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Rapid TAURUS for Relaxation-Based Color
Magnetic Particle Imaging
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Abstract— Magnetic particle imaging (MPI) is a rapidly
developing medical imaging modality that exploits the non-
linear response of magnetic nanoparticles (MNPs). Color
MPI widens the functionality of MPI, empowering it with
the capability to distinguish different MNPs and/or MNP
environments. The system function approach for color MPI
relies on extensive calibrations that capture the differences
in the harmonic responses of the MNPs. An alternative
calibration-free x-space-based method called TAURUS es-
timates a map of the relaxation time constant, τ , by re-
covering the underlying mirror symmetry in the MPI signal.
However, TAURUS requires a back and forth scanning of
a given region, restricting its usage to slow trajectories
with constant or piecewise constant focus fields (FFs).
In this work, we propose a novel technique to increase
the performance of TAURUS and enable τ map estimation
for rapid and multi-dimensional trajectories. The proposed
technique is based on correcting the distortions on mirror
symmetry induced by time-varying FFs. We demonstrate
via simulations and experiments in our in-house MPI scan-
ner that the proposed method successfully estimates high-
fidelity τ maps for rapid trajectories that provide orders of
magnitude reduction in scanning time (over 300 fold for
simulations and over 8 fold for experiments) while preserv-
ing the calibration-free property of TAURUS.

Index Terms— Magnetic particle imaging, color MPI,
nanoparticle relaxation, mirror symmetry, x-space MPI,
rapid trajectory.

I. INTRODUCTION

MAGNETIC particle imaging (MPI) is a rapidly develop-
ing tracer-based medical imaging modality, which takes

advantage of the non-linear response of magnetic nanoparti-
cles (MNPs) under time-varying magnetic fields [1]–[5]. The
leading applications of MPI include angiography [6], [7], stem
cell tracking [8]–[10], inflammation imaging [11], [12], drug
delivery [13], [14], traumatic brain injury imaging [15], cancer
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imaging [16], and localized hyperthermia [17]. Color MPI is
an emerging field within MPI, providing a means to distinguish
different MNPs and/or MNP environments [18]. Color MPI
offers various practical applications such as catheter tracking
during cardiovascular interventions [19], [20], and identifying
the characteristics of the environment such as viscosity [21]–
[25] and temperature [26]–[28].

A standard MPI system utilizes three different magnetic
fields to acquire an image of the spatial distribution of MNPs.
First, a field free point (FFP) is created using a static selection
field (SF) with strong spatial gradients. Then, a sinusoidal
drive field (DF) is applied to move the FFP in a field-of-view
(FOV). However, human safety concerns [29], [30] and/or
hardware limitations constrain the region covered by the DF
to a relatively small partial field-of-view (pFOV) around the
FFP. Thus, additional low-frequency focus fields (FFs) are
employed to shift the FFP in a wider FOV [31].

Depending on factors such as the magnetic material and
core diameter, different MNPs are expected to have different
MPI signal responses [3]. Additionally, differences in the
environmental conditions such as temperature or viscosity can
alter the relaxation behavior of the MNPs [32]. Recently,
color MPI techniques have been proposed to take advantage
of these differences to distinguish the MPI signals from
different MNPs and/or environmental conditions. The first
color MPI study targeted distinguishing MNPs using a system
function reconstruction (SFR) approach [18]. SFR requires
lengthy calibration measurements of a point source MNP at
all voxel locations within a FOV [33], [34]. For the color MPI
extension, an extended linear system of equations is solved to
find the concentrations of different MNP types and/or MNPs
in different environmental conditions for each voxel. SFR-
based color MPI requires separate calibrations for each MNP
type and/or environmental condition, further lengthening the
calibration time [18], [19], [26], [35].

X-space-based color MPI techniques do not require cali-
bration, but the resulting images are typically blurred by the
point spread function (PSF) of the imaging system [36]. One
approach is performing multiple measurements at different
drive field (DF) amplitudes to differentiate the relaxation
behaviors of MNPs [37]. Another approach is a relaxation time
constant (τ ) estimation method, abbreviated as TAURUS (τ
estimation via Recovery of Underlying mirror Symmetry) [21],
[24], [38]. Instead of estimating the concentrations of different
MNPs like the SFR-based color MPI methods, TAURUS
estimates a τ for each pFOV (or patch) within the image to
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create a quantitative τ map. Importantly, it does not require any
calibrations, multiple measurements, or prior knowledge about
the MNPs to estimate the τ map. However, TAURUS relies
on the underlying mirror symmetry of the MPI signal, which
is valid only for trajectories that perform a strict back-and-
forth scanning of each pFOV (e.g., a 1D DF applied together
with constant FFs). This requirement restricts the usage of
TAURUS to trajectories with constant or piecewise constant
FFs, previously demonstrated for active scan times exceeding
2.5 minutes for a 0.8 cm×8 cm FOV [38]. Reducing the scan
time can pave the way to real-time imaging applications of
TAURUS [39].

In this work, we propose a novel technique that enables τ
map estimation via TAURUS for rapid and multi-dimensional
trajectories that can reduce the scan time by orders of magni-
tude. We first demonstrate how the time-varying FFs utilized
in these trajectories distort the mirror symmetry of the MPI
signal and propose a method to compensate for the FF-
induced distortions. Additionally, we improve the performance
of TAURUS by casting it as a weighted least squares (WLS-
TAURUS) problem. With simulations and imaging experi-
ments, we demonstrate that the proposed method is robust for
a wide range of FF slew rates (SRs) and noise, successfully
estimating τ maps for rapid multi-dimensional trajectories
while preserving the calibration-free property of TAURUS.
The proposed method provides high fidelity τ maps and
orders of magnitude reduction in scanning time for TAURUS,
demonstrated for over 300-fold reduction in simulations and
over 8-fold reduction in experiments.

II. THEORY

A. Mirror Symmetry and TAURUS

In MPI, a simplifying approach is to model the relaxation
effect as a Debye process, which can be expressed as a
convolution relation [32]:

s(t) = sadiab(t) ∗ rτ (t), (1a)

where

sadiab(t) = βẋs(t)ρ̂(x)
∣∣
x=xs(t)

, (1b)

rτ (t) =
1

τ
e−t/τu(t). (1c)

Here, ∗ denotes convolution, s(t) is the signal with relaxation,
sadiab(t) is the adiabatic signal described by the Langevin
model [40], and rτ (t) is the relaxation kernel. In addition,
ρ̂(x) is the MPI image blurred by the PSF, xs(t) is the
FFP trajectory, ẋs(t) is the FFP speed, and β is a constant
that depends on system and MNP parameters [36], [40]. In
the relaxation kernel, τ (sec) is the effective relaxation time
constant of the MNP that explains the signal lag and u(t) is
the Heaviside unit step function [32].

TAURUS uses the underlying mirror symmetry of the adi-
abatic MPI signal to estimate the time constant τ [21], [38].
The mirror symmetry assumption is valid independent of the
MNP type or distribution in space, as long as the signal is
acquired during a back-and-forth FFP trajectory. Without loss
of generality, consider the following trajectory with a 1D DF

in the z-direction together with constant FFs:

xs(t) =

x(t)
y(t)
z(t)

 =

BF,x/GxBF,y/Gy
BF,z/Gz


︸ ︷︷ ︸

Focus Field

+

 0
0

Bp
Gz
cos(2πfdt)


︸ ︷︷ ︸

Drive Field

. (2)

Here, BF,i (T) are the constant FFs and Gi (T/m) are the
SF gradients along each direction, respectively. In addition,
Bp (T) and fd (Hz) are the peak amplitude and the frequency
of the DF, respectively. The size of pFOV covered by the DF
alone is equal to Wp = 2Bp/Gz [3]. We refer to this trajectory
as the ”piecewise trajectory” (PWT), as it utilizes piecewise
constant FFs to scan a small pFOV. Then, BF,i are stepped to
different values to cover the entire FOV piece by piece.

For PWT, we define the negative and positive signals as the
half-cycle signals acquired during the back and forth portions
of the FFP movement, respectively. Then, the mirror symmetry
in sadiab(t) can be expressed as [21], [38]:

spos,adiab(t) = −sneg,adiab(−t) = shalf(t). (3)

For the signal with relaxation, however, this mirror symmetry
is broken. Using Eqs. (1a) and (3), we can write:

spos(t) = shalf(t) ∗ rτ (t) (4a)
sneg(t) = −shalf(−t) ∗ rτ (t). (4b)

The Fourier transforms of these signals and rτ (t) are:

Spos(f) = F{spos(t)} = Shalf(f)Rτ (f), (5a)
Sneg(f) = F{sneg(t)} = −S∗

half(f)Rτ (f), (5b)

Rτ (f) = F{rτ (t)} =
1

1 + i2πfτ
. (5c)

Here, F denotes Fourier transformation and superscript ∗
denotes complex conjugation. Next, τ can be computed in
frequency domain as follows [21], [38]:

τ(f) =
S∗

pos(f) + Sneg(f)

i2πf
(
S∗

pos(f)− Sneg(f)
) . (6)

Ideally, τ(f) should be independent of frequency, f . How-
ever, the presence of noise or deviations from the model
in Eq. (1a) can cause frequency dependency. To provide
robustnesss against such non-idealities, a weighted average
of τ(f) is computed using the magnitude spectrum |Spos(f)|
as weights [38]. Once τ is computed, the mirror symmetric
sadiab(t) can be recovered by deconvolving s(t) with rτ (t).

B. FF-Induced Distortions in Mirror Symmetry
Trajectories that contain time-varying FFs experience a

distortion in mirror symmetry, even for the case of sadiab(t).
Without loss of generality, consider the following FFP trajec-
tory, with a 1D DF and a linearly ramping FF applied along
the z-direction, and constant FFs in the x- and y-directions:

xs(t) =

x(t)
y(t)
z(t)

 =

BF,x/GxBF,y/Gy
Rs,zt/Gz

+

 0
0

Bp
Gz
cos(2πfdt)

 . (7)

Here, Rs,z (T/s) is the SR of the FF along the z-direction.
As shown in Fig. 1, the positive and negative signals have
matching amplitudes for Rs,z = 0. For Rs,z = 20 T/s, on the
other hand, the amplitude is time varying due to the global
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Fig. 1: Effects of a linearly ramping FF, demonstrating a time-
varying signal amplitude at non-zero Rs,z . The FFP position,
and the adiabatic and non-adiabatic signals for (a) Rs,z = 0
and (b) Rs,z = 20 T/s. Simulations utilized a point source
MNP with τ = 3 µs positioned at z = 0.
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Fig. 2: FF-induced distortions on mirror symmetry at Rs,z =
20 T/s for (a) the adiabatic (i.e., τ = 0) and (b) the non-
adiabatic (for τ = 3 µs) signals. After SR correction, the
mirror symmetry is recovered for the adiabatic signal. After SR
correction, TAURUS yields (a) τ̂ = 8 ns and (b) τ̂ = 2.89 µs.

FFP movement caused by the FF. The pFOV center moves
by Rs,z/(2fdGz) in half a DF period, so the FFP motion is
no longer symmetrical around the pFOV center. In addition,
the trajectory speed is different for the positive and negative
signals, which further distorts the mirror symmetry in sadiab(t).

In Fig. 2.(a), the positive and mirrored negative signals
for sadiab(t) (i.e., for τ = 0) are plotted, showing the FF-
induced distortions on mirror symmetry. The SR along the
z-axis causes a lag between these two signals and a mismatch
between their amplitudes.

C. SR Correction for Recovering Mirror Symmetry

For accurate τ estimations, we propose an SR correction
method to correct the FF-induced distortions and recover the
mirror symmetry in sadiab(t). First, we assume that the FFP
speed is dominated by the DF for the majority of the FFP

motion. For Eq. (7), this assumption can be expressed as:

max
{∣∣∣ d

dt

(
Bp

Gz
cos(2πfdt)

)∣∣∣}� ∣∣∣ d
dt

(
Rs,z

Gz
t
)∣∣∣, (8a)

Bp2πfd � Rs,z. (8b)

Here, � indicates at least an order of magnitude difference
between the left- and right-hand sides of the inequality.
Under this assumption, the overall effect of the FF can be
approximated as a global time shift and a global amplitude
scaling between the positive and negative signals.

A closed-form expression for the FF-induced time shift, ∆t,
can be found by solving the following equation:

z(t0) = z(t0 + T/2 + ∆t), (9a)
t0 = argmax

t
(|ż(t)|), t ∈ [0, T/2]. (9b)

Here, T = 1/fd is the period of the drive field and t0 is the
time point during the first negative half-cycle at which the
FFP speed is maximum. Without loss of generality, consider
the trajectory in Eq. (7), where t0 can be found as 1/(4fd).
For the same trajectory, Eq. (9a) can be expressed as:

Rs,zt0
Gz

+
Bpcos(2πfdt0)

Gz
=
Rs,z(t0+T/2+∆t)

Gz

+
Bpcos(2πfd(t0+T/2+∆t))

Gz
.

(10)

Inserting t0 = 1/(4fd) gives:

Bpcos(
π
2 )=

Rs,z

2fd
+Rs,z∆t+Bpcos(

3π
2 + 2πfd∆t)), (11)

which can be simplified to:

Bpsin(2πfd∆t) +Rs,z∆t+
Rs,z

2fd
= 0. (12)

If ∆t � 1/fd, a first-order Taylor series expansion of sine
yields:

∆t =
−Rs,z

2fd(Bp2πfd +Rs,z)
. (13)

A more accurate solution can be computed, e.g., using a
higher-order Taylor series expansion of sine.

Next, the amplitude scaling, α, can be expressed as the ratio
of the FFP speeds at t0 and t0 + T/2 + ∆t, which yields:

α =
|Bp2πfdcos(2πfd∆t) +Rs,z |

| −Bp2πfd +Rs,z |
. (14)

Once ∆t and α are computed using Eqs. (12)-(14), the positive
signal can be kept the same and the proposed SR correction
can be applied to the negative signal only, i.e.,

Spos,c(f) = Spos,d(f), (15a)

Sneg,c(f) = Sneg,d(f)ei2π∆tfα. (15b)

Here, Spos,d(f) and Sneg,d(f) are the SR-distorted negative
and positive signals, respectively, and Spos,c(f) and Sneg,c(f)
are their corrected versions. Finally, Eq. (6) can be applied
on the corrected signals to obtain SR-corrected estimation in
frequency domain:

τ(f) =
S∗

pos,c(f) + Sneg,c(f)

i2πf
(
S∗

pos,c(f)− Sneg,c(f)
) . (16)

TAURUS was originally proposed for the case of PWT, for
which Rs,z = 0 and Eqs. (12)-(14) yield ∆t = 0 and α = 1, as
expected. As Rs,z increases, both ∆t and α increase steadily.
Importantly, both ∆t and α are independent of the MNP
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Fig. 3: (a) τ(f) for Rs,z = 10 and 20 T/s and (b) normalized
power spectrum of the positive half-cycle before and after SR
correction for Rs,z = 20 T/s. The SR-corrected τ(f) (solid
lines) closely follows the reference case of Rs,z = 0, while the
non-corrected τ(f) (dashed lines) shows increasing levels of
underestimation at higher frequencies and closely follows the
theoretical (Th.) τd(f) from Eq. 17 (dotted lines). The power
spectra match closely. Simulations utilized a point source MNP
with τ = 3µs.

parameters or the environmental conditions, and are purely
dependent on the system and trajectory parameters.

Estimating τ without applying any SR correction would
yield erroneous results. The estimation in frequency domain
for the SR-distorted case, τd(f), can be expressed as follows
(see Appendix VII for derivation):

τd(f) =
i2πfτd+ + d−

i2πf
(
i2πfτd− + d+

) , (17)

where d± = α ± e−i2π∆tf . In the absence of FF-induced
distortions (i.e., Rs,z = 0), d+ = 2 and d− = 0, yielding
τd = τ , as expected. However, for increasing FF-induced
distortions, τd diverges from τ .

In Fig. 2, the positive and negative signals of sadiab(t) (i.e.,
τ = 0) and s(t) (for τ = 3 µs) are shown for Rs,z = 20 T/s.
For accurate τ estimations, sadiab(t) should have a perfect
mirror symmetry. However, due to the FF-induced distortions,
the positive and the mirrored negative signals of sadiab(t) are
shifted in opposite directions in time in Fig. 2.(a). Additionally,
the amplitude of the negative signal is smaller than that of the
positive signal. When SR correction is applied using Eq. (15),
the mirror symmetry is recovered for sadiab(t). Computing τ
using TAURUS yields τ̂ = 8 ns in this case (i.e., within
numerical error of zero, as expected). For s(t) in Fig. 2.(b),
the relaxation effect causes a separation of the positive and
mirrored negative signals in the direction opposite to that
caused by the SR. The relaxation effect also broadens the
signal along the scanning direction. Directly computing τ
using this distorted signal yields τ̂ = 1.85 µs, a significant
underestimation. After applying SR correction, the amplitudes

of the positive and negative signals match and the effective
delay between them gets visibly larger. Then, computing τ for
the SR-corrected signal gives τ̂ = 2.89 µs, a close match to
the actual value of τ = 3 µs. Finally, applying deconvolution
using this τ̂ recovers the underlying mirror symmetry of the
MPI signal.

In Fig. 3, τ(f) and power spectrum are shown before and
after SR correction for Rs,z = 10 and 20 T/s. Here, the
results for Rs,z = 0 are provided as the references without
any FF-induced distortions. As seen in Fig. 3.(a), the SR-
corrected τ(f) closely follows the reference, whereas the non-
corrected τ(f) shows increasing levels of underestimation at
higher frequencies and closely follows the theoretical τd(f)
from Eq. (17). Here, the ripple effect on SR-corrected τ(f) at
Rs,z = 10 and 20 T/s is caused by the digital manipulations
and temporal windowing of the signal. When the FFP speed
is more strongly dominated by the DF (i.e., for smaller Rs,z),
these ripples flatten and SR-corrected τ(f) converges to the
reference. Nevertheless, since TAURUS applies an averaging
of τ(f) weighted by the magnitude spectrum, the ripples in
τ(f) at high frequencies have a relatively minor effect on the
final estimated τ . In Fig. 3.(b), the normalized power spectrum
of spos(t) is shown, where there is negligible difference
between the SR-corrected and non-corrected cases and the
reference.

D. Rapid Color MPI Trajectories

The trajectory in Eq. (7) covers the FOV as a ”line-by-
line trajectory” (LLT), with overlapping pFOVs along the z-
direction and discrete steps in the x- and y-directions. Due to
the continuously ramping FF, this trajectory is already much
faster than PWT. For example, for the FFP scanner used in
this work with Gz = 2.4 T/m, even a relatively modest SR of
Rs,z = 4 T/s corresponds to 0.83 m/s speed, which can cover
a human-length line segment in approximately 2 seconds.

To cover a 2D or 3D FOV continuously, time-varying FFs,
BF,i(t), can be utilized in all directions, i.e.,

xs(t) =

BF,x(t)/Gx
BF,y(t)/Gy
BF,z(t)/Gz

+

 0
0

Bp
Gz
cos(2πfdt)

 . (18)

Defining Rs,i(t) = d
dtBF,i(t) as the SR for the FF along each

direction, the assumption in Eq. (8) can be generalized as:

Bp2πfd � max
t

{∣∣Rs,z(t)∣∣}, ∀t ∈ [0, Ts]. (19)

Here, Ts is the total scan time. For example, for Bp = 15 mT,
fd = 10 kHz, and Rs,z = 20 T/s, Eq. (19) yields a ratio of
47 between the left- and right-hand sides of the inequality.
Therefore, adopting the 20 T/s safety limit of MRI gradient
fields to FFs [30], [41], we can conclude that the FFP speed
is dominated by the DF for all practical purposes.

E. Weighted Least Squares TAURUS

The frequency domain division in Eq. (16) makes TAURUS
susceptible to division by a small number or zero under the
presence of noise and interference. Therefore, we propose
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casting Eq. (16) as a weighted least squares (WLS) problem
by first expressing it as a vector relation:

aτ = b, (20)

where a,b ∈ CK×1 such that:

a = i2πk∆f
(
S∗

pos,c(k∆f)− Sneg,c(k∆f)
)
, (21a)

b = S∗
pos,c(k∆f) + Sneg,c(k∆f). (21b)

Here, k = 0, 1, ...,K − 1 with K = fs/∆f , where fs is
the sampling frequency and ∆f is the resolution in frequency
domain. WLS-TAURUS can then be written as:

τ = (aHWa)−1aHWb, (22)

where W ∈ RK×K is a diagonal weighting matrix with
Wk,k = |Spos,c(k∆f)|2, and the superscript H denotes Hermi-
tian transpose. As seen in Fig. 3.(b), this weighting is similar
to harmonic selection, but provides better generalization when
the signal energy shows variations across harmonics depending
on the MNP distribution, or when the signal energy spreads
around the harmonics at high SRs. WLS-TAURUS avoids the
problem of division by a small number or zero, and is expected
to provide robustness against noise.

F. Signal Replication for Increased TAURUS
Performance

In Eq. (16), directly using the SR-corrected positive and
negative signals, spos,c(t) and sneg,c(t), results in a poor fre-
quency resolution of ∆f = 2fd (i.e., the inverse of a half
DF period). To improve the frequency resolution, each period
of the SR-corrected signal was first replicated Nrep times,
then concatenated with the positive signal on the right side
for spos,c(t) and with the negative signal on the left side
for sneg,c(t) to yield the extended versions. This procedure
improves the frequency resolution to ∆f = 2fd/(2Nrep + 1).

Example extended signals and the corresponding τ(f) for
Nrep values of 0 and 4 at Rs,z = 20 T/s are given Fig. 4.(a).
Note that the underlying mirror symmetry feature still applies
for these extended signals. Next, the effect of Nrep on the
τ(f) and the power spectra is shown in Fig. 4.(b). As clearly
seen in the power spectra, the frequency resolution increases as
Nrep increases. In Fig. 4.(c), the performances of SR-corrected
TAURUS and WLS-TAURUS are evaluated as a function of
Nrep ∈ [0, 10] for the noise-free case and for relatively low
signal-to-noise ratios (SNRs) of 2 and 10. The estimation
error as a function of Nrep indicates that Nrep < 3 results in
poor performance especially at SNR = 2. The performances
of TAURUS and WLS-TAURUS both converge to a constant
level for Nrep > 5, independent of the noise level. Therefore,
for the rest of this work, Nrep = 6 was utilized.

III. METHODS

A. Simulations
The MPI simulations were carried out using a custom tool-

box in MATLAB (Mathworks, Natick, MA). The parameters
were chosen to mimic the experiments performed on our in-
house MPI system: (−4.8, 2.4, 2.4) T/m SF gradients in
x-, y- and z-directions, 1D DF along the z-direction with
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Fig. 4: Effects of signal replication on estimation error. (a)
The positive and mirrored negative signals for Nrep = 0 (i.e.,
no replication) and Nrep = 4. (b) τ(f) and power spectra for
different Nrep values. (c) Estimation error as a function of
Nrep at different SNR levels for SR-corrected TAURUS and
WLS-TAURUS.

fd = 10 kHz and Bp = 15 mT, creating a pFOV of Wp =
12.5 mm. A homogeneous receive coil along the z-direction
was utilized. The core MNP diameter, d, was assumed to be
25 nm, a realistic value based on the literature [42], [43].
To simulate the continuous-time nature of the physical world,
the MNP responses were first generated at 100 MS/s, and
then downsampled to 2 MS/s to generate the MPI signals.
To emulate the direct feedthrough filtering utilized in the
experiments, a zero-phase finite impulse response (FIR) high-
pass filter (HPF) with a cut-off frequency of 1.5fd was utilized.
Finally, before applying TAURUS, the resulting signals were
upsampled at 10 MHz to increase computational accuracy [38].
The details of each simulation are explained in detail below.

1) Slew Rate Robustness: The SR robustness of the pro-
posed method was evaluated for Rs,z ∈ [0, 20] T/s and
Rs,x ∈ [0, 20] T/s, where the estimation performances of
the no correction and SR correction cases were compared,
using WLS-TAURUS. The proposed SR correction in Eq. (15)
incorporates a time-shift correction and an amplitude correc-
tion. Therefore, the performances of the no correction, only
amplitude correction, only time-shift correction, and full SR
correction cases were also evaluated for Rs,z ∈ [0, 20] T/s,
using WLS-TAURUS. For these simulations, a point source
MNP distribution with τ = 3 µs positioned at the origin with
the core diameter of 25 nm was utilized.

2) Robustness against MNP Characteristics: Robustness of
the proposed method against d and τ was evaluated for
d ∈ [15, 35] nm and τ ∈ [2, 4] µs, and SR-corrected
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Fig. 5: (a) In-house FFP MPI scanner with
(−4.8, 2.4, 2.4) T/m SF gradients and 1D DF along
the z-direction at 10 kHz. A three-axis linear actuator was
utilized to move the FFP globally, instead of using FFs.
(b) The imaging phantom contained Perimag, Vivotrax,
their mixture, and a marker. (c) The flow diagram of the
experimental process. A digital trigger from the VXM-2
motor controller was sent to the DAQ for synchronization.
(d) The digital signal processing and image reconstruction
stages for color MPI.

TAURUS and WLS-TAURUS were compared. The range for
d was chosen based on the literature [42], and the range for τ
was based on earlier TAURUS results using similar DFs [38].
These simulations utilized a point source MNP distribution
positioned at the origin, with Rs,z = 20 T/s and Rs,x = 0 T/s.

3) Noise Robustness: Monte Carlo simulations were per-
formed to compare the noise robustness of TAURUS and
WLS-TAURUS, for SNR ∈ [2, 20] and Rs,z ∈ [0, 20] T/s.
Accordingly, at a given SNR and Rs,z , simulations were
repeated numerous times and the estimation errors for SR-
corrected TAURUS and WLS-TAURUS were averaged across
the repetitions. In each repetition, a different instance of white
Gaussian noise with zero mean and a given standard deviation
(STD) was added to the MPI signal. The noise STD was set
as the maximum signal intensity (before direct feedthrough
filtering) of the noise-free signal divided by the targeted SNR
level. The number of repetitions was set to 104 for SNR ≤ 5,
and 103 for SNR > 5 to ensure accurate estimation of
performances. A point source MNP distribution with τ = 3 µs
positioned at the origin was utilized.

4) Color MPI Simulations: Finally, color MPI simulations
were performed to evalute the performance of the proposed
method. A phantom containing 6 MNP distributions with

τ =[2, 2.4, 2.8, 3.2, 3.6 4] µs was created. Each MNP
distribution had a size of 2 mm×2 mm. A 5 cm×6 cm FOV
in the x-z plane was scanned using 3 different trajectories:

Piecewise Trajectory (PWT): The FFs along the x- and
z-directions were stepped to cover the FOV at 100×100
points in the x-z plane, providing 95.2% overlap between the
consecutive pFOVs along the z-direction. An MPI signal of
10 ms duration was simulated at each point, resulting in an
active scan time of 100 s for the entire trajectory.

Line-by-line Trajectory (LLT): A linearly ramping FF in
the z-direction was utilized with Rs,z = 4 T/s to cover each
line in 36 ms, with 98.7% overlap between the consecutive
pFOVs along the z-direction. The FF along the x-direction
was stepped to cover the x-direction at 100 equally spaced
lines, resulting in an active scan time of 3.6 s.

2D Triangle Trajectory (2DTT): To cover the 2D FOV
continuously, a linearly ramping FF in the z-direction was
utilized. A triangle wave FF was applied along the x-direction,
formulated as follows:

x(t) =
FOVx
π

sin−1
(
sin(2πfTt)

)
, t ∈ [0, Ts). (23)

Here, fT = Rs,x/(2FOVxGx) is the frequency of the triangle
wave and scan time Ts = FOVz/(Rs,z/Gz). Rs,z = 0.5 T/s
and Rs,x = 20 T/s were chosen to densely cover the whole
FOV. There was no explicit overlap among the neighboring
pFOVs due to the continuous movement along the x-direction.
The resulting active scan time was 0.288 s.

Note that the active scan times listed above do not include
the idle times of PWT and LLT during which the FFP position
is stepped. For example, traversing each line back at the same
SR of Rs,z = 4 T/s would automatically double the total scan
time of LLT to 7.2 s. In contrast, 0.288 s active scan time for
2DTT is directly equal to the total scan time, as the whole
FOV is scanned continuously in a single shot.

B. Imaging Experiments

Color MPI imaging experiments were performed on our
in-house FFP MPI scanner shown in Fig. 5.(a), using 3
different trajectories. This scanner had (−4.8, 2.4, 2.4) T/m
SF gradients in the x-, y- and z-directions, and featured a free
bore size of 1.9 cm and air cooling to prevent system heating.
Both the drive and receive coils were oriented along the z-
direction. To minimize the direct feedthrough, the receive coil
was designed as a tunable 3-section gradiometric coil. Instead
of utilizing FF coils to globally move the FFP, this scanner
used a three-axis linear actuator (Velmex BiSlide), with a
maximum speed of 38.1 mm/s in all axes, corresponding to
Rs,z = 0.091 T/s. The other details of the scanner can be
found in [24], [38].

The flow diagram of the experimental process is presented
in Fig. 5.(c). For precise synchronization of the signal trans-
mission/reception and the linear actuator movement, a digital
trigger was sent from the VXM-2 motor controller of the
actuator to a data acquisition card (DAQ) (NI PCIe-6374).
The DAQ card sent the DF signal to the power amplifier (AE
Techron 7224), which then sent it to the drive coil via an
impedance matching circuitry tuned to fd = 10 kHz. A current
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probe (PEM LFR 06/6/300) was used for calibrating Bp. The
received signal was pre-amplified using a low-noise amplifier
(SRS SR560) and then sampled at 2 MS/s using the DAQ.

1) Trajectory Specifications: A 2D FOV of 0.7 cm×12.7 cm
in the x-z plane was scanned using 3 different trajectories,
shown in Fig. 6. The experiments utilized fd = 10 kHz and
Bp = 15 mT, resulting in a pFOV size of Wp =12.5 mm.

PWT: The FOV was divided into 11×100 points in the x-
z plane, providing 89.84% overlap between the consecutive
pFOVs. A 150 ms signal was acquired for each pFOV,
resulting in an active scan time of 165 s. Due to the idle
times needed for actuator motion, the total scan time was
approximately 46 min.

LLT: The x-direction was divided into 11 equally spaced
lines. For the z-direction, the actuator was moved continuously
at its maximum speed of 38.1 mm/s, corresponding to Rs,z =
0.091 T/s for Gz = 2.4 T/m. This relatively low Rs,z resulted
in 99.97% overlap between the consecutive pFOVs. Each line
was covered in 3.46 s, resulting in an active scan time of 38 s.
The total scan time was 76 s due to the idle times needed for
the backward actuator movement along each line.

2DTT: A continuous triangle wave movement with Rs,x =
0.061 T/s and Rs,z = 0.03 T/s was applied using Eq. (23).
The active scan time was 19.8 s, with no idle time.

For direct feedthrough compensation, baseline measure-
ments were acquired before and after each line for PWT and
LLT, and before and after the entire trajectory for 2DTT.

2) Phantom Preparation: As shown in Fig. 5.(b), an imaging
phantom was prepared with 3 different samples, containing
Perimag (Micromod GmbH), Vivotrax (Magnetic Insight Inc.)
and their equal volume mixture. The samples were placed with
2.3 cm center-to-center separations. Each sample had 3 mm
diameter in the x-z plane and contained a total volume of
20 µL. Perimag (17 mg Fe/mL undiluted concentration) was
diluted 10.5 times to approximately equalize its signal level
to that of Vivotrax (5.5 mg Fe/mL undiluted concentration).
For computing signal timing (see Sec. III-B.4), an additional
marker sample containing 10 µL undiluted Perimag was
placed at a 4.6 cm separation from the leftmost sample.

3) Signal Preprocessing: As outlined in Fig. 5.(d), the re-
ceived and baseline signals were individually low pass filtered
using a zero-phase FIR filter with a cut-off frequency at
120 kHz to denoise the signal and remove the self-resonance
of the receive coil at 280 kHz. Potential system drifts (e.g., due
to heating or vibration) can cause slight delays between these
two signals. This delay was negligibly small for PWT due to
the short DF signals separated by extensive idle times that
allowed system cooling. For LLT and 2DTT, the delay was
more prominent due to the longer DF signals. The relative
delay was computed by first upsampling the received and
baseline signals at 100 MHz sampling rate, followed by a
cross-correlation operation. The baseline signal was then time-
shifted and subtracted from the received signal. Finally, the
direct feedthrough at the fundamental harmonic was filtered
out using a zero-phase FIR HPF with a cut-off frequency of
1.5fd.

4) Digital Fine-Tuning of Signal Timing: TAURUS requires
a precise (sub-sample level) adjustment of signal timing, as
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Fig. 6: Trajectories used in the imaging experiments, with
0.7 cm×12.7 cm FOV in the x-z plane. (a) PWT, with stepped
x- and z- directions. (b) LLT, with stepped x-direction and a
linear motion along z-direction. (c) 2DTT with a triangle-wave
motion along x-direction and a linear motion along z-direction.
The waveforms for the z-direction also show the superimposed
1D DF along the z-direction. The trajectories in the x-z plane
do not reflect the DF.

unaccounted delays can cause a bias in τ̂ . The signal timing,
ti, of the preprocessed signal was fine tuned using the marker
signal. To achieve sub-sample precision, first the signal was
upsampled at 100 MHz sampling rate. The tuning process
took advantage of the underlying mirror symmetry: when rτ (t)
computed at the correct ti is used to deconvolve the signal,
the mirror symmetry should be achieved [38], i.e.,

t̂i = argmin
ti

MSE(spos,d(t),−sneg,d(−t)). (24)

Here, t̂i is the estimated signal timing that minimizes the
mean square error (MSE) in mirror symmetry. In addition,
spos,d(t) and sneg,d(t) denote the positive and negative signals
after deconvolution with rτ (t) computed at ti, respectively.
Finally, the estimated t̂i was applied to the entire signal. As
outlined in Fig. 5.(d), the resulting signal is then fed to the
image reconstruction step.
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C. Color MPI Image Reconstruction

Color MPI image reconstruction was composed of three
steps: MPI image reconstruction, τ̂ map reconstruction, and
color overlay formation.

MPI Image Reconstruction: The MPI images for PWT
and LLT were reconstructed using Partial FOV Center Imaging
(PCI) reconstruction [44]. PCI requires the pFOV centers to
be aligned on a line and to have a high overlap percentage,
and hence is suitable for PWT and LLT. Since 2DTT does
not have any explicit overlap between pFOVs, PCI is not
directly applicable. Taking advantage of the continuous signal
acquisition of this trajectory, Harmonic Dispersion X-space
(HD-X) reconstruction was utilized [45]. Since the data points

Es
t. 

Er
ro

r (
%

)

c)b)

TAURUS

Rs,z = 20 T/s

a)
Rs,z = 20 T/s

SNR
2 8 2014

0

10

40

20

30

R s
,z

0

20

10

15

5

τ(
f)

 (μ
s)

0

4

2

kHz
0 40 12080

0

20

40 %
WLS-TAURUS Est. Error

SNR
2 8 2014

SNR
2 8 2014

TAURUS
WLS-TAURUS

SNR = 2
SNR = 10
SNR = 20
Noise-Free

6

Fig. 9: Noise robustness results. (a) The estimation error
for SR-corrected TAURUS and WLS-TAURUS with respect
to SNR and Rs,z . (b) τ(f) for 4 different SNR levels at
Rs,z = 20 T/s. (c) TAURUS vs. WLS-TAURUS with respect
to SNR at Rs,z = 20 T/s. WLS-TAURUS shows improved
robustness, especially for SNR < 5.

in 2DTT were on a non-Cartesian grid, an automated gridding
algorithm for non-Cartesian MPI reconstruction was utilized
on the HD-X data [46]. This gridding algorithm automatically
tuned all reconstruction parameters, including the grid size. To
reduce the blurring introduced by the gridding operation, the
Cartesian output image was deconvolved with the gridding ker-
nel using the Lucy-Richardson deconvolution [47]. The final
reconstructed images had 500×600 pixels for the simulations
and 200×2133 pixels for the imaging experiments.
τ̂ Map Reconstruction: After SR correction of each DF

period, τ̂ was estimated using WLS-TAURUS with Nrep =
6. The estimated τ̂ values were placed on the corresponding
pFOV center locations to form a τ̂ map. For 2DTT, the above-
mentioned gridding algorithm was utilized to grid the τ̂ values
to a Cartesian grid [46]. In the background regions, τ̂ can have
unexpectedly high or low values due to low SNR. To ensure
that these outlier τ̂ values do not contaminate the τ̂ map, the
gridding kernel was reduced to one-fourth of that used during
image reconstruction. Finally, the τ̂ map was interpolated to
match the size of the MPI image. To suppress the noise-like
τ̂ values in the background regions, the τ̂ map was multiplied
with a binary mask of the MPI image, with a threshold of
10% of the maximum pixel intensity.

Color Overlay Formation: The τ̂ maps were overlayed
with the reconstructed MPI images by multiplying the RGB
pixel intensities of the two images, channel by channel.

IV. RESULTS

A. SR Robustness Results
The slew rate robustness of the proposed method is pre-

sented in Fig. 7.(a) as a function of Rs,z and Rs,x, ranging
between 0-20 T/s. Here, both the no correction and SR cor-
rection results utilized WLS-TAURUS. These results indicate
that the estimation error does not depend on Rs,x, but is rather
dominated by Rs,z for the no correction case, reaching 37%
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Fig. 10: Color MPI simulation results for 3 different trajectories. (a) The digital phantom with τ between 2-4 µs. The τ̂
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performance despite their vastly different trajectory speeds. (e) The estimation performances, where the error bars denote the
mean and STD of the estimation error in τ̂ for the non-corrected (semi-transparent bars) and SR-corrected (solid bars) cases. SR
correction does not apply to PWT. SR correction provides a significant improvement in accuracy. 2DTT shows high accuracy
estimation with fast scanning and dense coverage.

error at Rs,z = 20 T/s. SR correction successfully reduces the
estimation error to below 3.6% at all Rs,z and Rs,x values
tested. Figure 7.(b) shows the estimation error at Rs,x = 20 T/s
as a function of Rs,z . Even at this large Rs,x, SR correction
maintains a low estimation error at all Rs,z values tested.
Next, Fig. 7.(c) shows the estimation error at Rs,z = 20 T/s,
displaying a less than 0.05% increase as a function of Rs,x
for both the no correction and SR correction cases.

The component-wise performances of the proposed SR cor-
rection method were also evaluated for Rs,z ranging between
0-20 T/s (results not shown). Amplitude correction alone had
minimal effect (less than 0.01%) on the estimation perfor-
mance with respect to the no correction case. In contrast, time-
shift correction alone provided a performance improvement
that is only slightly (less than 0.06%) lower than the full SR
correction case.

B. MNP Characteristics Robustness Results
The robustness against MNP characteristics for SR-

corrected TAURUS and WLS-TAURUS are given in Fig. 8 for
d ranging between 15-35 nm and τ ranging between 2-4 µs.
Figure 8 shows comparable performances for both methods,
with estimation errors below 3.7% for d > 19 nm, nearly
independent of τ . The estimation error is approximately 8.6%
at d = 15 nm and τ = 2 µs, whereas it decreases down to
3.1% for TAURUS and 2.9% for WLS-TAURUS at d = 35 nm
and τ = 4 µs.

C. Noise Robustness Results
Noise robustness results for SR-corrected TAURUS and

WLS-TAURUS are given in Fig. 9 for SNR ranging between
2-20 and Rs,z ranging between 0-20 T/s. This analysis did not
include Rs,x, as Fig. 7 indicated that Rs,x does not have an

impact on the estimation error. As seen in Fig. 9.(a), the esti-
mation error after SR correction is almost independent of Rs,z ,
but depends largely on the noise level. At high SNR levels,
WLS-TAURUS provides a relatively small improvement over
TAURUS. At low SNR levels, TAURUS shows high estimation
errors, particularly for SNR < 5. In contrast, WLS-TAURUS
maintains robustness against noise even at SNR = 2.

In Fig. 9.(b), SR-corrected τ(f) in Eq. (16) is plotted at 4
different SNR levels at Rs,z = 20 T/s. At SNR = 2, τ(f)
shows large ripple-like deviations from the ideal value of τ =
3 µs. These deviations increase at high frequencies, as the
signal energy gets smaller and the computation of τ(f) gets
dominated by noise. In addition, these ripples decrease at high
SNR and converge to the noise-free case. As previously shown
in Fig. 3, the ripples also increase with Rs,z . Hence, τ(f)
shown for SNR = 2 and Rs,z = 20 T/s corresponds to the
most challenging scenario.

Next, Fig. 9.(c) shows a direct comparison of TAURUS
and WLS-TAURUS at Rs,z = 20 T/s as a function of SNR,
where the improved noise robustness of WLS-TAURUS is
clearly visible for SNR < 5. At SNR = 2, the estimation
errors for TAURUS and WLS-TAURUS are 37% and 21%,
respectively. At SNR = 20, the estimation errors fall down to
5.5% and 5.0% for TAURUS and WLS-TAURUS, respectively.
In comparison, the estimation errors are 3.8% and 3.6% in the
noise-free case for TAURUS and WLS-TAURUS, respectively.

D. Color MPI Simulation Results

Figure 10 shows the color MPI simulation results for
3 different trajectories. The digital phantom used in these
simulations is displayed in Fig. 10.(a), with τ values between
2-4 µs. In Fig. 10.(b)-(d), the color overlays show comparable
performance for PWT, LLT, and 2DTT, despite their vastly
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Fig. 11: Imaging experiment results. The reconstructed MPI
images, τ̂ maps, and color overlays for (a) PWT, (b) LLT,
and (c) 2DTT. τ̂ map for 2DTT is visibly smoother. (d) The
estimated τ̂ for each sample, where the error bars denote the
mean and STD within the FWHM region of the respective
MPI image for that sample and trajectory. The displayed FOV
is 0.7 cm×7.3 cm.

different speeds. The estimation performances are compared
quantitatively in Fig. 10.(e), where the error bars denote
the mean and STD of the estimation errors in τ̂ within the
2 mm×2 mm region for each MNP distribution. As seen in
these results, 2DTT has the best performance, whereas LLT
shows slightly improved performance over PWT. The mean
estimation errors across all MNPs were 1.5±0.2%, 0.6±0.2%
and 0.4±0.4% for PWT, LLT, and 2DTT, respectively. Fig-
ure 10.(e) also demonstrates the importance of SR correction:
the estimations errors were 9.0±1.2% and 2.2±1.8% for the
non-corrected cases of LLT and 2DTT, respectively. Here,
consistent with the results in Fig. 7, the non-corrected case
of LLT displayed a larger error due to utilizing higher Rs,z .
Additionally, the results directly reflect the effect of trajectory
density and τ̂ map fidelity for the SR-corrected cases. While
LLT is denser than PWT along the z-direction, both LLT and
PWT are relatively sparse along the x-direction. In contrast,
2DTT provides a dense coverage along both the x- and z-
directions, resulting in improved estimation performance.

E. Imaging Experiment Results
Figure 11.(a)-(c) displays the imaging experiment results,

showing the reconstructed MPI images, τ̂ maps, and color
overlay images for 3 different trajectories. For PWT and LLT,

τ̂ shows a large variation along the x-direction due to the
low trajectory density in that direction. For 2DTT, τ̂ map is
visibly smoother with reduced variations along both x- and
z-directions, as this trajectory is considerably denser than the
other two trajectories. Since Vivotrax has worse full-width at
half-maximum (FWHM) resolution than Perimag, its τ̂ values
extend in a wider region along the z-direction [38].

The estimated τ̂ for each sample are given as bar plots
in Fig. 11.(d). Here, the error bars denote the mean and
STD of τ̂ of each sample within the FWHM region of the
respective MPI image for that sample and trajectory. For
PWT, the τ̂ values were 2.06±0.14 µs, 2.58±0.13 µs, and
2.83±0.16 µs for Perimag, mixture, and Vivotrax, respectively.
For LLT, the τ̂ values were 1.94±0.05 µs, 2.51±0.16 µs, and
2.82±0.17 µs for Perimag, mixture, and Vivotrax, respectively.
For 2DTT, the τ̂ values were 1.78±0.03 µs, 2.36±0.02 µs, and
2.83±0.12 µs for Perimag, mixture, and Vivotrax, respectively.
These results indicate that τ̂ for Vivotrax is consistent, showing
less than 1% variation across trajectories. This consistency is
potentially due to the worse FWHM resolution of Vivotrax,
which provides a paradoxical robustness against the low den-
sities of PWT and LLT along the x-direction. In addition, τ̂ for
Perimag is also consistent between PWT and LLT, with only
5.8% difference, as their densities match along the x-direction.
In contrast, τ̂ for Perimag for 2DTT is approximately 13.6%
and 8.2% lower than for PWT and LLT, respectively. These
differences potentially stem from the substantially increased
density of 2DTT along the x-direction. For each trajectory, τ̂
for the mixture closely matches the average of τ̂ for Perimag
and Vivotrax, as expected [38].

Overall, these results indicate that 2DTT provides reliable τ̂
estimations thanks to its dense coverage, while also providing
the shortest scan time among the tested trajectories.

V. DISCUSSION

In this work, we have proposed and experimentally demon-
strated techniques that enable relaxation-based color MPI for
rapid and multi-dimensional trajectories. The proposed SR
correction method provides excellent robustness against FF-
induced distortions for a wide range of SR values. Importantly,
this method solely depends on the system and trajectory pa-
rameters. In addition, using a weighted least squares approach,
WLS-TAURUS, successfully improves the noise robustness.

A. Alternative SR Correction Approaches
The proposed algorithm applies ∆t time-shift and α scaling

on the negative signal to align it with the positive signal. An
alternative approach could be to apply ∆t/2 time-shift and√
α scaling on the negative signal and ∆t/2 time-shift and

1/
√
α scaling on the positive signal, so that they meet at the

center of the half period. It can be shown that, in theory, this
approach yields identical τ as the proposed approach given in
Eq. (16). In practice also, it provides identical performance to
the proposed SR correction, given that FF-induced shifts are
within 1% of the DF period even at Rs,z = 20 T/s. Another
approach could be to fully correct for the time-varying nature
of the FF-induced distortions, so that the corrected sadiab(t)
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attains perfect mirror symmetry. However, such a correction
would essentially stretch or compress one (or both) of the
half-cycle signals, perturbing the temporal properties of the
relaxation effect in Eq. (4). Since frequency-domain relations
for TAURUS given in Eqs. (5)-(6) would no longer apply, this
approach is not suitable for relaxation mapping. In contrast,
the proposed SR correction preserves the relaxation effects
within individual half cycles.

B. SR Robustness
The simulations presented in this work were based on our

in-house MPI scanner, with both the drive and receive coils
along the z-direction. As shown in Fig. 7, the SR correction
is very robust against Rs,z and does not depend on Rs,x.
The latter effect stems from two reasons: the collinear PSF
is relatively wide along the x-direction [40], and the DF is
not along that direction. For the simulation parameters in this
work, the collinear PSF has 1.8 mm and 2.1 mm FWHM along
the z- and x-directions, respectively. Even for Rs,x = 20 T/s,
the FFP moves approximately 0.2 mm along the x-direction
in half the DF period, which is considerably smaller than
the FWHM along that direction. Even in theory, reaching a
comparable FWHM would require an effective MNP diameter
greater than 55 nm. For the same reasons, we expect Rs,y to
have a similarly negligible effect.

C. Effects of MNP Diameter
According to the Langevin theory, increasing the MNP

diameter or the SF gradients decreases the FWHM of the
PSF in all directions [40]. Regardless, the MNP diameter is
not expected to have any major effects on the τ estimation
performance, as confirmed by the low estimation errors main-
tained for d > 19 nm in Fig. 8. First of all, SR correction
is independent of the MNP parameters. Secondly, in terms
of resolution, increasing the MNP diameter is equivalent to
increasing Gz instead. The trajectory can still be kept identical
if Bp and Rs,z are increased at the same rate as Gz . Because
the assumption in Eq. (19) remains unchanged, the estimation
performance with respect to Rs,z should not be affected.

With Bp and Gz fixed, the increase in estimation error
for d < 19 nm is a result of the excessive widening of the
PSF, which causes the MPI image to appear flat within the
fixed pFOV size. In general, a flat MNP distribution can be
problematic for τ estimation, as it causes the entire signal to
fall on the fundamental harmonic. Then, the corresponding
pFOV will have low signal after direct feedthrough filtering,
despite having a non-zero pixel intensity in the reconstructed
MPI image. A potential solution is to fill in the corresponding
τ̂ regions using neighboring pFOVs, as proposed in [38].
Another alternative solution is to utilize active cancellation
methods to preserve the fundamental harmonic [48], [49].

The effective d for the MNPs in the imaging experiments
can be calculated using Fig. 11, where the FWHM values
along the z-direction are 3.73 mm for Perimag and 4.40 mm
for Vivotrax samples. Taking into account the 2.9 mm inner
diameter of each sample together with the estimated τ̂ values,
the effective MNP diameters are computed as 24.7 nm for

Perimag and 21.7 nm for Vivotrax. Note that these diameters
are close to the 25 nm diameter used in the simulations, and
are well above the 19 nm threshold mentioned above.

D. Resolution of τ Map
When creating the τ̂ map, a single τ̂ is estimated for

each period of the signal and assigned to the center of the
corresponding pFOV. Consequently, the resolution of τ̂ map
is directly proportional to the trajectory density. For PWT,
improving the resolution requires increasing the number of
stepped points along both the x- and z-directions, increasing
the scan time quadratically for a 2D FOV. For LLT, the
resolution along the continuously scanned z-axis is sufficiently
high and can be further improved by reducing Rs,z (e.g.,
even at Rs,z = 20 T/s, the resolution along the z-axis is
0.83 mm for the parameters in this work). However, improving
the resolution along the x-direction requires more lines to be
scanned, which would increase the scan time linearly for a
2D FOV. In 2DTT, the resolution is considerably improved
along the x-direction, but is position dependent. For a fixed
scan time and FOV, Rs,z and the number of pFOVs are also
fixed. Then, a trade-off between the resolutions in the x- and
z-directions can be achieved by adjusting Rs,x. By increasing
the scan time and reducing Rs,z , the overall resolution of τ̂
map can be further improved in both directions.

It should be noted that controlling the trajectory density in
a systematic fashion is challenging for 2DTT, as the trajectory
parameters are coupled. For example, doubling fd alone will
double the density on the exact same trajectory. The same
effect can also be achieved if Rs,x and Rs,z are both reduced to
half with a doubling in scan time to cover the same FOV. How-
ever, in both cases, the off-trajectory points will not benefit
from this seeming increase in density. In contrast, if we reduce
only Rs,z to half with a doubling in scan time, the trajectory
itself will have twice as many triangles covering the same
FOV. This time, the increased density will benefit the entire
scanned FOV. Furthermore, the differences in scan time also
need to be considered for a fair comparison of trajectories with
respect to the noise level, as previously done in a thorough
trajectory analysis of SFR-based image reconstruction [50].
Note that the color MPI simulations in Fig. 10 were noise-
free and the experiments in Fig. 11 were performed using
relatively high MNP concentrations showing negligible noise.
Therefore, the differences in scan times did not cause any
unfair bias in performance evaluations in this work. With that
said, considering the coupling between the scan parameters,
the effects of trajectory density on τ̂ map fidelity must be
analyzed thoroughly with an appropriate definition of density,
which remains an important future work.

E. Hardware and Safety Constraints on SR
In human-size applications of rapid TAURUS, both hard-

ware and safety constraints will affect the imaging speed. The
large imaging bore needed for human-size MPI scanners can
require coils with large inductances [51], [52], with FF coil
inductances in the mH range [53]. These large inductances
can in turn limit the applicable SR, necessitating hardware
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solutions to reduce the inductances [54]. For FF safety limits,
we have adopted the 20 T/s safety limit of MRI gradient fields
[41], given the similarity of their operating frequencies. In
MPI, the dominating safety constraint for both DF and FF is
magnetostimulation [29]. During simultaneous application of
DF and FF, the safety limits and the allowable SR for FF can
further reduce [30]. Therefore, 20 T/s can be considered as an
upper limit for the SR of FF. Note that while the limitations
on SR can hinder the imaging speed of MPI in general, they in
turn make the speed assumption in Eq. (19) easier to satisfy.

F. Extension to Other Rapid MPI Trajectories

This work utilized constant SRs in both the simulations and
the experiments. In fact, a constant but high SR (e.g., 20 T/s)
is the worst-case scenario for FF-induced distortions. If the
assumption in Eq. (19) is satisfied, extending the proposed
method to time-varying SRs should not pose a challenge.

In this work, a 1D DF was utilized. Trajectories with
multi-dimensional DFs, such as the Lissajous trajectory, can
cover a 2D/3D pFOV in a relatively short scan time [50].
For such trajectories, the assumption in Eq. (19) has to be
satisfied for each DF axis. Since TAURUS requires a back-
and-forth scanning, the multi-dimensional DFs may need to
be applied twice, once forward and once backward [38]. Note
that, while x-space reconstruction was previously proposed for
such trajectories [46], an experimental demonstration is yet to
be shown. Extending TAURUS and x-space reconstruction to
such multi-dimensional DFs remains an important future work.

VI. CONCLUSION

In this work, we have proposed a novel SR correction
method to compensate for the FF-induced distortions in the
underlying mirror symmetry of the MPI signal. The proposed
method depends only on the system and scanning parame-
ters, and enables high-fidelity relaxation map estimations via
TAURUS for rapid and multi-dimensional trajectories. The
performance is further boosted via a weighted least squares
approach. The results show robustness against a wide range
of SRs and noise, together with orders of magnitude reduction
in scan time. The proposed rapid relaxation mapping method
will have important applications in developing the functional
imaging capabilities of MPI.

VII. APPENDIX

In this appendix, we derive Eq. (17). If we assume that SR
correction fully recovers the mirror symmetry property, the
SR-corrected signals should satisfy Eq. (5), i.e.,

Spos,c(f) = Shalf(f)Rτ (f), (25a)
Sneg,c(f) = −S∗

half(f)Rτ (f). (25b)

The non-corrected estimation can be expressed by applying
Eq. (6) directly on the SR-distorted signal, i.e.,

τd(f) =
S∗

pos,d(f)+Sneg,d(f)

i2πf
(
S∗

pos,d(f)−Sneg,d(f)
) (26)

Using Eq. (15) and Eq. (25), τd(f) can be rewritten as follows:

τd(f) =
S∗

pos,c(f)+Sneg,c(f)e−i2π∆tf/α

i2πf
(
S∗

pos,c(f)−Sneg,c(f)e−i2π∆tf/α
) (27a)

= R∗(f)α−R(f)e−i2π∆tf

i2πf
(
R∗(f)α+R(f)e−i2π∆tf

) . (27b)

Inserting R(f) as given in Eq. (5) and simplifying yields:

τd(f) =
α(1 + i2πfτ)− e−i2π∆tf (1− i2πfτ)

i2πf
(
α(1 + i2πfτ) + e−i2π∆tf (1− i2πfτ)

) . (28)

Finally, regrouping the terms and defining d± = α±e−i2π∆tf ,
we get:

τd(f) =
i2πfτd+ + d−

i2πf
(
i2πfτd− + d+

) . (29)
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automated gridding reconstruction for non-cartesian x-space magnetic
particle imaging,” Phys. Med. Biol., vol. 64, no. 16, p. 165018, 2019.

[47] R. J. Hanisch, R. L. White, and R. L. Gilliland, “Deconvolution of
Hubbles Space Telescope images and spectra,” in Deconvolution of
images and spectra (2nd ed.), 1996, pp. 310–360.

[48] D. Pantke, N. Holle, A. Mogarkar, M. Straub, and V. Schulz, “Mul-
tifrequency magnetic particle imaging enabled by a combined passive
and active drive field feed-through compensation approach,” Med. Phys.,
vol. 46, no. 9, pp. 4077–4086, 2019.

[49] B. Tasdelen, E. Yagiz, M. Utkur, A. R. Cagil, C. B. Top, E. Atalar, and
E. U. Saritas, “Vector modulator based active compensation of direct
feedthrough,” Int. J. Mag. Part. Imag., vol. 6, no. 2 Suppl 1, p. 2009065,
2020.

[50] T. Knopp, S. Biederer, T. Sattel, J. Weizenecker, B. Gleich, J. Borgert,
and T. Buzug, “Trajectory analysis for magnetic particle imaging,” Phys.
Med. Biol., vol. 54, no. 2, pp. 385–397, 2008.

[51] E. E. Mason, C. Z. Cooley, S. F. Cauley, M. A. Griswold, S. M. Conolly,
and L. L. Wald, “Design analysis of an MPI human functional brain
scanner,” Int. J. Mag. Part. Imag., vol. 3, no. 1, 2017.
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