (Higgins, Blair, & Tashtoush, 1990; Higgins 
& Tashtoush, 1994; Salter & Fawcett, 1993; Wobbrock, Findlater, Ger-
gle, & Higgins, 2011). We applied the alignment and rank trans-
formation to the mean proportion of correct responses and the mean 
reaction times. With this technique, parametric tests (typically ANOVA) 
can be implemented once the data is aligned and ranked for each main 
and interaction effect. The pairwise comparisons for the significant main 
and interaction effects were conducted using the ART-C procedure, 
which was developed for reliable contrast tests (Elkin, Kay, Higgins, & 
Wobbrock, 2021). 

3. Analysis of response time distributions 

In addition to the analysis of mean RT and response accuracy 
mentioned above, we further investigated the observed data based on 
the level of RT distributions. With this approach, we sought to gain a 
more detailed insight into how both response accuracy and response 
speed were affected by the different cues. First, we present a description 
of the data, followed by a model-based assessment. The aim of the 
descriptive approach is to illustrate the patterns observed in the data 
which the model needs to explain. Statistical testing was then performed 
in the model-based assessment. For the model-based approach, we fitted 
a computational RT model to the data, which can simultaneously ac-
count for response speed and response accuracy. For the distributional 
analyses, we pooled responses across the different spatial frequencies to 
get less noisy estimates, whereas the model was fitted to all conditions 
separately, as is common in RT modeling. 

A common approach to compare RT distributions is the quanti-
le–quantile (Q-Q) plot. In this representation, quantiles of one distri-
bution are plotted against those of another distribution. If the two 
distributions are similar, the Q-Q plot shows a straight line along the 
main diagonal. If one distribution dominates the other, the line will lie 
below or above the main diagonal. For the Q-Q plot, we estimated 20 
quantiles (2.5%, 7.5%, …, 97.5%) of the valid and neutral cue RT dis-
tribution. The quantiles were obtained from the nonparametric Kaplan- 
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Meier estimate (Kaplan & Meier, 1958), treating incorrect responses as 
censored observations in this analysis. That is, in trial with incorrect 
responses, the correct response was not observed but assumed to have 
occurred any time after the incorrect response. Further, we investigated 
response accuracy over different response latencies with a conditional 
accuracy function (CAF). The CAF plots response accuracy as a function 
of response latency, indicating the presence (or absence) of fast and/or 
slow errors. To estimate the CAF, we created five RT bins (0–20%, …, 
80–100%) from the RT distribution of valid and neutral cues, and esti-
mated response accuracy separately for each bin. Confidence intervals 
for accuracy were estimated by a bootstrap procedure using a mixed- 
effects design (cue type as fixed effect, participants as random effect). 

3.1. Response time model analysis 

To further investigate cueing effects on RT distributions and to 
analyze response times and response accuracy in a single analysis, we 
fitted the Poisson random walk model (Blurton, Kyllingsbæk, Nielsen, & 
Bundesen, 2020) to the observed data. The Poisson random walk model 
is an RT model for speeded responses in an n-alternative forced-choice 
task. It is an extension of the Theory of Visual Attention (TVA, Bunde-
sen, 1990) to model perceptual decisions in tasks with mutually con-
fusable stimuli. It is assumed that, upon stimulus presentation, tentative 
categorizations of the form “stimulus × belongs to category i” are made 
continuously over time (Fig. 2A), until one perceptual category has 
accumulated a critical number of tentative categorizations more than all 
other categories (sequential sampling). With sequential sampling 

models for RT, the entire observed dataset can be analyzed in a single 
analysis because the model predicts the whole RT distribution of correct 
and incorrect responses (including response accuracy). 

In the special case of two perceptual categories as in the present 
study, the Poisson random walk model is very similar to the diffusion 
decision model (DDM, Ratcliff & McKoon, 2008). Like the DDM, the 
Poisson random walk model is based on a noisy stochastic process be-
tween absorbing barriers, representing response criteria for each of the 
two alternatives (Fig. 2B). In the current application of the model, the 
two perceptual categories may be represented with L (Gabor patch ap-
pears moving leftward) and R (Gabor patch appears moving rightward). 
Each perceptual category is associated with a response criterion (kL and 
kR). These criteria can be set farther apart, resulting in slower but more 
accurate decisions or closer, resulting in faster but less accurate de-
cisions (speed-accuracy trade-off). 

The benefit of applying computational RT models is that they allow 
estimation of cognitively meaningful parameters. As already mentioned, 
the Poisson random walk contains a response criterion (k) that de-
termines how many categorizations are needed to conclusively select a 
perceptual category. Further, categorizations for each category i are 
made with a rate vi, representing the processing speed for that category. 
The higher the processing rate, the faster tentative categorizations are 
collected. In a task with two categories and mutually confusable stimuli, 
there are two possible categorizations with different rates, one catego-
rization is correct, the other incorrect. Clearly, the rate for the correct 
categorization (vc) will usually be greater than that for the incorrect 
categorization (ve). It is useful to define p = vc/(vc + ve) as the 

Fig. 2. Overview of the Poisson random walk model for two perceptual categories L and R. (A, B) Random realization of a single trial with a leftward moving grating. 
Evidence for either category is accumulated over time. A category is conclusively selected and reported as soon as it has accumulated k more categorizations than the 
other (here: k = 3). The categorization that leads to reaching the criterion L is marked with a circle in (A). (C) Theoretical probability distribution for reaching either 
criterion after exactly n steps in the random walk. Reaching the criterion for L is more likely overall, however, there is a probability that the criterion for R is reached 
first, leading to an incorrect response. (D) Theoretical cumulative distribution functions for reaching criterion L or R at or before time t. This is the model prediction 
for RT, it is based on the probability distribution shown in (C) and the distribution of waiting time until n categorizations have been made (not shown). 
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probability that a given categorization is for the correct perceptual 
category. This probability mainly depends on stimulus confusability: 
with higher confusability, p will be closer to 0.5, whereas with highly 
discriminable stimuli p will be close to unity. This parameter therefore 
represents the quality of information sampled from a stimulus. Due to 
the normalization, we call this parameter normalized processing rate. It 
is further useful to define C = vc + ve, that is, the sum of processing rates, 
which can also be conceived as visual processing capacity (Bundesen, 
1990; Townsend & Ashby, 1983). C defines the processing limit (parallel 
processing with fixed capacity; Shibuya & Bundesen, 1988) and there-
fore reflects the efficiency with which a stimulus is processed. Finally, 
there is a non-decision time (T0), representing the latency of all pro-
cesses that are otherwise not described by the model, such as motor 
execution or response selection. 

In an extension to the model outlined so far, there are three addi-
tional sources of RT variability. The first source of additional variability 
comes from the assumption of trial-by-trial variation in the processing 
rates. Instead of assuming the same processing rates throughout the 
experiment, the processing rates are assumed to vary across trials. The 
amount of variation is denoted by parameter ξ. The trial-by-trial 
parameter ξ is best interpreted as a scaling factor 1/ξ, indicating how 
large the processing rate variance is compared to the mean processing 
rate (small values represent large variance compared to the mean). The 
second source of additional variability is a variable starting point Z0. 
With a variable starting point, the decision process does not start at the 
neutral position at stimulus onset but may be biased towards either 
criterion across trials. The amount of variation is denoted by the vari-
ance of Z0, that is, σz

2 = Var(Z0). As in the DDM, this variability reflects 
effects of premature sampling (Ratcliff & Rouder, 1996), that is, sam-
pling (noise) before stimulus onset (Laming, 1968). With this assump-
tion it is possible to explain fast errors, that is, errors that are faster than 
predicted by the base model described above. Conversely, the assump-
tion of trial-by-trial variation in processing rates allows the model to 
predict slow errors, that is, errors that are slower than predicted by the 
base model. 

The third source of additional variation in the model is the 
assumption of temporally inhomogeneous processing. Under this 
assumption, processing rates vi are no longer constant over time 
(Fig. 3A). Instead, the processing rates vi(t) vary over time; they are zero 
at stimulus onset and upon stimulus presentation, gradually increase up 

to a maximum. This response function is modeled as a scaled gamma 
distribution function with variable rate µ and fixed shape n. The effect of 
µ is that high values lead to a faster increase to the asymptotic level, 
whereas lower values lead to a slower increase. Apart from being 
physiologically more plausible than a constant processing rate (Chris-
tensen, Markussen, Bundesen, & Kyllingsbæk, 2018), this functional 
form has been suggested by Smith and Van Zandt (2000) to reflect the 
time course of early visual processing. Early visual processing can be 
conceived as filters, some of which exhibit a sustained response to a 
stimulus; their output shall be approximated by this response function 
(Smith & Van Zandt, 2000). This functional form provides additional 
flexibility in the leading edge of the predicted RT distribution but has 
otherwise negligible effects. This is because the speed of perceptual 
decisions depends on the integrated processing rates rather than the 
processing rates vi(t). Since the time-varying rate will asymptote to the 
constant rate vi sooner or later, only the fastest responses will be affected 
by the assumption of temporal inhomogeneity (Fig. 3B). 

In the DDM, variability in the leading edge of RT distributions is 
achieved by introducing trial-by-trial variation in non-decision time 
(Ratcliff & Tuerlinckx, 2002) while leaving the drift rates constant 
within a trial. A notable exception is the time-dependent diffusion model 
proposed by Smith and Ratcliff (2009, see also Smith, Ratcliff, & Wolf-
gang, 2004). This extended version of the original DDM is relevant in 
this context, as it has been suggested as a RT model for spatial cueing 
effects. The extended DDM captures those cueing effects with different 
time courses of drift rates. Decisions based on stimuli presented at an 
attended location are based on a drift rate that more quickly reaches its 
asymptote than those based on stimuli presented at an unattended 
location (Smith & Ratcliff, 2009). To model the data in this study, we 
largely followed Smith and Ratcliff’s (2009) work in specifying the 
model and selecting model parameters for testing. Nonetheless, there 
are differences in our approach, as the extended diffusion model is a 
multi-stage processing model that includes encoding in visual short-term 
memory as an explicit processing stage. However, the Poisson random 
walk model enabled us to take up the most relevant aspects of the 
diffusion model using a computationally simpler model. We exploited 
this advantage to perform nested model tests of model fits based on 
individual datasets instead of group averaged data. Also, the Poisson 
random walk model includes visual processing capacity C, a parameter 
that has no direct counterpart in the DDM but has been central in 

Fig. 3. Inhomogeneous processing in the Poisson random walk. (A) Time dependent processing rates, represented by overall processing capacity C. In the temporally 
homogeneous case, tentative categorizations are made with constant speed (here: C = 60 Hz). In the inhomogeneous case, rates increase continuously until reaching 
an asymptote (here: C(∞) = 60 Hz). (B) Integrated processing capacity of the two cases shown in (A). In a Poisson process, the number of expected events depends on 
the integrated event rate, rather than the event rate itself. This assumption on inhomogeneous processing affects the leading edge of predicted RT distributions only, 
as its effect becomes negligible with increasing time. 
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modelling visual attention effects within the TVA (Bundesen, 1990; 
Bundesen, Vangkilde, & Petersen, 2014; Shibuya & Bundesen, 1988). 

Altogether, the null model, that is, the model without parameters for 
cueing effects had eleven free parameters (p.15, p.25, p.35, p.45, p.55, C, k, 
T0, ξ, σz2, µ) that were estimated from data. Five of these are normalized 
processing rates px for the five different spatial frequencies, which, 
together with processing capacity C, yield the (mean) processing rates 
for correct and incorrect categorizations. The remaining parameters 
were the response criterion k, the latency of all non-decision processes 
T0, and three parameters (ξ, σz2, and µ) for the three additional sources 
of RT variation. For more details on the model and model specification, 
we refer the interested reader to the Appendix. 

Regarding cueing effects on the different model parameters, we were 
particularly interested in two different models. The first model under 
consideration is similar to the time-dependent diffusion model (Smith & 
Ratcliff, 2009): we allowed for different time courses of processing 
(µvalid, µneutral) expecting that valid cues will lead to a faster response in 
early visual processing. Additionally, visual processing capacity is 
different between cueing conditions (Cvalid, Cneutral) in this model. The 
latter prediction can be derived from the TVA by noting that spatial cues 
will alter attention weights assigned to the different locations. The 
attention weights determine processing rates and thus processing ca-
pacity in a multiplicative fashion (Bundesen, 1990), so that higher 
weights would lead to higher processing speed. On the other hand, if 
transient attention increases the temporal integration time window 
(Hein et al., 2006; Yeshurun, 2004; Yeshurun & Hein, 2011; Yeshurun & 
Marom, 2008; Yeshurun & Sabo, 2012), this should degrade the infor-
mation that is sampled from the moving stimuli. In this case, we would 
expect a lower processing capacity if attention was directed at the 
location of the motion stimulus. 

The second model that we fitted to the data was a model with 
different response criteria (kvalid, kneutral) to test if cueing effects could be 
explained by a mere speed-accuracy trade-off rather than attentional 
effects due to the cue (e.g., Hein et al., 2006). In addition, we tested 

whether the starting point distributions (σ2z,valid, σ2z,neutral) differed 
between the cueing conditions. As stated above, this parameter reflects 
premature sampling (Laming, 1968; Rouder, 1996), that is, sampling 
noise before the onset of the imperative stimulus. Judging from the form 
of the estimated conditional accuracy functions (Fig. 5B), we suspected 
starting point variation to be different for valid and neutral cueing 
conditions (see Fig. 6). 

The remaining parameters were held fixed across cueing conditions 
in all models we investigated. The decision to fix non-decision time (T0) 
and trial-by-trial variation of processing rates (ξ) was based on the re-
sults reported by Smith, Ratcliff, and Wolfgang (2004). Similarly, we 
restricted the normalized processing rates px to be the same across 
cueing conditions. This assumption is also based on the TVA—while 
attention weights alter the overall processing capacity, they should not 
differentially affect the relative strength of processing rates. The relative 
strengths of processing rates are rather determined by categorical bias 
(in addition to stimulus confusability). According to the TVA, categor-
ical bias works independent from attentional weights and thus should 
not be affected by spatial cueing. After identifying the best fitting model, 
we tested post hoc the veracity of our assumptions. 

Estimation of model parameters was performed by maximizing the 
likelihood function of the model. For the maximum likelihood estima-
tion of model parameters, we removed all responses faster than 200 ms 
to avoid distortion of model parameters. This cut off criterion was 
applied to all datasets and led to the removal of four responses in one 
participant. To determine which model is most suitable given the data, 
we followed a two-fold approach. First, we fitted a model that included 
all parameters of interest to individual datasets and used t-tests to 
determine which parameters (if any) were significantly different be-
tween cueing conditions. In a second approach, we further tested the 
parameter of interest in a model comparison approach. Starting with the 
most restricted model with all parameters being equal between cueing 
conditions, we added parameters to the model and assessed the 
increased goodness-of-fit by means of the Bayes Information Criterion 

Fig. 4. Boxplots of the proportion of correct responses (A), and reaction times (in seconds) based on correct trials (B) for the valid and neutral cue conditions as a 
function of the target’s spatial frequency (c/deg). For each boxplot, the horizontal black line indicates the median, the boxes in the boxplots extend from the lower 
quartile to the upper quartile (i.e., the 25th and 75th percentiles). The difference between the upper quartile and the lower quartile is called interquartile range. The 
vertical lines extend to one and a half times the interquartile range, and they are limited to reaching actual data points. The dot within each boxplot represents the 
mean accuracy (A) and mean reaction time (B) values. The asterisk in panel (A) indicates the significant difference (p <.05) between neutral and valid cue conditions 
for the spatial frequencies at 0.35c/deg. 
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(BIC). The BIC introduces a sample-size dependent penalty for addi-
tional parameters, so that models with lower BIC are preferred. Rather 
than performing a forward procedure, we repeatedly checked whether 
parameters that were excluded in previous steps would lead to a lower 
BIC in later steps. This complementary model evaluation can provide 
further insight because averaging parameter estimates across partici-
pants can mask effects that are indeed present (Donkin, Brown, & 
Heathcote, 2011). 

4. Results 

4.1. Analysis of accuracy scores 

Fig. 4A shows the median and mean proportion of correct responses 
as a function of the target’s spatial frequency. An aligned rank transform 
ANOVA including Cue type (neutral vs. valid) and Spatial frequency 
(0.15, 0.25, 0.35, 0.45, and 0.55c/deg) as within-subjects factors 
revealed a significant effect of the Cue type (F1, 171 = 30.72, p <.001, η2

p 
=.15), a significant effect of the Spatial frequency (F4, 171 = 4.91, p 
<.001, η2

p =.10), and a significant interaction between Cue type and 
Spatial frequency (F4, 171 = 2.73, p =.031, η2

p =.06). 
For the main effect of spatial frequency, post-hoc comparisons cor-

rected with Holm’s method (α = 0.05) (Holm, 1979) yielded a signifi-
cant difference between the spatial frequency at 0.15c/deg and 0.55c/ 
deg (padj = 0.04), but not between 0.15c/deg and 0.25c/deg (padj =

0.66), 0.35c/deg (padj = 1.0), and 0.45c/deg (padj = 0.95). For the spatial 
frequency at 0.25c/deg, Holm corrected post-hoc comparisons revealed 
a significant difference with respect to 0.55c/deg (padj < 0.001), but not 
with respect to 0.35c/deg (padj = 0.36) and 0.45c/deg (padj = 0.13). For 
the spatial frequency at 0.35c/deg, Holm corrected post-hoc compari-
sons did not reveal a significant difference with respect to 0.45c/deg 
(padj = 1.0) and 0.55c/deg (padj = 0.13). Additionally, 0.45c/deg did not 
significantly differ from 0.55c/deg (padj = 0.36). 

For the interaction between Cue type and Spatial frequency, Holm 
corrected post-hoc comparisons revealed a significant difference be-
tween valid and neutral cue conditions only for the spatial frequency of 
0.35c/deg, in which the valid cue reduced the accuracy in motion di-
rection discrimination (padj < 0.001). The difference between valid and 
neutral cues was not significant for the spatial frequencies of either 
0.15c/deg (padj = 0.99), 0.25c/deg (padj = 0.99), 0.45c/deg (padj = 0.99) 
and 0.55c/deg (padj = 0.25). 

4.2. Analysis of reaction times 

Fig. 4B shows the median and mean reaction times (RTs, in seconds) 
for correct responses only, calculated for each cue condition as a func-
tion of the spatial frequency. An aligned rank transform ANOVA was 
performed on the mean RTs including as within-subjects factors the Cue 
type and Spatial frequency revealed a significant effect of the Cue type 
(F1, 171 = 148.07, p <.0001, η2

p =.46), but no significant effect of the 

Fig. 5. Analysis of RT distributions. (A) Quantile-Quantile (Q-Q) plot of empirical RT distributions in the two cueing conditions. Early responses are faster in the 
valid cue condition, but this difference diminishes as RTs increase, so slow responses are comparable in valid and neutral cue trials. (B) Conditional accuracy 
functions (CAFs) for valid and neutral cue conditions. Error bars denote 95% confidence intervals. 

Fig. 6. Estimated time-course of visual processing capacity (C) in the Poisson 
random walk model. Valid cues led to faster processing initially, which provides 
an early advantage. Later, neutral cues take over as they are processed more 
efficiently. The functional form is given by Eq. A(3) in the Appendix, the 
relevant parameter estimates are taken from Table 1. 
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Spatial frequency (F4, 171 = 2.39, p =.053, η2
p =.05) and interaction 

between Cue type and Spatial frequency (F4, 171 = 1.45, p =.22, η2
p =.03). 

In general, median and mean RTs in the valid cue conditions were 
significantly lower than in the neutral cue condition. For spatial fre-
quency, Holm corrected pairwise comparisons did not reveal any sig-
nificant difference between spatial frequencies (all padj > 0.05). 

4.3. Descriptive analysis of RT distribution and conditional accuracy 

In line with the results in the previous section, we found faster 
response times to validly cued targets across a wide range of the entire 
distribution (Fig. 5). This difference was not constant, though, it was 
larger for the lowest quantiles and decreased with increasing the RT. 
That is, responses in the valid cue condition were initially faster than 
those in the neutral cue condition, but response speed to targets in the 
neutral cue condition caught up with increasing time so that late re-
sponses were about equally fast. 

The analysis of response accuracy across the RT distribution showed 
that these fast responses in the valid cue condition were less accurate 
than the fastest responses to neutrally cued targets. With increasing 
response times, the observed accuracy was approximately the same 
between the two cueing conditions. That is, while the valid cues lead to 
faster responses, these fast responses were less accurate than those in the 
neutral cue condition. This analysis supplements the analysis of mean 
RT and accuracy, in that it describes more precisely, where the observed 
cueing effects are located. The response time model needs to account for 
these effects; and in testing for cueing effects its various parameters, we 
can describe those in terms of cognitive parameters. 

4.4. Fit of the Poisson random walk model 

As described above, we fitted the Poisson random walk model to the 
observed RT distributions. The goal of this analysis was twofold: (i) to 
investigate the possibility that a speed-accuracy trade-off caused the 
patterns of RT and accuracy (Fig. 4), (ii) to analyze the full RT distri-
butions rather than mean RT only, as the full distribution can contain 
relevant information that is not captured by mean RT (cf. Fig. 5). 

We first fitted the Poisson random walk model to the individual data 
obtained in the valid cue condition and in the neutral cue condition. This 
model was specified so that separate parameters were included for all 
parameters that we expected might contain cueing effects (i.e., µ, C, k, 
σz2). The choice of which parameters to test was based on a priori 
considerations. In particular, we wanted to include all relevant param-
eters while excluding the least interesting to reduce the computational 
burden in the second analysis. The estimated parameters of this model 
are summarized in Table 1. The processing rates (px) for the correct 
categorization were similar across the spatial frequencies used in the 
experiment. The response criteria (k) were also rather similar for the two 
cueing conditions, but the criterion for validly cued targets was signif-
icantly higher than that for neutrally cued targets (t = − 2.343, df = 19, 
p =.030). That is, in both cueing conditions our participants performed 
on average about three categorizations more for the correct than the 
incorrect perceptual category. Processing capacity (C) was significantly 
higher in neutrally cued targets than validly cued targets (t = 2.328, df 
= 19, p =.031), whereas the speed of early perceptual processing (µ) was 
significantly higher in validly cued targets than neutrally cued targets (t 
= − 4.526, df = 19, p <.001). Valid cues lead to significantly higher 
starting point variation than neutral cues (t = − 4.491, df = 19, p 
<.001). Trial-by-trial variation (ξ) in processing rates was low in both 
cueing conditions. This is also reflected in the data, in which we 
observed only few slow errors (error RT quantiles greater than correct 
RT quantiles). This is evident in Fig. 7, where a wide range of quantiles 
of incorrect RT distributions are lower than corresponding quantiles of 
correct RT distributions, especially in validly cued trials. Individual 
parameter estimates of the model are available as supplemental material 
(Table S.1). 

As suggested by the conditional accuracy function (Fig. 5B), starting 
point variation was higher after valid cues than neutral cues. Allowing 
for this difference, however, was not sufficient for the model to predict 
the difference in fast responses between valid and neutral cue conditions 
(Fig. 5A). In addition to starting point variation, early visual processing 
was also faster in the valid cue condition. Although there was a signif-
icant criterion shift, the shift was in a direction opposite to that sug-
gested by the analysis of mean RT and accuracy (Fig. 4). Thus, the result 
speaks against a speed-accuracy trade-off as a simple explanation for the 
observed patterns; the parameter analysis based on model comparisons 
(see below) suggested that this difference is likely a statistical artefact 
caused by including a cueing effect in a parameter that is not affected by 
cueing validity. 

Taken together, the results of the first model-based analysis suggest 
that the presentation of a valid cue led to significantly faster increase in 
processing rates but to a significantly lower efficiency in overall pro-
cessing, that is, more efficient processing of the moving Gabor stimulus 
after neutral cues. Thus, processing after stimulus onset was initially 
faster, however, over time, neutrally cued targets were processed more 
efficiently, leading to late responses being about equally fast in neutrally 
cued targets and validly cued targets (Fig. 5A and 6). 

In the second approach, we fitted different models to the individual 
datasets and compared their goodness-of-fit by means of their Bayes 
information criterion (BIC), summed across all participants. Unlike the 
first analysis, we directly tested cueing effects on single parameters with 
this stepwise approach. Starting with the most restricted model in which 
all parameters were equal across cueing conditions, we added parame-
ters to the model and compared their BIC to test if the added parameters 
substantially improve the model predictions and should be kept in the 
model. Rather than a simple forward selection, we checked whether 
previously rejected parameters improved the fit in later iterations. 

Both the model with different processing capacity (ΔBIC = − 148.9) 
and the model with different response criteria (ΔBIC = − 592.7) pro-
duced better fits than the null model. Allowing for a different time 
course of processing validly and neutrally cued targets in addition to 
processing capacity further improved the model fit of the processing 
capacity model (ΔBIC = − 465.1). Similarly, different starting point 
variation improved both the criterion shift model (ΔBIC = − 70.6) as 
well as the processing capacity and time course model (ΔBIC = −

157.2). Eventually, the model with cueing effects in processing capacity 
(C), time course of processing (µ), and starting point variation (σz

2) was 
the best fitting model, despite having one parameter more than the 
criterion shift model with different starting point variation (ΔBIC =

Table 1 
Group average (±SD) parameter estimates of the Poisson random walk model.   

Cue type 

Parameter Valid cues Neutral cues 

p0.15 0.792 (±0.059) 
p0.25 0.816 (±0.061) 
p0.35 0.816 (±0.069) 
p0.45 0.806 (±0.062) 
p0.55 0.784 (±0.056) 
ξ [E(vx)/Var(vx)] 20.6 (±40.7) 
k [categorizations] 3.16 (±0.64) 2.98 (±0.61) 
C [in Hz] 85.9 (±22.6) 101.3 (±30.0) 
µ 37.6 (±15.2) 28.6 (±11.2) 
σz2 2.20 (±1.27) 0.83 (±1.16) 
T0 [in s] 0.251 (±0.032) 

Note—Parameters: px denote (mean) normalized processing rates for the correct 
categorizations across the different spatial frequencies (x = 0.15, 0.25, 0.35, 
0.45, and 0.55c/deg), ξ represents trial-by-trial variation in processing rates, k is 
criterion separation, C is the visual processing capacity, µ determines the time 
course of processing after stimulus presentation (time inhomogeneous process-
ing, higher means faster onset), σz

2 is the variance of the starting point, and T0 is 
the latency of all non-decision processes. Standard deviation (SD) is calculated 
across participants. 
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108.0). The BIC values of all these model comparisons are summarized 
in Table 2. The fit of the winning model, averaged across all participants, 
is shown in Fig. 7. 

Post-hoc we tested the correctness of our a-priori assumptions. In 
comparison with the winning model described above, the addition of a 
cueing effect on non-decision time (T0) did not improve the fit (BIC = −

35,571; ΔBIC = 32.7), nor did the addition of a cueing effect on the 
normalized processing rates (BIC = − 35,534; ΔBIC = 68.6) or on the 
trial-by-trial variation of processing rates (ξ; BIC = − 35,507; ΔBIC =
95.9). 

Both the fits to individual data and the model comparison approach 
support the interpretation that cueing effects were not due to criterion 
shifts but rather reflect changes in the starting point, the time course of 
processing and the efficiency associated with processing the motion 
stimuli. This is also in line with earlier results that were not based on RT 

models but on median split of RT data (see Hein et al., 2006). The best 
fitting model had a total of 14 free parameters to explain 20 RT distri-
butions (ten correct and ten incorrect RT distributions). Hence, the 
model is reasonably restricted, although the number of free parameters 
certainly contributed to the high consistency between the predictions of 
the model and the observed data (Fig. 7). 

5. Discussion 

In the current study, we investigated the effects of transient spatial 
attention on motion processing. A target Gabor patch could appear in 
one of eight possible locations around the fixation point. A cue was 
presented shortly before the target Gabor patch and could be informa-
tive about the target’s location (i.e., valid cue) or uninformative (i.e., 
neutral cue). Participants were asked to perform a motion direction 
discrimination task on the Gabor patch. Although the accuracy scores 
were close to ceiling across the spatial frequencies used, the results 
showed a robust main effect of the cue type, with neutral cues producing 
higher accuracy than the valid cues. The cue type and spatial frequency 
interaction was also significant, and we found a small (4.28%) but sig-
nificant decrease in accuracy when the target Gabor patch had a spatial 
frequency of 0.35 c/deg only in the valid cue condition. This accuracy 
drop is in line with the previous findings indicating that exogenous 
cueing impairs temporal segregation processing and supports Yeshur-
un’s (2004) hypothesis that transient attention facilitates parvocellular 
but inhibits the magnocellular activity. In a series of experiments, Yes-
hurun and Levy (2003) investigated the effects of transient attention on 
temporal and spatial resolution, and the underlying mechanisms. Their 

Fig. 7. Empirical RT distributions and accuracy compared with the fit of the Poisson random walk model. Upper panels: Quantile plots of RT data (10%: downward 
pointing triangle, 30%: circles, 50% (median): crosses, 70%: diamonds, 90%: upward pointing triangles) and model predictions (unmarked points connected with 
lines). In each panel, the five leftmost distributions are incorrect RT distributions, the five rightmost distributions are correct RT distributions. Lower panel: observed 
frequency and predicted probability of correct responses. Model predictions are obtained from the winning model of the model comparison. Both data and model 
predictions are averaged across participants. 

Table 2 
Results of model comparisons.  

Restricted parameters Cueing 
parameters 

Number of 
parameters 

Σ BIC 

C, k, T0, µ, ξ, σz
2, p0.15, …, 

p0.55 

None 11  –34.832 

C, T0, µ, ξ, σz
2, p0.15, …, p0.55 k 12  –35.425 

k, T0, µ, ξ, σz
2, p0.15, …, p0.55 C 12  –34.980 

C, k, T0, ξ, σz
2, p0.15, …, p0.55 µ 12  –35.350 

k, T0, ξ, σz
2, p0.15, …, p0.55 C, µ 13  –35.446 

C, T0, µ, ξ, p0.15, …, p0.55 k, σz2 13  –35.495 
k, T0, ξ, p0.15, …, p0.55 C, µ, σz2 14  –35.603 

Note—BIC: Bayes Information Criterion. Lower values indicate better models. 
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results showed that exogenous spatial cues impair temporal resolution 
while enhancing spatial resolution. This contrasting influence of tran-
sient attention on temporal and spatial processing was not dependent on 
the decrease in spatial summation, which is a consequence of the 
reduction of the receptive field size at the attended location. Instead, an 
additional outcome of the prioritized parvocellular processing over 
magnocellular processing, namely the longer response durations of 
spatiotemporal units, might be responsible for the decrease in temporal 
resolution by boosting temporal integration and hindering temporal 
segregation. 

The neural correlates of spatial-attention-related enhancement in 
temporal integration were investigated in an ERP study by Akyurek and 
van Asselt (2015). The authors found that exogenous cues enhance color 
fusion (i.e., perception of two colors as a single color when they were 
displayed briefly and rapidly), and attentional modulation of temporal 
processing occurs at early stages of visual processing. Along with the 
absence of cueing effects in later stages, these results suggest that the 
increased temporal integration may have an adaptive role in decreasing 
competition between successive stimuli. However, this would impair 
motion perception which depends on temporal segregation. Baruch and 
Yeshurun (2014) used the attentional attraction field model, which 
shifts receptive fields of neurons to the attended location in a hierar-
chical manner. To assess the temporal modulations induced by spatial 
attention, they simulated the neuronal activation in response to two 
events separated by a brief interval. When attention was directed to the 
location of these events, the likelihood for the events to merge increased, 
which in turn decreased the ability to segregate the events in the tem-
poral domain. The present results are compatible with this account; 
transient cues may have increased the likelihood that luminance 
changes in successive frames are integrated in a single event, thus 
decreasing the accuracy on the motion direction discrimination task. 

However, of these differences, only that in accuracy between valid 
and neutral cues in the 0.35c/deg condition reached statistical signifi-
cance. One could argue that the low accuracy in the valid cue condition 
at 0.35c/deg depends on the transient cue-induced speed-accuracy 
trade-off. This hypothesis seems unlikely as for reaction times the 
interaction between spatial frequency and cue type did not reach sig-
nificance and the results of the RT model also provide converging evi-
dence against this possibility. It is conceivable that valid cues reduced 
response accuracy across a wider range of low spatial frequencies, but 
these failed to reach statistical significance after correction for multiple 
comparisons. This potential issue of statistical power is avoided in the 
modelling approach, in which the parameters relevant to our investi-
gation are the same across all stimulus conditions and only vary between 
cueing conditions, thereby avoiding the problem of multiple 
comparisons. 

To analyze response latency and accuracy simultaneously and check 
for a possible speed-accuracy trade-off, we fitted the Poisson random 
walk model (Blurton et al., 2020) which provides predictions of the RT 
distribution of both correct and incorrect responses. All our analyses 
support the conclusion that cueing affects processing rates and their 
time course, rather than a change in criterion due to cueing. In addition 
to these quantitative analyses, it is also worth noting that the temporal 
profile of stimulation (i.e., brief cue duration and cue-target interval) 
restrict the potential contribution of criterion shifts to the observed ef-
fects. It was extremely difficult to discern valid cues from neutral cues 
and, even if the cue type became apparent from trial to trial, this was 
way after the target had been presented. This does not preclude implicit 
forms of learning, but a genuine speed-accuracy trade-off in which 
participants set the response criteria to trade speed for accuracy is un-
likely to explain our results. 

Rather, an intricate relationship between an initial speed-up due to 
valid cues combined with less efficient processing is a better description 
of the observed data. These two effects reflect different aspects of pro-
cessing: the first has been reported previously in an experiment with 
cueing and limited exposure time (Smith & Ratcliff, 2009). In that study, 

the diffusion decision model (DDM) was extended to a time- 
inhomogeneous version in which drift rates increased gradually after 
stimulus onset. In applying this model, Smith and Ratcliff (2009) 
showed that drift rates increased more quickly after validly cued targets 
compared to those presented after invalid cues, like we found in the 
present study. The cueing effect on processing capacity, i.e., more effi-
cient processing of neutrally cued targets compared to validly cued 
targets, has not been previously reported since this parameter is not 
included in the original DDM. A reduced processing capacity might 
reflect an attenuation in temporal segregation of a stimulus (e.g., Hein 
et al., 2006), possibly caused by inhibition of the magnocellular 
pathway (Yeshurun, 2004). If directing spatial attention indeed has a 
detrimental effect on perceiving temporally extended information, we 
would expect similar effects as reducing stimulus contrast in a static 
visual stimulus. Stimulus contrast, on the other hand, has been shown to 
have a clear and systematic relationship with processing speed in 
perceptual decisions with above threshold stimuli (Christensen et al., 
2018). 

Most importantly, the processing rates did not show a cueing effect, 
suggesting that the quality of information sampled from the stimuli was 
similar between the valid cue condition and the neutral cue condition. In 
other words, while the processing capacity was higher for neutral cues 
than valid cues, the probability to make a correct or incorrect catego-
rization (i.e., the signal-to-noise ratio) was independent of the cue type. 
This strong assumption was derived from the Theory of Visual Attention 
(TVA; Bundesen, 1990). In TVA, processing rates are determined by 
perceptual evidence and two distinct attention mechanisms: filtering 
and pigeonholing. In short, filtering describes an attentional weight that 
is given to an object, whereas pigeonholing refers to a categorical bias 
mechanism. The Poisson random walk model is an extension of TVA, 
applicable to response times in perceptual decisions. Being founded in 
TVA, the RT model retains the general TVA assumptions, including 
filtering and pigeonholing. Put simply, filtering refers to processing 
capacity, whereas pigeonholing refers to the normalized processing 
rates in the RT model. In line with the model specification, we assumed 
no perceptual bias and describe cueing effects as a change in attention 
weights. Contrary to TVA, however, is that although the validly cued 
targets received higher attention weights than the neutrally cued ones, 
processing speed was higher for the latter. As described above, we 
interpret this finding as a result of increased temporal integration due to 
transient attention, leading to a poorer stimulus representation from 
which the observers could not sample information as efficiently as from 
the stimulus representations of neutrally cued targets. 

Alternatively, it is possible that inhibition during the processing of a 
validly cued target decreased the processing speed after the initial 
advantage. We did not include inhibition in the RT model since the effect 
explained by inhibition would mimic the results from the model with 
different processing capacities, making it impossible to distinguish be-
tween these two possibilities. However, this certainly does not rule out 
the possibility that inhibition occurred, so this point remains open for 
further investigation. Concerning the initial facilitation/late inhibition 
hypothesis, a recent study of Zhang, Shelchkova, Ezzo, and Poletti 
(2021) investigating the time course of attentional effects in the fovea 
showed that exogenous attention was associated with an early 
enhancement in orientation discrimination. When target stimuli were 
preceded by a valid transient spatial cue within a short interval (i.e., 
100 ms), sensitivity in orientation discrimination improved compared to 
neutral and invalid conditions. With longer intervals (i.e., hundreds of 
milliseconds) sensitivity was greater for the invalid compared to valid 
cues, which resembles an inhibition of return effect. A closer inspection 
of the results revealed that while sensitivity only slightly and non- 
significantly dropped for valid cues at longer intervals when compared 
to shorter intervals, there was a significant increase in sensitivity for 
neutral and invalid cues. These results indicated that fine detail is 
resolved better at the cued locations with short delays and acuity in-
creases at the uncued locations with longer delays. The findings of 

A. Pavan et al.                                                                                                                                                                                                                                  



Vision Research 199 (2022) 108080

12

Zhang et al. (2021) suggest that exogenous valid cues led to initial 
facilitation, which was subsequently replaced by facilitation for invalid 
and neutral cues in a spatial task (i.e., orientation discrimination). 
However, the time course of attentional modulation in terms of facili-
tation and possible inhibition in a spatiotemporal task with stimuli 
presented in the near periphery remains an open question and more 
evidence is necessary. 

In the present study we extended the results of Yeshurun and Hein 
(2011) showing that an exogenous cue drawing attention towards a 
specific location diminishes the ability to discriminate the target’s di-
rection of motion, notably when motion processing is likely to be 
mediated by the magnocellular system (Yeshurun & Levy, 2003; Hein 
et al., 2006; Nicol et al., 2009; Yeshurun & Hein, 2011). These results 
emerge presumably as a consequence of attention-induced facilitation of 
the parvocellular processing, leading to a relatively larger temporal 
integration window, which in turn impairs magnocellular-dominated 
motion processing on briefly presented targets. This explanation is 
consistent with the retino-cortical dynamics model of visual processing 
(Ogmen, 1993; Ogmen, Breitmeyer, & Melvin, 2003), postulating a 
mutual inhibition at the post-retinal level between neural populations 
that receive input from the sustained and transient channels, which are 
primarily driven by parvocellular and magnocellular cells, respectively. 
The current study provides the most compelling evidence that an 
exogenous cue reduces the accuracy in a behavioral task when temporal 
segregation is necessary. 
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Appendix A. Details on the RT model 

In the Poisson random walk model for two perceptual categories L (apparent leftward motion) and R (apparent rightward motion), let vL = v(x, L) 
and vR = v(x, R) be the processing rates for the perceptual categorizations “stimulus x belongs to category L” and “stimulus x belongs to category R”, 
respectively. Evidence for each category is stored in a Poisson counter with their respective rate. Further, evidence in favor of category L is taken as 
evidence against R, and vice versa, leading to a random walk. That is, each time a categorization is made for L, the counter for that category is 
increased by one and the counter for R is decreased by one, and vice versa. A perceptual category i is conclusively selected as soon as it has accu-
mulated ki more categorizations than the other. Using the superposition principle of the Poisson processes (Townsend & Ashby, 1983), pL = vL/(vL +

vR) is the conditional probability to make a categorization “stimulus × belongs to category L” and pR = 1 – pL = vR/(vL + vR) is the conditional 
probability to make a categorization “stimulus x belongs to category R”—both given that there is a categorization at some time t. The increments in the 
random walk process are independent and distributed as a (modified) binomial distribution: the increment is + 1 with probability pL and –1 with 
probability pR. This definition corresponds to a random walk in which the upper criterion is associated with Category L and the lower with Category R. 

Evidence is accumulated until one category, say Category L, has kL more tentative categorizations than Category R. The total number of cate-
gorizations made until this happens is a random variable. Its distribution is obtained from solving the first passage problem for a simple random walk 
between two absorbing barriers (e.g., Feller, 1968, p. 354). This yields two distributions, PL(n | pL, kL, kR) and PR(n | pR, kL, kR) = PL(n | 1–pL, kR, kL) for 
the two possible outcomes. To obtain a prediction for the time needed to obtain n tentative categories, we use the Markov property of the Poisson 
process and obtain the density f(t | n, C) of time T given n categorizations from the Erlang distribution (e.g., Forbes, Evans, Hastings, & Peacock, 2011, 
Ch. 15) with rate C = vR + vR, that is, the sum of all processing rates. In this context, C is the visual processing capacity, indicating the speed or 
effectivity with which a perceptual decision is made. Since the total number of categorizations is a latent variable, the model prediction for the 
probability density of RT is obtained by marginalizing: 

fL(tpL, kL, kR,C) =
∑∞

n=kL

PLf (npL, kL, kR)(tn,C)

fR(tpL, kL, kR,C) =
∑∞

n=kR

PR(npL, kR, kL)f (tn,C)

For the cumulative distribution functions as displayed in Fig. 2, one needs to substitute the density f(t | n, C) of the Erlang distribution for the 
distribution function F(t | n, C). 

In addition to the variability in the simple random walk and Erlang distribution described above, the full model includes several sources of 
additional variability. The first is trial-by-trial variation in processing rates: The processing rates Vi are assumed to be gamma distributed across trials 
with mean vi and variance vi/ξ. Since a random variable defined as the sum of gamma distributed random variables is also gamma distributed, the 
visual processing capacity is gamma distributed with mean C = vA + vB and variance (vA + vB)/ξ. In other words, all trial-by-trial variability is 
described by a single parameter (ξ), which is most easily interpreted as a scaling factor 1/ξ, describing how large the variance of processing rates is in 
relation to their mean. 

The second source of additional variability is a variable starting point Z0. A suitable distribution for Z0 is the beta-binomial distribution with 
parameters n, zA, and zB. This distribution is suitable because the increments in the full model with trial-by-trial variation in processing rates also 
follow this distribution. The beta-binomial distribution is a generalization of a binomial distribution with beta-distributed probability π. The 
parameter n is fixed (n = kA + kB –2), whereas zA, and zB are free parameters. In the symmetric model for unbiased decisions, zA = zB = z, reducing the 
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number of free parameters by one. As stated in the main text, we fitted the moments of the starting distribution instead of its parameter z for easier 
interpretability. Under the symmetry assumption, the expected value E(Z0) of the starting point does not depend on z, so we specified the entire 
distribution by its variance σz

2 = Var(Z0) and derived the distribution parameter as. 

z =
n2 − 4σ2

Z

2[4σ2
Z − n]

(A2) 

From Eq. A(2) it is easily seen that for a fixed n this parameter grows to infinity when σz
2 = Var(Z0) approaches n / 4. This is the limiting case in 

which a symmetric beta-binomial distribution becomes a binomial distribution with p =.5 and same n. To include the case Var(Z0) ≤ n/4, we used a 
binomial distribution with p = 0.5 and n = σz

2/4 as starting point distribution. This way, the starting point distribution is increasingly centered around 
the neutral starting point (Z0 = k) with decreasing Var(Z0), so that for Var(Z0) = 0 the process starts at the neutral starting point with probability 1 (i.e., 
no starting point variation). 

The third source of additional variability in the model is temporally inhomogeneous processing. Rather than assuming a constant processing rate 
(or processing capacity), the time course of processing speed is modeled as a scaled gamma distribution function with variable rate µ and fixed shape n: 

v(x, i, t) = v(x, i)

[

1 − exp(− μt)
∑n− 1

j=0

(μt)j

j!

]

(A3) 

This functional form has been suggested to approximate the time-dependent output from early perceptual filters (Smith & Van Zandt, 2000). This 
assumption can also be viewed to yield a physiologically more plausible model than one with constant processing rates (Christensen et al., 2018). 
Technically, it introduces additional variation at the leading edge of the RT distribution, as the assumption only affects the speed of early, but not late 
responses. Analogous to Smith and Van Zandt (2000) and Smith and Ratcliff (2009), we fixed the shape parameter (n = 5) and left the rate parameter µ 
as a free parameter to be estimated from data. The effect of parameter µ is that a high value leads to a quick increase to the asymptotical level, 
approximating the constant processing model with increasing values of µ, whereas low values lead to a slowly increasing leading edge of the predicted 
RT distribution of all categorizations. It is assumed that both rates follow the same time course. A graphical illustration of this function (with µ = 60) is 
displayed in Fig. 3. This form of inhomogeneous processing rates influences early finishing processes only; with increasing time the effect becomes 
negligible, since there will always be a constant offset (included in the non-decision time T0) so that constant processing will approximate inho-
mogeneous processing in the long run (cf. Fig. 3B). 

The full model entails an amount of flexibility that is usually not needed in empirical applications. For the present study, we introduced two 
restrictions to obtain a strong and testable version of the model. First, we did not distinguish between leftward moving Gabor patches and rightward 
moving Gabor patches but analyzed and fitted the responses as correct responses and errors. Thus, we introduced processing rates for correct 
perceptual decisions that were independent of motion direction (i.e., a leftward moving Gabor patch had the same processing rate for the perceptual 
category “moving leftward” as a rightward moving Gabor patch had for “moving rightward”). In line with this, we set kL = kR = k, that is, we specified 
a symmetric model for unbiased decisions. Second, we assume that the processing capacity C is constant across all stimuli used in the experiment; so, 
we introduced processing capacity C as a model parameter and rescaled the processing rates p(x, i) = v(x, i)/C, so that only a single processing rate was 
needed for each spatial frequency condition (since p(x, L) + p(x, R) = 1). Together with the first restriction, px = p(x, correct) was defined as the 
probability of making a correct categorization, so that these rescaled (normalized) processing rates can be interpreted as the quality of information 
sampled from stimulus x. 

Appendix B. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.visres.2022.108080. 
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