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Abstract

Purpose:  Image  quality  in  accelerated  MRI  rests  on  careful  selection  of  various  reconstruction  parameters.  A common
yet tedious  and  error-prone  practice  is  to  hand-tune  each  parameter  to  attain  visually  appealing  reconstructions.  Here,  we
propose a  parameter  tuning  strategy  to  automate  hybrid  parallel  imaging  (PI)  – compressed  sensing  (CS)  reconstructions
via low-rank  modeling  of  local  k-space  neighborhoods  (LORAKS)  supplemented  with  sparsity  regularization  in wavelet
and total  variation  (TV)  domains.
Methods:  For  low-rank  regularization,  we  leverage  a  soft-thresholding  operation  based  on  singular  values  for  matrix
rank selection  in  LORAKS.  For  sparsity  regularization,  we  employ  Stein’s  unbiased  risk  estimate  criterion  to  select  the
wavelet regularization  parameter  and  local  standard  deviation  of  reconstructions  to  select  the  TV  regularization  parameter.
Comprehensive demonstrations  are  presented  on  a numerical  brain  phantom  and  in  vivo  brain  and  knee  acquisitions.
Quantitative assessments  are  performed  via  PSNR,  SSIM  and  NMSE  metrics.
Results: The  proposed  hybrid  PI-CS  method  improves  reconstruction  quality  compared  to PI-only  techniques,  and  it
achieves on  par  image  quality  to  reconstructions  with  brute-force  optimization  of  reconstruction  parameters.  These  results
are prominent  across  several  different  datasets  and  the  range  of  examined  acceleration  rates.
Conclusion: A  data-driven  parameter  tuning  strategy  to  automate  hybrid  PI-CS  reconstructions  is presented.  The  proposed
method achieves  reliable  reconstructions  of  accelerated  multi-coil  MRI  datasets  without  the  need  for  exhaustive  hand-tuning
of reconstruction  parameters.
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1 Introduction times. Accelerated MRI alleviates this limitation in efficiency
Magnetic resonance imaging (MRI) offers excellent soft tis-
sue contrast, but it is often hampered by relatively long scan
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by undersampling k-space acquisitions, and then recover-
ing images from undersampled data [1]. Two mainstream
approaches for recovery are parallel imaging (PI) that exploits
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the spatial encoding information that modern coil arrays pro-
vide [2–6], and compressed sensing (CS) that exploits prior
information about image sparsity in known transform domains
[7–12]. Recent studies have demonstrated enhanced perfor-
mance by devising hybrid reconstructions that combine the
benefits of receiver arrays and sparsity priors [13–17].

A recent framework for reconstruction from undersampled
MR acquisitions is LORAKS (low-rank modeling of local k-
space neighborhoods) [1]. LORAKS observes that the system
matrix in PI with receiver arrays can be cast as a structured
low-rank matrix, and flexibly incorporates additional con-
straints regarding smoothness of image phase and extent of
spatial support [1]. To further improve reconstruction quality,
sparsity priors from CS can also be injected into LORAKS
by inclusion of regularization terms based on �1-norm of
wavelet coefficients or total variation (TV) norm of image
coefficients [18–20]. As such, LORAKS has been success-
fully demonstrated in a broad range of applications, including
multi-contrast imaging [21], fetal imaging [22], and echo-
planar imaging [23]. Yet image quality critically depends on
the selection of various parameters related to LORAKS (e.g.,
matrix rank threshold) as well as regularization weights that
balance sparsity priors against the physical signal model. In
particular, suboptimal parameter selection is known to elicit
artifacts or loss of image features [24]. While many studies
empirically tune parameters for specific datasets of interest,
such exhaustive tuning is computationally challenging and
thereby impractical for routine clinical practice [25–27].

Several powerful approaches were previously proposed for
tuning of MRI reconstruction parameters. L-curve criterion
[28] assumes that the trade-off between data consistency
objective governed by the physical signal model and regu-
larization objectives follows an L-shaped curve, and that the
optimal parameters can be selected on the point of maximum
curvature (i.e., the elbow point). Projection onto epigraph
sets [29] determines regularization parameters via geometric
projections onto the boundary of convex epigraph sets. Gener-
alized cross-validation [30] first estimates the reconstruction
error as a function of regularization terms and regularization
weights, and then selects optimal parameters that minimize
the estimated error. Similarly, Stein’s unbiased risk estimator
(SURE) [31] produces online estimates of the expected mean
squared error of a reconstruction model [32], and it permits
parameter selection via evaluation of estimated error. While
existing approaches have been demonstrated for selecting reg-
ularization weights in PI [28,32,33] or CS [34–36], remaining
reconstruction parameters still require heuristic selections.
Therefore, there is a need for a comprehensive approach that
automates selection of all relevant parameters in hybrid PI-CS
reconstructions.

In this work, we introduce a data-driven parameter tun-

ing strategy to automate hybrid PI-CS reconstructions based
on the LORAKS framework, named A-LORAKS-CS. We
propose to perform matrix rank selection in LORAKS
via singular value soft thresholding. For selection of CS
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regularization weights, we employ a proven SURE-based
method for �1-norm of wavelet coefficients, and we devise
an efficient method based on local standard deviation of
reconstructed images for TV-norm of image coefficients.
Comprehensive demonstrations are presented on a numerical
brain phantom, in vivo balanced steady-state free precession
(bSSFP), T1-weighted, and Time-of-Flight (TOF) acqui-
sitions of the brain, and proton density (PD) weighted
acquisitions of the knee. Comparisons are provided against
state-of-the-art PI and hybrid PI-CS reconstructions, as well as
brute-force methods where parameters are optimized through
an exhaustive search by peeking into the fully-sampled ground
truth data. The proposed method performs reliably across
different imaging contrasts and anatomies. A-LORAKS-CS
achieves on par quality to the brute-force hybrid PI-CS recon-
structions, while outperforming other competing methods in
terms of image quality.

2 Methods

The central aim of this study is to introduce an automated
data-driven parameter tuning strategy for reconstruction of
multi-coil MRI acquisitions based on the LORAKS frame-
work supplemented with CS sparsity priors. In the following
sections, we first introduce the hybrid PI-CS reconstruction
formulation, followed by the parameter tuning strategy includ-
ing the selection of LORAKS parameters, wavelet-domain
regularization weight and TV-norm regularization weight.

2.1  Hybrid  PI-CS  with  LORAKS

LORAKS is a powerful approach for reconstructing under-
sampled MRI acquisitions. LORAKS uses a structured
low-rank matrix formulation to harness support, phase and PI
constraints [18,37], and it estimates missing k-space data by
promoting limited rank in the resulting system matrix [5,21].
The structured system matrix is based on linear shift-invariant
interpolation kernels that capture relationships among sam-
ples in local k-space neighborhoods. While it is possible
to learn these relationships from a fully-sampled central k-
space region, it is also possible to generalize LORAKS to
calibrationless sampling trajectories [1]. Complementary to
LORAKS, CS regularizations can be utilized to improve
image quality, by promoting compressibility of data represen-
tations in known transform domains. In this work, we utilized
two common sparsity priors, namely �1-norm regularization
of wavelet coefficients and total variation (TV) regularization
of image coefficients. As such, hybrid PI-CS reconstructions
can be cast as a constrained optimization problem:

min
x

(
Jr (PS (x)) + λW

∑
‖ψ {Xc}‖1 + λTV

∑∥∥∇ {Xc}
∥∥

1

)
(1)
c c

subj.to Ax = xacq

The above formulation comprises multiple objectives: a
term that enforces low rank in the system matrix, a joint
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sparsity term across wavelet coefficients of multi-coil MRI
data, and a cumulative sparsity term across TV coefficients
of multi-coil MRI data. Meanwhile, strict data consistency is
enforced using the constraint in the second line of the equa-
tion. In Eq. (1), Jr (·) is a nonconvex penalty function that
enforces the matrix rank to be less than or equal to the selected
rank estimate r,  PS is the operator that constructs the struc-
tured low-rank matrix based on limited spatial support and/or
smoothly varying phase from multiple receiver channels (see
Appendix A for detailed implementation of these penalty
functions and the LORAKS operator). Meanwhile, ψ  denotes
the wavelet transform operator, λW denotes the wavelet regu-
larization weight; ∇  denotes the finite-differences operator
and λTV denotes the TV regularization weight. Lastly, x
denotes the k-space data to be estimated (X  in image domain)
containing all receiver channels, c  denotes the index of the
receiver channel, xacq are acquired data and A  is the sampling
operator.

The reconstruction in Eq. (1) critically depends on the
selection of parameters related to LORAKS as well as regular-
ization weights that balance sparsity priors against consistency
with the acquired data. There are several parameters of choice
in LORAKS that can affect the quality of the structured low-
rank recovery problem (see Appendix A for details). The
explicit parameters of interest include the matrix rank value r,
and the radius of the local k-space neighborhoods (NR). There
are also implicit choices such as the support/phase/PI assump-
tions used during the construction of the LORAKS matrix and
the optimization algorithm [1,38]. In this work, we have lim-
ited our scope to the selection of r, as well as the selection of
wavelet-domain and TV-domain regularization weights λW
and λTV .

2.2  A-LORAKS-CS

To automate hybrid PI-CS reconstructions, here we pro-
pose an automated parameter selection method based on
the LORAKS framework supported with CS sparsity priors,
named A-LORAKS-CS. The proposed method addresses the
selection of the matrix rank, the wavelet-domain regulariza-
tion weight, and the TV-domain regularization weight in Eq.
(1) in a data-driven manner without requiring manual inter-
vention. Parameter selection is performed sequentially for
LORAKS, sparsity and TV projection steps as outlined in
Figure 1.

Optimization  and  stopping  criterion

Reconstructions were obtained by solving Eq. (1) using
an alternating minimization strategy, with inner splits for
LORAKS and CS optimization. In accordance, LORAKS and

CS projections were employed in an interleaved fashion with
data-consistency projections to produce a quasi-optimal solu-
tion at their intersection. A single outer iteration was used
[13], and a data-driven stopping criteria was employed to
s xxx (2021) xxx–xxx 3

tune the number of inner iterations. The stopping criterion
for both LORAKS and CS splits was based on the Euclidean
distance between reconstructed images at consecutive itera-
tions. A maximum of 50 inner iterations was prescribed, and
optimization for a given split was stopped when the Euclidean
norm between two iterations fell below a tolerance of 10−3.
The details of the individual projections are described in the
following sections.

2.3  Selection  of  the  matrix  rank

Here we have limited our scope to a LORAKS implemen-
tation based on the S  matrix, a structured low-rank matrix
with limited spatial support and/or smoothly varying phase
assumptions, without virtual conjugate coils. The LORAKS
reconstruction was obtained using the multiplicative half-
quadratic majorize-minimize algorithm, where the low-rank
approximation to S  was obtained via a truncated singular value
decomposition (SVD) [38]. The matrix approximation prob-
lem can be expressed as:

T̂  =  argmin
T :rank(T )=r

‖S  − T‖2
F (2)

Here, T  is the low-rank approximation to S, and ‖·‖F
denotes the Frobenius norm of a matrix. Assume that the SVD
of the structured matrix is given as S  =  U�VH , where �  is
diagonal and U, V  are orthonormal matrices. The low-rank
approximation is then:

T̂ = UΣ≤r,≤rVH (3)

where Σ≤r,≤r denotes that all entries in �  except the ones
with row and column indices smaller than or equal to r  have
been replaced with zeros (i.e., all singular values excluding
the highest r values have been replaced with zeros). Noting
that UHU  =  I, the linear operator that performs the truncation
can be expressed as:

T̂  = (UI≤r,≤rUH)  (
UΣVH

) = (UI≤r,≤rUH) S (4)

It can be observed that UI≤r,≤rUH is Hermitian symmetric
[38].

To select the matrix rank (r), we devised a SURE-based
approach in this study. SURE is a data-driven method for
calculating mean squared error (MSE) in estimating a true
signal from measurements corrupted by additive Gaussian
noise [31]. Let y  ∈  C

m be the true complex signal, η  ∈  C
m

be additive zero-mean complex Gaussian noise with stan-
dard deviation σ  for both the real and imaginary components,
and xacq =  y +  η be the acquired complex data. The SURE

expression for a linear denoiser can be derived as [33]:

E

{∥∥Pθ (xacq)−  y
∥∥2

2

}
=  E

{
SUREPθ

(
xacq

)}
(5)
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Figure 1. Flowchart of A-LORAKS-CS, a data-driven parameter tuning strategy to automate hybrid PI-CS reconstructions. A-LORAKS-CS
utilizes the LORAKS framework as its PI component, and wavelet- and TV-domain regularization as its CS component. Parameter selection
for PI and CS components are performed sequentially and independently. Matrix rank in LORAKS is selected with singular value soft
thresholding. Threshold for wavelet coefficients in sparsity projections is selected according to Stein’s unbiased risk estimate. Threshold for

g t
uis
finite-differences coefficients in TV projections is selected accordin
achieves robust, data-driven reconstructions from undersampled acq

SUREPθ
(
xacq

) =  −mσ2 + ∥∥Pθ (xacq)−  xacq
∥∥2

2

+  2σ2trace
(
Pθ
(
xacq

))
(6)

where Pθ is the operator characterizing the linear denoiser
with parameters θ. If Pθ is Hermitian symmetric, Eq. (6) can
equivalently be implemented by partitioning the complex vec-
tor space for data into real and imaginary parts [33]. Because
the above expression depends on the acquired data and not on
the ground truth signal, expected MSE of the estimator can
be calculated without supervision. In turn, an optimal set of
parameters can be selected to minimize the expected MSE.
Note that LORAKS can be viewed as a linear denoiser that
performs low-rank matrix approximation to remove undesir-
able signals in the measured data including noise. Thus, taking
Pθ as the LORAKS operator with θ  =  (r,  NR), here we pro-
pose to select r  based on the SURE expression in Eq. (6).
Yet, explicit calculation of low-rank matrix approximations
for each possible value in a range for r  would be computa-
tionally exhaustive. In this study, we instead reparametrize the
low-rank problem as a soft-thresholding operation on singular
values:

T̂  =  UΣ≤r,≤rVH ≈  UMΣVH,

where Mi,j =

⎧⎪⎨
⎪⎩
Sshrink (εi)

εi
,  i  =  j

0,  i  /=  j

Sshrink(εi) = εi

|εi| max (0, |εi| −  λε)

(7)

where εi is the ith singular value, Sshrink (·) is the soft-
thresholding operation, and λε is the threshold to be selected
for singular values. Theory suggests that this reparametriza-

tion allows selection of an optimal threshold for the singular
values of a matrix based on SURE in the absence of struc-
tured noise [39], and a recent study on ESPIRiT demonstrated
derivation of pseudo-optimal thresholds paralleling results
o local standard deviation estimates. Collectively, A-LORAKS-CS
itions without requiring manual intervention.

from exhaustive search in cases with structured noise [33].
Inspired by these studies, here we propose to determine the
matrix rank in LORAKS via soft-thresholding of the singular
values in S. Accordingly, the pseudo-optimal value for λε is
obtained via a SURE expression.

λ̂ε ≈  argmin
λε

SUREλε
(
xacq

)
(8)

To determine the matrix rank for LORAKS, the rank of
the soft-thresholded matrix can then be identified as r  =∑
iϕ(εi − λ̂ε), where ϕ  is the binary step function.
Unlike the selection of the matrix rank, the choice of NR  is

nontrivial since larger NR  is associated with increased memory
requirements. In theory [1,5], higher values of NR  increase
reconstruction performance, although the performance curve
with respect to NR  might be non-monotonic. Here, we selected
NR = 3  based on the trade-off between the reconstructed image
quality and the available memory of the system on which the
experiments were conducted (see Supp. Figure 1).

2.4  Selection  of  the  wavelet-domain  regularization
weight

Sparsity projections were implemented to reduce residual
artifacts in the reconstructions. The projections were imple-
mented to solve the following minimization problem:

SP
(
X̄
) =  arg  min

X

‖x̄ −  EX‖2
2 +  λW‖ψ {X}‖1 (9)
where E  =  AF  is the encoding matrix that also involves the
Fourier operator with the sampling operator, x̄  denote the input
to the projection in k-space. A common approach to solve the
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optimization in Eq. (9) is iterative soft-thresholding (IST) that
shrinks wavelet coefficients [7,40]:

X(i) =  ψ−1Sshrink
(
ψ
{
X(i−1) +  EH

(
x̄  −  EX(i−1)

)})
Sshrink

(
uj
) = uj∣∣uj∣∣ max

(
0,
∣∣uj∣∣−  λW

) (10)

where uj denote individual wavelet coefficients. To improve
convergence speed of IST, here we adopted the optimization
approach introduced by Khare et al. [34] that uses recon-
structions at two prior iterations to compute the updated
reconstruction. Accordingly, the reconstruction at the ith iter-
ation was expressed as:

X(i) =  ψ−1Sshrink
(
ψ
{
h(i)
})

h(i) =  g(i−1) +  EH
(
x̄  −  Eg(i−1)

)

g(i−1) =
(

1 + i  −  1

i +  2

)
X(i−1) − i  −  1

i +  2
X(i−2)

(11)

where g(i−1) denotes a linear combination of reconstructions
from the two prior iterations, the combination weights are
set according to Nesterov’s optimal gradient scheme, and h(i)

is an intermediate image derived from g(i−1) by enforcing
consistency to acquired k-space samples.

At each iteration, λW was selected based on the SURE cri-
terion for minimizing �2-norm error between the intermediate
image h(i), and its soft-thresholded version X(i) [31,34,35]:

λW =  argmin
λW

SUREλW

(
h(i)
)

(12)

To identify the optimal threshold, a line-search was used
with the range initialized to [10−4 10−2]. During the course
of reconstruction, the search range was adaptively adjusted
to obtain finer resolution around the settled minima. Here we
generalized the method introduced by Khare et al. [34] to mul-
tiple receiver channel settings. The regularization weight was
first selected independently for each coil element. Optimal
values for individual coils were averaged, and the resulting
weight was used for joint-sparsity regularization across all
coils.

2.5  Selection  of  the  TV-domain  regularization  weight

TV projections were employed to reduce aliasing interfer-
ence and noise in the reconstructions. The projections were
implemented by minimizing the following objective:
TV
(
X̄
) =  argmin

X

∥∥X̄ −  X
∥∥2

2 +  λTV
∥∥∇ {X}∥∥1 (13)
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where X̄  denotes the input to the TV projection in image
domain. A fast iterative clipping algorithm with parameters
adopted from [41] was used for solving this optimization
problem:

X(i) = X̄−  ∇ t
{
z(i−1)

}
z(i) =  Sclip

(
z(i−1) +  ∇ {X(i)

}
/α
) (14)

where ∇ t denotes the adjoint finite-differences operator, X(i)

denotes the reconstructed image at ith iteration of the split-
ting algorithm, α  is the update rate parameter, z(i) denotes the
auxiliary vector in the finite-differences domain and z(0) =  0.
The clipping function that serves to penalize finite-differences
coefficients below a specific threshold was taken as:

Sclip
(
zj
) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
zj,

∣∣zj∣∣ < λTV

2(
λTV

2

)
·  exp

(
j∠zj

)
, otherwise

(15)

where zj denote individual finite-differences coefficients. At
each iteration, λTV was selected via a non-iterative procedure
that uses edge maps derived from reconstructions at the pre-
vious iteration. Edge maps were constructed by emphasizing
high-frequency signals in MR images as inspired by Guo and
Huang [42]. Note that high-frequency signals carry contri-
butions from not only edge structures near tissue boundaries
but also from white Gaussian noise. To minimize formation
of artefactual edges due to noise amplification, images were
smoothed with a Gaussian kernel of σ  =  2 and size set to
3σ along each axis to cover 99% of the variability in the
kernel. Our analyses indicated that the choice of σ that con-
trols the degree of spatial smoothing does not have a notable
influence on the final reconstruction performance (see Supp.
Figure 2 for representative results). Thus, we selected an inter-
mediate value that offered decent noise suppression without
over-smoothing the images visually. A spatial map that reflects
energy levels associated with edge structure was then com-
puted as the square-root of the local standard deviations (LSD)
to emphasize high-frequency information:

Q  =
√
LSD(Ẋ) (16)

Here, Q  represents the edge map, LSD  represents the
local standard deviation operation, Ẋ  represents the smoothed
image. To increase sensitivity for compact edges due to rapid

transition between neighboring pixels, LSD  was measured
across a 3 ×  3 neighborhood. It is expected that pixels with
reliable edge features will have high values in Q, whereas
remaining pixels will have notably lower values. Therefore,
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λTV was selected as the fraction of the median intensity in
edge maps [36]:

λTV =  median (Q) /γ  (17)

The fraction constant in the above equation was selected as
γ =  10, as this value worked reliably across various datasets,
and overall reconstruction performance showed minimal sen-
sitivity to the selection (see Supp. Figure 3 for representative
results).

2.6  Alternative  reconstructions

For each dataset, several alternative reconstructions were
computed to comparatively demonstrate the proposed A-
LORAKS-CS approach.

A-ESPIRiT:  An ESPIRiT reconstruction was performed
with SURE-based automatic parameter selection [33]. Kernel
size, eigenvalue threshold and size of the signal subspace were
selected from the auto-calibration region based on the SURE
criterion. To mitigate excessive computational burden, kernel
size and eigenvalue threshold were determined for a single
central cross-section within each volume and were assigned
to the remaining cross-sections, whereas the size of the signal
subspace was computed separately for each cross-section.

A-LORAKS:  Automated LORAKS projections were per-
formed as described in the PI component of the proposed
method, but CS projections were omitted during reconstruc-
tion.

PESCaT: A hybrid PI-CS reconstruction was implemented
using a geometric projection onto epigraph sets (PES) tech-
nique [29]. This method uses heuristically determined SPIRiT
projections [4] with fixed parameters, and a PES approach
to determine regularization weights for wavelet-domain and
TV-domain coefficients.

BF-LORAKS  and  BF-LORAKS-CS:  Two brute-force
reconstructions were implemented to obtain a target level
of image quality for LORAKS-type reconstructions. The
first one was BF-LORAKS that performed an exhaustive
optimization of the matrix rank value (r) to obtain a PI-
only reconstruction. The optimization of r  was performed
by searching across 20 possible values, ranging between
5% and 100% of the largest singular value. The second
one was BF-LORAKS-CS that leveraged BF-LORAKS for
PI projections, and exhaustively optimized regularization
weights λW and λTV for the CS projections. The optimiza-
tion of regularization weights were performed by searching
across 100 possible combinations of wavelet-domain and
TV-domain regularization weights [26]. For both reconstruc-
tions, exhaustive optimization of reconstruction parameters
assumed the availability of fully-sampled ground truth images.

Optimal parameter sets were observed to be consistent across
separate cross-sections within a given volume for individ-
ual subjects. Thus, for computational efficiency, brute-force
searches were conducted in a central cross section, and
ys xxx (2021) xxx–xxx

reconstruction parameters that yielded near-optimal quanti-
tative performance metrics were assigned to the remaining
cross-sections within each subject.

Reconstructions were performed separately on individual
cross-sections of three-dimensional (3D) volumes. To do this,
3D k-space acquisitions were Fourier transformed across the
fully-sampled readout dimension, and then split along that
dimension to select single cross sections. Thus, 2D LORAKS
operators were used in A-LORAKS, A-LORAKS-CS, BF-
LORAKS and BF-LORAKS-CS; 2D interpolation kernels
were used in PESCaT; and 2D sensitivity maps were used
in A-ESPIRiT. For all methods, reconstructions were allowed
a maximum of 50 iterations, with identical stopping crite-
ria to A-LORAKS-CS. Reconstructed images (coil- and/or
multiple-acquisitions) were combined with sum-of-squares.
All reconstruction algorithms were implemented in MATLAB
(MathWorks, MA) on a PC with 16 GB memory. Upon pub-
lication, codes will be openly available for general use at
https://github.com/icon-lab/mrirecon.

2.7  Undersampling  patterns

Variable-density random sampling patterns were used to
retrospectively undersample fully-sampled acquisitions [43].
Sampling patterns were generated based on a polynomial
density function to achieve 2D isotropic acceleration in two
phase-encode dimensions. For additional analyses, separate
sampling patterns were generated for 1D acceleration in a
single phase-encode dimension. Although LORAKS supports
sampling patterns without dedicated auto-calibration regions
(see Supp. Figure 4), for a fair comparison among competing
methods some of which were autocalibrating, central k-space
was fully-sampled up to 10% of maximum spatial frequency
in each dimension. For a given sampling density, 1000 candi-
date patterns were pseudo-randomly generated. The candidate
that minimized the aliasing energy was then selected [11].

2.8  Numerical  phantom  experiments

Simulations were performed on a realistic
brain phantom at 0.5 mm isotropic resolution
(http://brainweb.bic.mni.mcgill.ca/brainweb). Phase-cycled
bSSFP images were calculated as described in [40], with
N = 4 phase-cycling values (�φ) spanning [0, 2π) in equi-
spaced intervals. Bivariate Gaussian noise was added to
phase-cycled bSSFP images to attain acquisition SNR = 30
for cerebrospinal fluid (CSF). 3D acquisitions that cover
the brain in the superior-inferior direction were obtained
for 10 axial cross-sections using a flip angle of 45◦ and
TR/TE of 5.0/2.5 ms with 8 receiver channels organized in
a circularly symmetric geometry (see Supp. Figure 5 for

banding-free bSSFP images in a central cross-section). Data
were 2D undersampled at R  = 2, 3, 4, 6 in two phase-encode
dimensions, and 1D undersampled at R = 2, 3, 4 in a single
phase-encode dimension.

https://github.com/icon-lab/mrirecon
http://brainweb.bic.mni.mcgill.ca/brainweb
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Reconstruction quality was assessed via quantitative met-
rics measured on combined bSSFP images. For a given
cross-section, the reference image was designated as the
reconstruction obtained from fully-sampled acquisitions
combined across both the coils and phase cycles. Peak signal-
to-noise ratio (PSNR), structural similarity index (SSIM),
and normalized mean-squared error (NMSE) metrics were
measured between the reconstructed image and the reference
image, while excluding background regions (i.e., air). To pre-
vent bias due to intensity differences, 98% of pixel intensities
were normalized to the range [0 1].

2.9  In  vivo  experiments

To demonstrate the proposed method in vivo, experiments
were conducted on fully-sampled phase-cycled bSSFP, T1-
weighted, and TOF acquisitions of the brain, as well as PD-
weighted fast spin echo (FSE) knee acquisitions. The brain
datasets were acquired using a 3T scanner (Magnetom Trio,
Siemens, Erlangen, Germany) with 3D sequences and a 12-
channel head coil. Five healthy subjects were scanned under
each protocol. All participants gave written informed consent,
and the imaging protocols were approved by the local ethics
committee. The fully-sampled human knee experiments were
conducted on a public dataset [44]. The knee images were
acquired on a 3T scanner (Discovery MR 750, GE Healthcare,
Milwaukee, USA) with a PD-weighted 3D sequence and an
8-channel knee coil.

The bSSFP protocol comprised a flip angle of 30◦, a TR/TE
of 8.08/4.04 ms, a field-of-view (FOV) of 218 mm ×  218 mm,
an isotropic resolution of 0.85 mm, a matrix size of
256 ×  256 ×  96, and N  = 4 separate acquisitions with phase-
cycling values (�φ) spanning [0, 2π) in equispaced interval.
The T1-weighted protocol comprised a flip angle of 9◦,
a TR/TE of 2300/2.98 ms, a FOV of 256 mm ×  240 mm,
a resolution of 1.0 ×  1.0 × 1.2 mm3, and a matrix size
of 256 ×  240 ×  160. The TOF protocol comprised a flip
angle of 18◦, a TR/TE of 38/3.19 ms, a FOV of 204
mm ×  204 mm, an isotropic resolution of 0.8 mm, and a
matrix size 256 ×  256 ×  75. The knee protocol comprised
a TR/TE of 1550/25 ms, 40 ms echo train length, a FOV
of 160 mm ×  160 mm, a resolution of 0.5 ×  0.5 ×  0.6 mm3,
and a matrix size of 320 ×  320 ×  256. The bSSFP and TOF
acquisitions were hardware compressed from 12 receiver
channels into 4 channels during acquisition. For individ-
ual acquisitions in each subject, 10 central cross-sections
were extracted for reconstruction experiments. Data were
retrospectively undersampled via variable-density undersam-
pling in the phase-encode dimensions. Undersampling was
performed to achieve 2D acceleration at R  = 2, 3, 4 for all
acquisitions, and additionally at R  = 6 for T1-weighted acqui-

sitions. Separate analyses were performed to achieve 1D
acceleration at R  = 2, 3, 4 for T1-weighted acquisitions.

To evaluate reconstruction performance, PSNR, SSIM
and NMSE metrics were calculated across individual
s xxx (2021) xxx–xxx 7

cross-sections. To prevent bias due to intensity differ-
ences, 98% of pixel intensities were normalized to the
range [0 1]. Measurements were only performed over image
regions containing tissue signals while excluding background
regions. Binary foreground/background masks were extracted
semi-automatically using a region-growing algorithm with
manually specified seeds [45]. For in vivo bSSFP data, the
reference image was selected as the coil and phase-cycle
combined fully-sampled acquisitions to suppress banding arti-
facts. For the remaining datasets, the reference images were
selected as the coil combined fully-sampled acquisitions.

3 Results

3.1  Numerical  phantom  experiments

The proposed method was first demonstrated on bSSFP
acquisitions of a numerical phantom across 2D acceleration
factors R  = 2–6. Figure 2 displays representative recon-
structions at R  = 4 obtained with A-ESPIRiT, A-LORAKS,
PESCaT, A-LORAKS-CS, as well as brute-force optimized
BF-LORAKS and BF-LORAKS-CS. A-ESPIRiT displays
elevated error levels broadly across the reconstructed image.
A-LORAKS yields visibly lower artifacts compared to A-
ESPIRiT, yet residual errors remain. The addition of CS
priors improves image quality, and PESCaT and A-LORAKS-
CS achieve visibly reduced reconstruction error compared
to PI-only reconstructions. Furthermore, A-LORAKS-CS
maintains similar error performance to brute-force based BF-
LORAKS-CS, without access to the fully-sampled reference
image for parameter selection.

Quantitative assessments of reconstruction performance are
listed in Table 1 for 2D acceleration, and in Supp. Table 1
for 1D acceleration. Note that brute-force methods designate
a target for reconstruction performance as their parameter
selection is guided by access to the fully-sampled data. We
observe that CS priors significantly improve reconstruction
quality and the hybrid PI-CS approaches outperform the
PI-only reconstructions. Among the hybrid PI-CS methods,
A-LORAKS-CS achieves the highest reconstruction quality,
performing competitively with the brute-force method. On
average across R for 2D acceleration, A-LORAKS improves
(PSNR, SSIM, NMSE) by (3.34 dB, 8.45%, 1.51 ×  10−2)
over A-ESPIRiT; and A-LORAKS-CS outperforms PESCaT
by (1.90 dB, 3.47%, 0.37 × 10−2). For 1D acceleration, A-
LORAKS improves (PSNR, SSIM, NMSE) by (5.69 dB,
14.70%, 4.32 ×  10−2) over A-ESPIRiT; and A-LORAKS-
CS outperforms PESCaT by (2.03 dB, 5.17%, 0.59 ×  10−2).

Taken together, these results suggest that A-LORAKS-CS can
perform near-optimal parameter selection for the reconstruc-
tion of undersampled acquisitions across various acceleration
rates.
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Figure 2. Phase-cycled bSSFP reconstructions of the numerical phantom obtained at R  = 4 are shown for competing reconstruction methods.
In addition, squared error maps with respect to the fully-sampled reference image are displayed. The proposed A-LORAKS-CS method
yields visibly reduced reconstruction errors compared to the competing methods, while offering similar reconstruction quality to the brute-

ing 

, an

force based hybrid PI-CS technique BF-LORAKS-CS without hav
methods (marked in gray font) have access to the fully-sampled data

3.2  In  vivo  experiments

Next, we demonstrated A-LORAKS-CS on in vivo bSSFP,
T1-weighted, and TOF acquisitions in the brain and FSE
acquisitions in the knee. Representative reconstructions for
2D undersampled acquisitions are displayed in Figures 3–6.
As depicted in Figure 3, A-ESPIRiT reconstruction of bSSFP
images manifests residual artifacts across tissues and near tis-
sue boundaries, which are mostly alleviated by A-LORAKS.

In addition, inclusion of CS priors with A-LORAKS-CS fur-
ther improves artifact suppression and yields higher image
quality.
access to the fully-sampled reference image. Here, the brute-force
d are presented only to provide a target level for the image quality.

In Figure 4, representative reconstructions for T1-weighted
acquisitions are displayed at R  = 4 for two representative
subjects (see Supp. Figure 6 for respective squared error
maps). Here, while A-ESPIRiT and A-LORAKS maintain
relatively similar error performances, these reconstructions
show broadly distributed residual errors. In contrast, PESCaT
and A-LORAKS-CS further dampen reconstruction errors by
utilizing both PI and CS priors.

In Figure 5, a representative cross-section as well as

maximum-intensity-projections (MIPs) obtained across the
volume are shown for the competing methods for TOF acqui-
sitions at R = 4. The artifacts arising from residual errors are
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Table 1
Quality of numerical phantom reconstructions assessed via PSNR, SSIM and NMSE. Measurements are reported separately for each method
as mean ±  std across cross-sections. Bold font marks the top performing reconstructions apart from the brute-force methods (marked in
italics font).

PSNR (dB)

Acceleration A-ESPIRiT A-LORAKS BF-LORAKS PESCaT A-LORAKS-CS BF-LORAKS-CS

R = 2 29.60 ± 0.14 30.89 ± 0.34 31.18 ± 0.26 31.22 ± 0.16 33.08 ± 0.37 32.95 ± 0.43
R = 3 23.31 ± 0.19 29.51 ± 0.17 30.00 ± 0.23 29.82 ± 0.12 32.51 ± 0.18 32.15 ± 0.14
R = 4 23.85 ± 0.17 28.56 ± 0.13 28.01 ± 0.20 28.22 ± 0.10 30.96 ± 0.10 30.30 ± 0.16
R = 6 21.86 ± 0.24 26.35 ± 0.13 26.30 ± 0.16 25.38 ± 0.23 27.59 ± 0.26 27.79 ± 0.29

SSIM (%)

Acceleration A-ESPIRiT A-LORAKS BF-LORAKS PESCaT A-LORAKS-CS BF-LORAKS-CS

R = 2 78.67 ± 0.38 86.94 ± 0.31 89.45 ± 0.24 94.09 ± 0.07 95.97 ± 0.12 95.84 ± 0.10
R = 3 60.08 ± 0.38 78.75 ± 0.34 84.03 ± 0.26 92.01 ± 0.09 95.85 ± 0.10 95.72 ± 0.09
R = 4 71.00 ± 0.26 77.02 ± 0.22 82.73 ± 0.32 90.57 ± 0.26 95.47 ± 0.08 95.01 ± 0.12
R = 6 64.46 ± 0.35 73.74 ± 0.26 74.43 ± 0.36 86.41 ± 0.43 93.14 ± 0.18 93.40 ± 0.21

NMSE (10−2)

Acceleration A-ESPIRiT A-LORAKS BF-LORAKS PESCaT A-LORAKS-CS BF-LORAKS-CS

R = 2 0.77 ± 0.02 0.57 ± 0.04 0.54 ± 0.03 0.53 ± 0.02 0.35 ± 0.03 0.36 ± 0.03
R = 3 3.28 ± 0.12 0.79 ± 0.02 0.70 ± 0.03 0.73 ± 0.02 0.39 ± 0.02 0.43 ± 0.01
R = 4 2.90 ± 0.08 0.98 ± 0.02 1.11 ± 0.04 1.06 ± 0.01 0.56 ± 0.01 0.66 ± 0.02
R = 6 4.59 ± 0.19 1.63 ± 0.04 1.65 ± 0.04 2.04 ± 0.09 1.22 ± 0.06 1.17 ± 0.07

Figure 3. In vivo bSSFP acquisitions of the brain were reconstructed at R  = 4. Reconstructions from a representative cross-section and
respective squared error maps with respect to the fully-sampled reference image are displayed for the competing methods. A-ESPIRiT
suffers from residual artifacts across tissues and boundaries. A-LORAKS significantly dampens the error and performs similarly to the

opo
ute-
PI-only brute-force reconstruction BF-LORAKS. Meanwhile the pr
residual artifacts and offers the closest performance to the hybrid br

apparent in the MIPs of A-ESPIRiT and A-LORAKS, whereas
the MIP of PESCaT suffers from inconsistencies between
different cross-sections. Meanwhile, A-LORAKS-CS yields

enhanced artifact suppression and image quality.

In Figure 6, representative reconstructions of knee acqui-
sitions are displayed at R  = 3. Here we observe that the
sed A-LORAKS-CS approach further dampens broadly distributed
force reconstruction BF-LORAKS-CS.

A-ESPIRiT approach suffers from losses at tissue boundaries
in regions with low signal intensity due to erroneous estima-
tion of respective eigenvalue thresholds, whereas A-LORAKS

better alleviates these artifacts. Nevertheless, both methods
have residual reconstruction errors. In contrast, with the added
CS priors PESCaT and A-LORAKS-CS yield improved image
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Figure 4. In vivo T1-weighted acquisitions of the brain were reconstructed at R  = 4. Reconstructions from representative cross-section

from two subjects are displayed for the competing methods. CS regular
methods, and overall A-LORAKS-CS achieves on par performance wit
ization noticeably improves reconstruction quality for all examined
h the hybrid PI-CS brute-force reconstruction BF-LORAKS-CS.
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Figure 5. In vivo TOF acquisitions of the brain were reconstructed at R  = 4. The results are displayed for a representative cross-section along
with the error maps and maximum-intensity projections (MIPs) obtained across the volume. A-ESPIRiT suffers from broad errors across the
FOV. A-LORAKS improves suppression of aliasing artifacts, yet some reconstruction errors remain. PESCaT suffers from inconsistencies
between different cross-sections that create artifacts in the MIP image. In contrast, A-LORAKS-CS yields noticeably improved reconstruction
quality for both the cross-section and the MIP.
quality. In particular, A-LORAKS-CS achieves the highest
quality overall, with similar image quality and error perfor-
mance compared to the brute-force reconstruction.

Visual observations regarding the performance of A-
LORAKS-CS are also supported by quantitative assessments
listed in Tables 2–5 for 2D acceleration, and in Supp. Table
2 for 1D acceleration. At each R, A-LORAKS-CS yields
higher PSNR, SSIM and NMSE scores compared to A-
ESPIRiT and A-LORAKS (except for PSNR and NMSE at
R = 2 in bSSFP), while performing similarly to brute-force
based BF-LORAKS-CS. Likewise, A-LORAKS-CS yields
higher PSNR, SSIM and NMSE compared to PES-based
hybrid PI-CS reconstruction PESCaT (except for PSNR and
NMSE at R  = 2 in FSE). For 2D acceleration, A-LORAKS-CS
improves (PSNR, SSIM, NMSE) over PESCaT on average
by (2.74 dB, 3.74%, 0.39 ×  10−2) in bSSFP acquisitions;
by (0.83 dB, 1.73%, 0.18 ×  10−2) in T1-weighted acquisi-

−2
tions; by (2.48 dB, 7.30%, 0.73 ×  10 ) in TOF acquisitions;
and by (0.10 dB, 0.72%, 0.02 ×  10−2) in FSE acquisitions.
For 1D acceleration, A-LORAKS-CS outperforms PESCaT
by (1.45 dB, 3.83%, 0.60 ×  10−2) in reconstruction of T1-
weighted acquisitions.

Overall, A-LORAKS-CS consistently outperforms PI-only
reconstructions, as well as the hybrid PESCaT method. Sam-
ple reconstruction times for competing methods are listed in
Supp. Table 3 for a single cross-section. Among automated
parameter selection approaches, A-LORAKS-CS has on par
run time with A-ESPIRiT, albeit relatively longer run time
compared to A-LORAKS and PESCaT. Note that, in return for
this increase in computational load, A-LORAKS-CS achieves
the highest reconstruction quality among competing meth-
ods (except for two cases: PSNR and NMSE at R  = 2 for
bSSFP, and at R  = 2 for FSE acquisitions). Importantly, A-
LORAKS-CS has nearly an order-of-magnitude shorter run
time compared to BF-LORAKS-CS, which performs param-
eter selection via exhaustive search over candidate values.
At the same time, it maintains the closest performance to

BF-LORAKS-CS across different sequences and acceleration
rates. Taken together, these results demonstrate the perfor-
mance improvements obtained with the proposed approach
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Figure 6. In vivo FSE acquisitions of the knee were reconstructed at R  = 3. A-ESPIRiT suffers from losses at tissue boundaries in regions
with low signal intensity, whereas A-LORAKS does not suffer from these artifacts. Nevertheless, both methods suffer from distributed

ons
ce 
reconstruction errors across the FOV. The CS priors improve the rec
A-LORAKS-CS maintains the closest image quality to the brute-for

and the utility of A-LORAKS-CS in achieving fast and
automated reconstructions of undersampled multi-coil acqui-
sitions.

4 Discussion

In this study, we introduced a hybrid PI-CS reconstruc-
tion, A-LORAKS-CS, with data-driven parameter tuning to
improve practical utility. A-LORAKS-CS is a composite of

LORAKS as its PI component, and sparsity-enforcing regu-
larizations in wavelet- and TV-domains as its CS component.
The primary parameters of interest for the proposed method
are the rank of the system matrix in LORAKS, and weights of
truction performance and better suppress aliasing artifacts. Overall,
reconstructions.

the regularization terms in wavelet and TV domains. A SURE
expression is derived for the Hermitian symmetric LORAKS
operator to construct the system matrix, and then used to
identify the matrix rank via singular value thresholding. Mean-
while, the selection of the regularization weight in wavelet
domain is based on online estimates of reconstruction error
via a SURE expression, and the selection of the TV regular-
ization weight is based on online estimates of local standard
deviation in reconstructions. Taken together, these parameter

selection strategies automate accelerated MRI reconstruction
while alleviating the need for manual intervention. Our results
strongly indicate that the proposed method performs reliably
across different anatomies, sequences, and acceleration rates;
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Table 2
Quality of in vivo bSSFP reconstructions in the brain assessed via PSNR, SSIM and NMSE. Measurements were averaged across cross-
sections within each subject, and reported as mean ±  std across subjects. Bold font marks the top performing reconstructions apart from the
brute-force methods (marked in italic font).

PSNR (dB)

Acceleration A-ESPIRiT A-LORAKS BF-LORAKS PESCaT A-LORAKS-CS BF-LORAKS-CS

R = 2 29.70 ± 1.17 37.31 ± 0.47 37.31 ± 0.49 34.49 ± 0.38 37.15 ± 0.52 39.20 ± 0.35
R = 3 24.29 ± 0.67 32.53 ± 0.47 32.57 ± 0.49 30.54 ± 0.35 33.40 ± 0.57 35.17 ± 0.46
R = 4 22.10 ± 2.08 30.61 ± 0.52 30.83 ± 0.44 28.78 ± 0.32 31.46 ± 0.55 33.12 ± 0.39

SSIM (%)

Acceleration A-ESPIRiT A-LORAKS BF-LORAKS PESCaT A-LORAKS-CS BF-LORAKS-CS

R = 2 81.57 ± 4.04 94.84 ± 0.68 94.86 ± 0.68 94.29 ± 0.62 96.39 ± 0.55 97.37 ± 0.26
R = 3 65.27 ± 3.51 87.56 ± 1.37 87.67 ± 1.45 89.08 ± 0.96 93.22 ± 1.03 94.76 ± 0.48
R = 4 58.67 ± 7.87 83.85 ± 2.07 83.97 ± 2.06 85.82 ± 1.12 90.81 ± 1.37 92.73 ± 0.56

NMSE (10−2)
Acceleration A-ESPIRiT A-LORAKS BF-LORAKS PESCaT A-LORAKS-CS BF-LORAKS-CS

R = 2 1.11 ± 0.36 0.19 ± 0.03 0.19 ± 0.03 0.36 ± 0.06 0.20 ± 0.04 0.12 ± 0.02
R = 3 3.82 ± 0.87 0.56 ± 0.09 0.55 ± 0.09 0.88 ± 0.12 0.47 ± 0.11 0.31 ± 0.05
R = 4 6.85 ± 3.39 0.87 ± 0.17 0.83 ± 0.14 1.32 ± 0.17 0.73 ± 0.16 0.49 ± 0.07

Table 3
Quality of in vivo T1-weighted brain reconstructions assessed via PSNR, SSIM and NMSE. Measurements were averaged across cross-
sections within each subject, and reported as mean ±  std across subjects. Bold font marks the top performing reconstructions apart from the
brute-force methods (marked in italic font).

PSNR (dB)

Acceleration A-ESPIRiT A-LORAKS BF-LORAKS PESCaT A-LORAKS-CS BF-LORAKS-CS

R = 2 29.24 ± 1.57 30.69 ± 1.27 30.87 ± 1.40 30.30 ± 1.02 31.17 ± 1.22 32.42 ± 1.36
R = 3 24.79 ± 1.82 26.29 ± 1.27 26.17 ± 1.61 26.96 ± 0.99 28.10 ± 1.22 28.71 ± 1.38
R = 4 22.14 ± 1.61 23.67 ± 1.37 23.74 ± 1.28 25.04 ± 0.99 26.34 ± 1.32 26.11 ± 1.28
R = 6 17.56 ± 2.58 22.74 ± 1.16 22.77 ± 1.17 23.28 ± 1.01 24.12 ± 1.27 24.33 ± 1.22

SSIM (%)

Acceleration A-ESPIRiT A-LORAKS BF-LORAKS PESCaT A-LORAKS-CS BF-LORAKS-CS

R = 2 89.56 ± 1.57 92.02 ± 0.97 92.35 ± 1.11 93.51 ± 0.43 94.45 ± 0.48 95.31 ± 0.59
R = 3 78.09 ± 4.18 82.71 ± 1.68 83.33 ± 2.10 88.57 ± 0.46 90.61 ± 0.62 91.37 ± 1.17
R = 4 68.56 ± 3.81 74.87 ± 2.40 77.32 ± 2.27 84.96 ± 0.35 87.83 ± 0.68 87.51 ± 0.86
R = 6 58.91 ± 13.82 75.28 ± 1.98 75.06 ± 2.34 80.47 ± 0.40 83.23 ± 0.67 83.88 ± 0.90

NMSE (10−2)

Acceleration A-ESPIRiT A-LORAKS BF-LORAKS PESCaT A-LORAKS-CS BF-LORAKS-CS

R = 2 0.50 ± 0.10 0.35 ± 0.04 0.34 ± 0.05 0.38 ± 0.04 0.31 ± 0.04 0.24 ± 0.03
R = 3 1.42 ± 0.39 0.96 ± 0.12 1.01 ± 0.25 0.83 ± 0.10 0.64 ± 0.09 0.56 ± 0.12

.22 

.22 
R = 4 2.57 ± 0.50 1.77 ± 0.27 1.74 ± 0
R = 6 8.08 ± 4.54 2.18 ± 0.21 2.16 ± 0

and it maintains on par image quality to exhaustive parameter
selection.
Several previous studies have demonstrated the use of
SURE criterion for MRI reconstruction in order to select
parameters for ESPIRiT, �1-norm regularization of wavelet
1.29 ± 0.17 0.96 ± 0.17 1.01 ± 0.15
1.93 ± 0.28 1.60 ± 0.27 1.52 ± 0.23

coefficients, or TV regularization of image coefficients
[32–34]. In particular, A-ESPIRiT uses a SURE expression

to determine the optimal kernel size, subspace dimensionality
and eigenvalue threshold [33]. Compared to A-ESPIRiT, A-
LORAKS-CS should provide increased flexibility regarding
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Table 4
Quality of in vivo TOF brain reconstructions assessed via PSNR, SSIM and NMSE. Measurements were averaged across cross-sections
within each subject, and reported as mean ±  std across subjects. Bold font marks the top performing reconstructions apart from the brute-force
methods (marked in italic font).

PSNR (dB)

Acceleration A-ESPIRiT A-LORAKS BF-LORAKS PESCaT A-LORAKS-CS BF-LORAKS-CS

R = 2 23.50 ± 2.37 23.81 ± 0.63 24.15 ± 0.72 27.21 ± 0.33 29.30 ± 0.61 28.64 ± 0.75
R = 3 22.94 ± 2.55 20.78 ± 0.53 20.69 ± 0.40 23.66 ± 0.41 26.12 ± 0.59 25.12 ± 0.65
R = 4 20.46 ± 1.95 19.48 ± 0.59 19.91 ± 1.08 21.18 ± 0.39 24.08 ± 0.69 23.15 ± 0.86

SSIM (%)

Acceleration A-ESPIRiT A-LORAKS BF-LORAKS PESCaT A-LORAKS-CS BF-LORAKS-CS

R = 2 61.98 ± 7.33 63.19 ± 3.04 68.12 ± 3.22 81.62 ± 1.04 86.31 ± 0.85 85.21 ± 0.88
R = 3 64.01 ± 9.55 50.25 ± 3.98 55.36 ± 3.31 70.92 ± 1.58 78.37 ± 1.30 76.19 ± 1.34
R = 4 48.56 ± 6.78 44.43 ± 4.46 49.42 ± 4.48 62.39 ± 2.04 72.16 ± 1.73 69.80 ± 2.47

NMSE (10−2)

Acceleration A-ESPIRiT A-LORAKS BF-LORAKS PESCaT A-LORAKS-CS BF-LORAKS-CS

R = 2 1.71 ± 1.04 1.44 ± 0.18 1.33 ± 0.14 0.66 ± 0.08 0.41 ± 0.05 0.48 ± 0.08
R = 3 2.35 ± 2.30 2.88 ± 0.27 2.99 ± 0.36 1.49 ± 0.17 0.85 ± 0.09 1.08 ± 0.16
R = 4 3.30 ± 1.48 3.88 ± 0.29 3.58 ± 0.56 2.65 ± 0.18 1.37 ± 0.15 1.69 ± 0.20

Table 5
Quality of in vivo FSE knee reconstructions assessed via PSNR, SSIM and NMSE. Measurements were averaged across cross-sections within
each subject, and reported as mean ±  std across subjects. Bold font marks the top performing reconstructions apart from the brute-force
methods (marked in italic font).

PSNR (dB)

Acceleration A-ESPIRiT A-LORAKS BF-LORAKS PESCaT A-LORAKS-CS BF-LORAKS-CS

R = 2 23.49 ± 0.45 26.32 ± 0.30 29.23 ± 0.26 30.29 ± 0.27 30.19 ± 0.26 30.29 ± 0.19
R = 3 19.83 ± 0.93 22.59 ± 0.32 27.19 ± 0.20 28.13 ± 0.33 28.27 ± 0.33 28.31 ± 0.30
R = 4 20.61 ± 2.73 21.82 ± 0.31 26.19 ± 0.24 27.03 ± 0.36 27.29 ± 0.39 27.32 ± 0.30

SSIM (%)

Acceleration A-ESPIRiT A-LORAKS BF-LORAKS PESCaT A-LORAKS-CS BF-LORAKS-CS

R = 2 60.20 ± 2.82 74.16 ± 1.75 84.55 ± 0.88 85.98 ± 0.52 86.26 ± 0.45 86.28 ± 0.48
R = 3 41.98 ± 4.44 56.90 ± 2.14 76.31 ± 1.10 77.80 ± 0.65 78.59 ± 0.48 78.61 ± 0.64
R = 4 47.25 ± 14.41 52.63 ± 2.16 71.02 ± 1.10 72.40 ± 0.78 73.49 ± 0.68 73.85 ± 0.76

NMSE (10−2)

Acceleration A-ESPIRiT A-LORAKS BF-LORAKS PESCaT A-LORAKS-CS BF-LORAKS-CS

.04

.05

.08
R = 2 2.31 ± 0.25 1.20 ± 0.08 0.61 ± 0
R = 3 5.45 ± 1.32 2.82 ± 0.14 0.98 ± 0
R = 4 5.14 ± 2.78 3.35 ± 0.15 1.23 ± 0

the design of sampling patterns, as the LORAKS frame-
work can also operate in the absence of calibration regions.
Furthermore, A-LORAKS-CS also devises parameter selec-
tion strategies for CS projections to further improve the

reconstruction quality by alleviating the residual artifacts.
Compared to the methods for wavelet-domain or TV-domain
regularized reconstructions, A-LORAKS-CS incorporates a
 0.48 ± 0.03 0.49 ± 0.03 0.48 ± 0.03
 0.79 ± 0.06 0.76 ± 0.06 0.76 ± 0.06
 1.02 ± 0.08 0.96 ± 0.08 0.95 ± 0.06

data-driven parameter selection for the PI component, and
it employs a hybrid weight selection strategy for combined
�1-TV-norm regularization. Compared to the PESCaT tech-
nique [29], our method incorporates a data-driven parameter

selection for PI projections. Furthermore, while PES offers
improved efficiency over standard line-search-based tuning
methods, it still requires empirically tuned scaling factors for
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epigraph sets and an iterative optimization for selection of TV
weights.

Deep learning methods have recently been introduced that
can learn regularization parameters to help automate MRI
reconstructions. In particular, Hammernik et al. proposed a
supervised reconstruction model that learns the reconstruction
filters along with a regularization weight [46]. The supervised
model is trained using a relatively large dataset of under-
sampled and corresponding fully-sampled acquisitions. The
trained values of reconstruction and regularization param-
eters are then employed during inference without further
updates. Since no parameter selection is performed during
inference, learning-based methods offer significantly faster
inference compared to iterative reconstruction methods. In
contrast, the proposed method uses SURE-based estimators
that involve line searches for relevant regularization param-
eters that will incur added computational costs. That said,
the proposed method does not require large, paired training
datasets that may be hard to compile. Furthermore, it performs
scan-specific tuning of regularization parameters, permitting
selection of a different regularization parameter for each sub-
ject. Future studies are warranted to comparatively examine
the generalization performance learning-based versus itera-
tive methods.

A limitation of the brute-force reconstructions is that they
perform search over a restricted range of discrete parame-
ter values due to computational considerations. While the
implementation of brute-force methods used here has also
been adopted in other studies [26,29], discrete sampling over
a restricted range may lead to suboptimal performance. In
turn, brute-force reconstructions may not be representative
of the highest achievable image quality. Indeed, we have
occasionally observed that the data-driven parameter-tuning
techniques yield higher PSNR or SSIM values compared to
brute-force methods (see Tables 1, 3 and 4). Nevertheless,
brute-force methods still provide a target level for the attain-
able image quality in MRI reconstruction.

The proposed method can be advanced along several lines
of technical development. Here, we used the soft-threshold
heuristic approach for quasi-optimal albeit efficient selec-
tion of the system matrix rank in LORAKS under structured
noise. Although nontrivial, a SURE-optimal derivation for
rank selection is theoretically possible, and it might result in
further performance gains. Second, the CS projections based
on wavelet and TV domains were observed to perform well in
brain and knee MRI reconstructions. Yet, they might be sub-
optimal for other MRI applications such as dynamic imaging
where temporal sparsity might be an equally important fac-
tor [47]. Alternative domains can then be adopted to enforce
compressibility of MR images during CS projections, and
automated parameter selection strategies can be developed.

Third, the SURE-estimators of online reconstruction error for
matrix rank and wavelet threshold were utilized in conjunction
with a line search. These linear searches can elevate com-
putational load over methods with fixed parameters. When
 xxx (2021) xxx–xxx 15

the computational cost of line searches become prohibitive,
more efficient, direct selection approaches can be preferred
[29,48]. Reconstructions can also be accelerated via paral-
lelized implementations on central and/or graphics processing
units.

In summary, we introduced a data-driven parameter selec-
tion approach to facilitate the reconstruction of multi-coil
MRI datasets without the need for exhaustive hand-tuning
of reconstruction parameters. The proposed approach was
demonstrated to perform reliably for bSSFP, T1-weighted, and
TOF imaging of the brain, and PD-weighted FSE imaging
of the knee. The presented results suggest great promise for
advancing the clinical utility of hybrid PI-CS reconstructions.
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Appendix A

The nonconvex penalty function Jr (·) in LORAKS enforces
the rank of the system matrix to be less than or equal to r, and
it is defined as follows:

Jr (PS (x)) =
∑
i>r

ε2
i (18)
where the operator PS (·) constructs the structured low-rank
matrix S based on limited spatial support and/or smoothly
varying phase from C-different receiver channels, and εi
denotes the ith singular value of the matrix S. Minimizing

http://mridata.org/
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the loss function in Eq. (18) is equivalent to finding a rank-
constrained approximation to S:

min
x
Jr (PS (x)) = P∗

S

(
argmin

T :rank(T )≤r
‖S  −  T‖2

F

)
(19)

where P∗
S is the adjoint of PS that maps a structured matrix

onto respective k-space data, T  is the low-rank approximation
to S, and ‖·‖F denotes Frobenius norm. Note that P∗

S (PS (x))
denotes a linear operator that maps each k-space sample onto
itself, scaled by the number of times the sample appears in S.
Therefore, P∗

SPS is a diagonal matrix with real entries.
Without loss of generality, the system matrix for a sin-

gle receive-channel setup can be constructed as follows.
Let ρ̃

(
nx, ny

)  (
nx ∈ [−NX,  +NX] ,  ny ∈ [−NY, +NY ]

)
be

Nyquist-sampled Cartesian k-space samples of a 2D image,
where NX and NY are positive integers that define the k-space
measurement region. Then, let Sc ∈  R

2K×2NNR be the struc-
tured matrix for the cth receiver channel. The operator PS (·)
constructs Sc by performing linear operations on k-space data
ρ̃
(
nx,  ny

)
. LORAKS employs a purely-real implementation

for the matrix Sc that partitions real and imaginary compo-
nents of the complex nullspace relationships:

Sc =
[
Sre+ −  Sre− −Sim+ +  Sim−
Sim+ +  Sim− Sre+ +  Sre−

]
(20)

The subblocks in Sc are defined based on real and imaginary
components of k-space data in mirror-symmetric quadrants.
Accordingly, Sre+, Sre−, Sim+, Sim− ∈  R

K×NNR are taken as:

[
Sre+

]
k,m

= ρ̃re
(
n(k)
x −  pm,  n(k)

y −  qm

)
[
Sre−

]
k,m

= ρ̃re
(
−n(k)

x −  pm,  −n(k)
y −  qm

)
[
Sim+

]
k,m

= ρ̃im
(
n(k)
x −  pm, n(k)

y −  qm

)
[
Sim−

]
k,m

= ρ̃im
(
−n(k)

x −  pm,  −n(k)
y −  qm

)
(21)

where k  =  1,  .  .  ., K  and m  =  1,  . .  ., NNR and ρ̃re
(
nx,  ny

)
and ρ̃im

(
nx,  ny

)
denote the real and imaginary components

of ρ̃
(
nx,  ny

)
. Here K  distinct k-space samples are indexed

by
{(
n(k)
x , n(k)

y

)}K
k=1

, and are chosen to be the full set of the

k-space locations
(
nx, ny

)
from the Cartesian grid that sat-
isfy −NX +  NR  ≤  nx ≤  NX −  NR  and −NY +  NR  ≤  ny ≤
NY −  NR; {(pm,  qm)}NNRm=1 denotes the set of distinct elements
from the set �NR = {(p,  q) ∈  Z

2 :
(
p2 +  q2 ≤  NR2

)}
, and

NNR is the number of elements on �NR.
[

ys xxx (2021) xxx–xxx

Finally, the LORAKS matrix S  is constructed by concate-
nation of matrices across C-different receive channels:

S = [S1,  S2, .  .  ., SC] (22)

Appendix B Supplementary data

Supplementary data associated with this arti-
cle can be found, in the online version, at
https://doi.org/10.1016/j.zemedi.2022.02.002.
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