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Abstract

Object and action perception in cluttered dynamic natural scenes relies on efficient allocation of
limited brain resources to prioritize the attended targets over distractors. It has been suggested
that during visual search for objects, distributed semantic representation of hundreds of object
categories is warped to expand the representation of targets. Yet, little is known about whether
and where in the brain visual search for action categories modulates semantic representations. To
address this fundamental question, we studied brain activity recorded from five subjects (1
female) via functional magnetic resonance imaging while they viewed natural movies and
searched for either communication or locomotion actions. We find that attention directed to
action categories elicits tuning shifts that warp semantic representations broadly across
neocortex, and that these shifts interact with intrinsic selectivity of cortical voxels for target
actions. These results suggest that attention serves to facilitate task performance during social
interactions by dynamically shifting semantic selectivity towards target actions, and that tuning
shifts are a general feature of conceptual representations in the brain.

Keywords: action representation, attention, fMRI, voxelwise modelling, natural stimuli

Significance Statement

The ability to swiftly perceive the actions and intentions of others is a crucial skill for humans,
which relies on efficient allocation of limited brain resources to prioritise the attended targets
over distractors. However, little is known about the nature of high-level semantic representations
during natural visual search for action categories. Here we provide the first evidence showing
that attention significantly warps semantic representations by inducing tuning shifts in single
cortical voxels, broadly spread across occipitotemporal, parietal, prefrontal, and cingulate
cortices. This dynamic attentional mechanism can facilitate action perception by efficiently
allocating neural resources to accentuate the representation of task-relevant action categories.
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Introduction

The ability to swiftly perceive the actions and intentions of others is a crucial skill for all social
animals. In the human brain this ability has been attributed to a network of occipitotemporal,
parietal and premotor areas collectively called the action observation network (AON) (Caspers et
al., 2010; Molinari et al., 2013; Oberman et al., 2007; Rozzi and Fogassi, 2017). Recent reports
suggest that the AON hierarchically represents diverse information pertaining to actions, ranging
from shape and kinematics to action-effector interactions and action categories (Grafton and de
C Hamilton, 2007; Handjaras et al., 2015; Oosterhof et al., 2010, 2012, 2013; Urgen et al., 2019;
Wurm et al., 2017; Cavina-Pratesi et al., 2018; Lingnau and Downing, 2015). Low-level shape
and movement kinematics are represented in occipitotemporal cortex and in the posterior bank of
inferior temporal cortex (Jastorff and Orban, 2009). Effector type (e.g., foot, hand) is represented
in ventral premotor cortex (Corbo and Orban, 2017; Jastorff et al., 2010), while parietal cortex
represents higher-level action categories (Abdollahi et al., 2012; Ferri et al., 2015).

Evidence suggests that selective attention alters population responses to actions across this
representational hierarchy. Prior electrophysiology (Muthukumaraswamy and Singh, 2008;
Muthukumaraswamy et al., 2004; Puglisi et al., 2017, 2018; Schuch et al., 2010) and
neuroimaging studies (Herrington et al., 2012; de Lange et al., 2008; Nicholson et al., 2017;
Rowe et al., 2002; Safford et al., 2010) have examined attention to low-level action features.
Schuch et al. (2010) reported increased electroencephalography (EEG) responses in AON with
attention to action kinematics. Safford et al. (2010) reported enhanced blood oxygen level
dependent (BOLD) responses in superior temporal sulcus (STS) with attention to animate actors
(i.e., humans) presented via simplified point-light displays (Johansson, 1973). Nicholson et al.
(2017) reported enhanced responses in inferior frontal gyrus (IFG), occipitotemporal cortex, and
middle frontal gyrus (MFG) with attention to action goals, in parietal cortex and fusiform gyrus
with attention to manipulated objects. Few reports have further investigated the effects of
attention to higher-level action features (Nastase et al., 2017, 2018). Presenting movie clips from
various animal taxonomies performing several actions, Nastase etal. (2017) reported that
attending to performed actions versus taxonomy alters multi-variate response patterns across
anterior intraparietal sulcus (IPS) and premotor cortex.

Current electrophysiology and neuroimaging findings on visual actions suggest that attention
increases AON responses to target features ranging from action kinematics and goals to actors.
That said, high-level semantic representations during visual search for specific action categories
remain understudied. Furthermore, prior studies did not question whether attending to action
features causes baseline and gain changes, or rather elicits dynamic tuning shifts that can alter
cortical representation. Recent evidence indicates that visual search for object categories shifts
single-voxel category tuning toward target objects (Cukur et al., 2013). Therefore, it is likely that
attention to action categories also causes tuning shifts to facilitate visual search. Here we
hypothesised that natural visual search for action categories induces semantic tuning shifts in
single cortical voxels toward targets. Tuning shift towards target categories elevates the local
sampling density near the target actions, and expands target-action representations while
compressing behaviourally-irrelevant-action representations by increasing the discriminability in
the semantic neighbourhood of the finely-sampled action categories (Fig. 1).
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To test the tuning-shift hypothesis, we recorded whole-brain BOLD responses while human
subjects viewed 60min of natural movies and covertly searched for either 14 communication
actions or 30 locomotion actions among 109 action categories in the movies (Fig. 2, Fig. 2-1).
Using spatially-informed voxelwise modelling (Celik et al., 2019), we measured category
responses for hundreds of objects and actions in the movies separately for each individual subject
and for each search task. We estimated a semantic space underlying action-category responses,
and semantic tuning for action categories were measured by projecting voxel-wise model
weights onto this space. Finally, semantic tuning profiles during the two search tasks were
compared to quantify the magnitude and direction of tuning shifts in single voxels.

Materials and Methods

Subjects

Five healthy adult volunteers with normal or corrected-to-normal vision participated in this
study: S1 (male, age 31), S2 (male, age 27), S3 (female, age 32), S4 (male, age 33), S5 (male,
age 27). Data were collected at the University of California, Berkeley. The experimental protocol
was approved by the Committee for the Protection of Human Subjects at the University of
California, Berkeley. All participants gave written informed consent before scanning.

Stimuli and experimental design

Data for the main experiment were collected in six 10min 50s runs in a single session.
Continuous natural movies were used as the stimulus in the main experiment. Three distinct
10min movie segments were compiled from short movie clips (10-20secs) without sound. Movie
clips were selected from a diverse set of natural movies (see Nishimoto et al. (2011) for details).
Movie clips were cropped into a square frame and downsampled to 512x512px. The movie
stimulus was displayed at 15Hz on an MRI-compatible projector screen that covered 24°x24°
visual angle. Subjects were instructed to covertly search for target categories in the movies while
maintaining fixation. A set of instructions regarding the experimental procedure and exemplars
of the search targets were provided to the subjects before the experiment. A colour square of
0.16°x0.16° at the centre with colour changing at 1Hz was used as the fixation spot. A cue word
was displayed before each run to indicate the attention target: communication or locomotion. The
communication target contained actions with the intent of communication, including both verbal
communication actions and nonverbal gestural communication actions (e.g., talking, shouting,
smirking). The locomotion target contained locomotion-related actions with the intent of moving
animate entities, including humans and anthropomorphized animals (e.g., moving, running,
driving). The same movie stimuli were used during each of the two attention tasks. The order of
attention conditions was interleaved across runs to minimize subject expectation bias. This
resulted in presentation of 1800sec of movies without repetition in each attention condition. Data
from the first 20secs and last 30secs of each run were discarded to minimize effects of transient
confounds. Following these procedures, 900 data samples for each attention condition were
obtained.
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A separate set of functional data were collected while the same set of subjects passively viewed
120min of natural movies (i.e., passive-viewing data; this dataset was also used in Huth et al.,
2012 but here it was reanalysed with a focus on action categories). This dataset was used to
construct the semantic space and to select voxels subjected to further analyses. Data for the
passive-viewing experiment were collected in twelve 10min 50s runs in which 12 separate movie
segments were displayed. Presentation procedures were the same between the main experiment
and passive-viewing experiment, save for the number of runs. The passive-viewing dataset
contained 3600 data samples.

fMRI data collection

Data were collected on a 3T Siemens Tim Trio MRI scanner (Siemens Medical Solutions) via a
32-channel receiver coil. Functional data were collected using a T2*-weighted gradient-echo
echo-planar-imaging pulse sequence with the following parameters: TR=2sec, TE=33msec,
water-excitation pulse with flip angle=70° voxel size=2.24mmx2.24mmx4.13mm, field of
view=224mmx224mm, 32 axial slices. To construct cortical surfaces, anatomical data were
collected using a three-dimensional T1-weighted magnetization-prepared rapid-acquisition
gradient-echo (MPRAGE) sequence with the following parameters: TR=2.3sec, TE=3.45 msec,
flip angle=10°, voxel size=lmmxImmxImm, field of view=256mmx212mmx256mm. Surface
flattening and visualisation were done via Freesurfer and PyCortex (Dale et al., 1999; Reuter
et al., 2012; Gao et al., 2015).

fMRI data preprocessing

Motion correction was performed using Statistical Parametric Mapping toolbox (SPM12; Friston
etal., 1995). Functional volumes were aligned to the first image from the first run in each
subject. Brain tissue was identified using the brain extraction tool (BET) from the FSL software
package (Smith, 2002). Low-frequency response components were detected using a third order
Savitzky-Golay low-pass filter with 240sec temporal window and were removed from voxel
responses. Voxel responses were then z-scored to attain zero mean and unit variance. Voxels
within the 2mm neighbourhood of the cortical sheet were identified as cortical voxels in each
subject (S1, 37791 voxels; S2, 32671 voxels; S3, 36942 voxels; S4, 42090 voxels; S5, 39254
voxels).

Definition of regions of interest

To define the anatomical regions of interest (ROIs) in each subject, the cortical surface was
segmented into 156 regions of the Destrieux atlas (Destrieux etal., 2010) via Freesurfer.
Segmentation results were projected from the anatomical space onto the functional space using
PyCortex, and each voxel was assigned an anatomical label based on the projections. Functional
ROIs were identified in each subject using visual category and retinotopic localizers (Huth et al.,
2012). Localizer experiments for visual category-selective areas (fusiform face area, FFA;
occipital face areca, OFA; parahippocampal place area, PPA; retrosplenial cortex, RSC) were
performed in six 4.5 min runs of 16 blocks (Huth et al., 2012). Subjects passively viewed 20
random static images from one of the objects, scenes, body parts, faces, or spatially scrambled



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)

155
156
157
158
159
160
161
162
163

164

165

166

167

168
169
170
171
172

173

174

175

176

177
178
179
180
181

182

183
184
185
186
187
188
189
190
191
192

193

objects groups in each block. Each image was shown for 300ms following a 500ms blank period.
PPA and RSC were identified as voxels with positive scene versus objects contrast (t-test, p<10
* uncorrected). FFA and OFA were defined using face-versus-object contrast (t-test, p<10™,
uncorrected). The boundaries of these areas were hand drawn on the cortical surfaces along the
contours at which the contrast level reached half of the maximum. Localizer experiment for early
visual areas (RET: V1, V2, V3) contained four 9min runs. Subjects viewed clockwise and
counterclockwise rotating polar wedges in two runs. In the remaining two runs, subjects viewed
expanding and contracting rings. Visual angle and eccentricity maps were used to define visual
areas V1-3. Finally, ROIs were refined to voxels inside the drawn boundaries near a 2mm
neighbourhood of the cortical sheet.

Abbreviations for regions of interest and important sulci

Several regions of interest and important sulci were labelled on the flattened cortical surfaces to
guide the reader.

Regions of interest: pMTG, posterior middle temporal gyrus; pSTS, posterior superior temporal
sulcus; AG, angular gyrus; SMG, supramarginal gyrus; IPS, intraparietal sulcus; alP, anterior
intraparietal cortex; PrCu, precuneous; dPMC, dorsal premotor cortex; BA44/45, Brodmann area
44/45; MFG, middle frontal gyrus; SFG, superior frontal gyrus; ACC, anterior cingulate cortex;
RET, ecarly visual areas V1-3; FFA, fusiform face area; OFA, occipital face areca; PPA,
parahippocampal place area; RSC, retrosplenial cortex.

Sulci: TOS, temporo-occipital sulcus; STS, superior temporal sulcus; SF, Sylvian fissure; IFS,
inferior frontal sulcus; MFS, middle frontal sulcus; SFS, superior frontal sulcus.

Head motion, eye-movement, and physiological noise

To prevent head motion and physiological noise confounds, estimates of these nuisance factors
were regressed out of the BOLD responses. Six affine motion time courses estimated during the
motion-correction stage were taken as the head-motion regressors. The cardiac and respiratory
activity during the main experiment were recorded using a pulse oximeter and a pneumatic belt.
These data were then used to estimate two regressors to capture respiration and nine regressors to
capture cardiac activity (Verstynen and Deshpande, 2011).

To ensure that eye-movements did not unduly bias the results, several control analyses were
performed. ViewPoint EyeTracker (Arrington Research) was used to monitor subjects’ eye
positions at 60Hz, after getting calibrated at the beginning of each experimental run. Kruskal-
Wallis tests were used to detect systematic differences in the distribution of eye position and
movement. The distribution of eye position during search for communication and locomotion
tasks were examined. We find that the distribution of eye position is not affected by search task
(p=0.17), or by target presence or absence (p=0.74), and no significant interactions are present
between these two factors (p=0.60). To test whether eye movement is affected by target or
distractor detection, the distribution of eye position during a 1 sec window around target onset
and target offset was studied. The eye position distribution is not affected by target onset
(p=0.73) or offset (p=0.17), and there is no significant interaction between the aforementioned

6
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factors (p=0.83). Furthermore, the moving-average standard deviation of eye position was
studied in a 200ms window to determine systematic differences in rapid moment-to-moment
variations in eye position across the two search tasks. There are no significant effects of search
task (p=0.11), target presence or absence (p=0.32), target onset (p=0.49), or target offset
(p=0.36), and there are no significant interactions between these factors (p=0.16). Finally,
moving-average standard deviation of eye position was included in the model as a nuisance
regressor and was regressed out of the BOLD responses.

To maintain subject vigilance, the subjects were instructed to depress a button whenever they
detected a member of the target category in the stimulus (i.e., either a communication or a
locomotion action depending on the search task). The behavioural responses were initially
analysed to ensure that subjects performed the tasks, and that task difficulty was balanced across
search targets. The target detection rate was 89+9% for the communication and 91+8% for the
locomotion targets (mean+tstd across subjects), with no significant difference between the two
tasks (bootstrap test, p>0.05).

Category features

A category feature space was constructed to encode the information pertaining to object and
action categories in the movies. Each second of the movie stimulus was manually labelled using
the WordNet lexicon (Miller, 1995) to find the time course for presence of 922 different object
and action categories in the movie stimulus. This yielded an indicator matrix where each row
represents a one-second clip of the movie stimulus, and each column represents a category.
Finally, category features were obtained by downsampling the indicator matrix to 0.5Hz to
match the acquisition rate of fMRI.

Motion-energy features

To infer cortical selectivity for low-level scene features, local spatial frequency and orientation
information of each frame of the movie stimulus were quantified using a motion-energy filter
bank. The filter bank contained 2139 Gabor filters that were computed at eight directions (0 to
350°, in 45° steps), three temporal frequencies (0, 2, and 4Hz), and six spatial frequencies (0, 1.5,
3,6, 12, and 24 cycles/image). Filters were placed on a square grid spanning the 24°x24° field of
view. The luminance channel was extracted from the movie frames and passed through the filter
bank. The outputs were then passed through a compressive nonlinearity to yield the motion-
energy features (Lescroart and Gallant, 2019; Nishimoto et al., 2011). Finally, the motion-energy
features were temporally downsampled to match the fMRI acquisition rate.

Space-time Interest Points (STIP) features

Intermediate-level kinematic information of the movies were quantified by constructing the
Space-Time Interest Point (STIP) features using STIP toolbox (Laptev, 2005; Laptev et al.,
2008). STIP features have been successfully leveraged in many computer vision applications to
recognize human actions. As detailed in Laptev (2005) and Laptev et al. (2008), Harris operators
(Harris and Stephens, 1988) were used to identify spatiotemporal interest points in the movie
stimulus at multiple scales (a7, 77)=(2"", 2), i €{1,...,6}, j € {1,2}, where o and 7 are the

7
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standard deviations of the Gaussian kernels in spatial and temporal domains respectively.
Histograms of oriented gradients (HoG; Dalal and Triggs, 2005), and histograms of optical flow
(HoF; Holte et al., 2010) were calculated in the (4, 4,,;, 4 ;) spatiotemporal neighbourhood of
each interest point, where 4,; = 4,; = 2ko; and 4;; = 2k7;, and k is the scale factor. Scale
factor was set to 9 according to the default configuration of the toolbox. Finally, normalized
histograms were concatenated to construct the collection of 162 STIP features and were
downsampled to match the acquisition rate of fMRI.

Model estimation and testing

Separate linearized models were fit in each voxel to estimate model weights that map each set of
features (i.e., category, motion-energy, or STIP features) to the measured BOLD responses in
each search task in individual subjects. Banded-ridge regression (Nunez-Elizalde et al., 2019)
was used to fit the models. To capture the hemodynamic response, delayed feature time-courses
were concatenated. Delays of two, three, and four samples, corresponding to 4, 6, and 8secs were
used. To account for potential correlations between target detection and BOLD responses, a
nuisance target-presence regressor was included in the model. The target-presence regressor
contained the category regressor for communication during search for communication task and
the category regressor for locomotion during search for locomotion task. Model fitting for the
two search tasks was performed concurrently by concatenating the features and BOLD responses
across search tasks (see Fig. 2). This procedure ensured consistency between the assigned
regularization parameters across search tasks and enabled utilisation of the target regressor
(Shahdloo et al., 2020).

A nested cross-validation (CV) procedure was used to choose the regularization parameters and
estimate model weights. Data from the main experiment were segmented into 60 30-sec blocks.
In each of the 10 outer folds, 4 randomly chosen blocks were held-out as validation data. Then,
in each of the 10 inner folds, 54 randomly chosen blocks were used as training data and the 2
remaining blocks were used as test data. To fit models for the passive-viewing data, data were
segmented into 144 50-sec blocks. In each fold, 8 randomly chosen blocks were held-out as
validation data, 132 randomly chosen blocks were used as training data and the 4 remaining
blocks were used as test data. For each feature set, regularisation parameters were selected with a
random-search; a thousand normalized regularisation parameter candidates were sampled from a
Dirichlet distribution and were scaled by 30 log- spaced values ranging from 10” to 10%.
Training data were used to fit models for each set of regularisation parameters independently.
Model weights were then used to predict responses in the test data and prediction scores of the fit
models were assessed. Prediction scores were taken as product-moment correlation coefficient
between measured and predicted voxel responses. The set of regularisation parameters
maximizing the average prediction score across inner CV folds was chosen in each voxel.
Finally, the optimal set of parameters were used to fit models on the union of training and test
data in each outer fold and model weights were averaged across the outer folds.

Finally, prediction performance of the fit models were evaluated. In each outer fold, after
discarding the nuisance regressors, responses were predicted for the validation data using the fit
models and prediction scores were averaged across the search tasks. Prediction scores were then
averaged across the outer folds.
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For each voxel, separate linearized models were estimated to relate each feature representation to
the BOLD responses. Specifically, category models were fit to estimate category responses that
represented the contribution of each category to single-voxel BOLD responses separately for the
data in the main experiment and the passive-viewing data in individual subjects. Furthermore, a
motion energy model and a STIP model were fit in each voxel to represent the contribution of
the low- and intermediate-level stimulus features to the responses. These alternative models were
further used to select analysis voxels (i.e., semantic voxels).

Variance partitioning

Object-action categories can be correlated with low-level visual features of natural movies
(Lescroart and Gallant, 2019), and there is evidence for representation of intermediate-level
action features (e.g., action kinematics) across cortex (Jastorff et al., 2010). Therefore, there is a
possibility that the estimated category responses are confounded by selectivity for low- and
intermediate-level scene features. To control for potential confounds, we performed a variance
partitioning analysis. This analysis estimates the response variance that is uniquely explained by
the category model after accounting for variance that can be attributed to low- and intermediate-
level features captured by the motion-energy and STIP models. To do this, we separately
measured the variance explained when all three models (category, motion-energy, and STIP) are
fit simultaneously (i.e., combined model), and variance explained when only motion-energy and
STIP models are fit simultaneously (i.e., control model). Banded ridge regression was used to fit
the combined and control models to prevent bias in assigning regularisation parameters across
different feature sets. The explained variance (R?) was calculated as squared prediction scores,
separately for the combined and control models. Note that from a model fitting perspective,
negative prediction scores correspond to zero explained variance. Finally, unique variance
explained by the category model was calculated as

chat = chomb - chont (1

Here R? cat 18 the variance uniquely explained by the category model after accounting for low-
and intermediate-level features, chomb is the variance explained by the combined model, and
R%.on is the variance explained by the union of motion-energy and STIP models in each voxel.

Action category responses

The fit category responses reflect voxel tuning for each of the 922 object and action categories in
the movie stimulus. To infer tuning for action categories, 922-dimensional category responses
were masked to select only the 109 action categories. This yielded the voxelwise 109-
dimensional action category responses.
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Semantic representation of actions

Passive-viewing data were used to construct a continuous semantic space for action category
representation. In this space, semantically similar action categories would project to nearby
points, whereas semantically dissimilar categories would project to distant points (Huth et al.,
2012). Category models were fit and action category responses during passive viewing were
estimated. A group semantic space was then obtained using principal component analysis (PCA)
on the action category responses of cortical voxels pooled across all subjects. To maximize the
quality of the semantic space, voxels in which the category model predicted unique response
variance after accounting for the variance attributed to low- and intermediate-level stimulus
features were selected. These voxels were further refined to include only the top 3,000 best
predicted voxels within each subject. The top 12 principal components (PCs) that explained more
than 95% of the variance in responses were selected. Subsequent analyses were also repeated
using the top 8 PCs that explained more than 90% of the response variance but the results
remained consistent. Semantic tuning profile for each voxel under each search task was then
obtained by projecting the respective action category responses onto the PCs. To illustrate the
semantic content of the PCs, characteristic actions of the movie stimulus were clustered in the
semantic space, and cluster centres were projected onto the PCs after getting labelled (see Fig.
6).

Consistency of the semantic space across subjects

To test whether the estimated semantic space is consistent across subjects, we used a leave-one-
out cross-validation procedure. In each cross-validation fold, voxels from four subjects were
used to derive 12 PCs to construct a semantic space. In the left-out subject, semantic tuning
profile for each voxel was obtained by projecting action category responses during passive
viewing onto the derived PCs. Next, product-moment correlation coefficient was calculated
between the tuning profiles in the derived space and the tuning profiles in the original semantic
space. Results were averaged across semantic voxels in the left-out subject. The cross-validated
semantic spaces consistently correlate with the original semantic space (Fig. 7).

Characterizing tuning shifts

Attentional tuning shifts toward or away from targets would be reflected in modulation of
semantic selectivity for communication or locomotion action categories. Thus, the magnitude and
direction of tuning shifts can be assessed by comparing the semantic selectivity for these
categories between the two search tasks. Semantic selectivity for the two target categories was
quantified as the similarity between semantic tuning profiles and idealized templates tuned solely
for communication or locomotion action categories. First, idealized category responses were
constructed as 109-dimensional vectors that contained ones for target categories (either
communication or locomotion categories) and zeros elsewhere. Idealized templates were then
obtained by projecting these idealized category responses onto the semantic space. Semantic
selectivity for each target category was quantified as product-moment correlation coefficient
between voxel semantic tuning profile and the corresponding template

T, c=Corm(s;S'c) )
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where T;c and T;y are the tuning strength for communication and locomotion during condition i€
{C, L} denoting attend to communication or attend to locomotion, s; is the semantic tuning
profile during condition i, and s ¢ and s denote the idealized semantic tuning templates for
communication and locomotion, respectively. Finally, voxelwise tuning shift index (TSL.) was
quantified as

TSI . = (Tee—Te)+(TLL-TrLeo) 3)
all 2=sign(Tc,c—TcL)TcL—sign(TLL—TLc)TLc

The numerator of TSI captures the difference in semantic selectivity for the attended versus
unattended category, summed over the two attention tasks (i.e., search for communication and
search for locomotion). Observing that the maximum possible selectivity for the attended
category is 1, obtained when voxel tuning is equivalent to the idealized template, the
denominator is cast to normalize the potential range of the TSI metric between 1 and -1 without
affecting its sign. Tuning shifts toward the attended category would yield positive values where a
TSI, of 1 indicates a complete match between voxel semantic tuning and idealized templates,
whereas negative values would indicate shifts away from the attended category where a TSI, of
-1 indicates a complete mismatch between voxel tuning and idealized templates. A TSIy of 0
would indicate that the voxel tuning did not shift between the two search tasks.

The TSI metric in Eq. 3 can also be adopted to calculate tuning changes for any given set of
action categories. To do this, the 922-dimensional category responses measured during attention
tasks were masked to keep only the responses for the given set of actions. The masked tuning
vectors and the idealised template for the given set were then projected onto the 12-dimensional
semantic space. Semantic selectivity of a voxel to the given set was taken as the correlation
coefficient between the projections of voxel tuning and the idealised template in the semantic
space. Attentional modulation of semantic tuning for nontarget categories was examined by
calculating a separate tuning shift index (TSI,). Note that this index can be calculated based on
Eq. 3, but by zeroing out the category responses for communication and locomotion actions prior
to projection onto the semantic space. To study the tuning shifts in an ROI, TSIs were averaged
across semantic voxels within the ROIL.

The change in voxelwise tuning during attending to the first target (e.g., communication) versus
to the second target (e.g., locomotion) was defined as the l;-norm of the tuning difference
between the two conditions. This calculated tuning change can be linearly decomposed into a
component explained by the target features (i.e., the union of communication and locomotion
features) and a component explained by the nontarget features (i.e., all features excluding the
target features). The fraction of tuning change for target/nontarget features was computed by
taking the ratio of the respective component to the overall tuning change.
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Characterizing target preference during visual search

To investigate the interaction between tuning shifts and intrinsic selectivity for individual target
action categories, we quantified a target preference index (Ple [-1,1]) separately during search
for communication actions (Ple,m) and during search for locomotion actions (Plj,). PI during
search for each target action was taken as the difference in selectivity for the attended versus the
unattended target

Tec—TcL
Pl = - . 4
com 1-sign(Tc,c—TcL)TcL )

Plioc = o 5)

1-sign(TL—TLc)TLc

where Pl denotes the relative tuning preference for communication actions during search for
communication, and PIj,. denotes the relative tuning preference for locomotion actions during
search for locomotion. In this scheme, a PI of 1 indicates a complete match between voxel
semantic tuning and the idealized template for the target, whereas a PI of -1 indicates a complete
mismatch between voxel tuning and the idealized template for the target. Finally, a PI of 0
indicates that the voxel semantic tuning does not shift toward any of the target actions.

Characterizing action category preference during passive viewing

To investigate the interaction between calculated preference index for individual targets and
intrinsic selectivity for action categories, we quantified a selectivity index (Sle [-1,1]), separately
for communication actions (Slcom) and for locomotion actions (Sljec). SI for each target in each
voxel was calculated as the product-moment correlation coefficient between the voxel category
response and idealised template category tuning for the given target.

Action clustering

To facilitate interpretation of stimulus information captured by individual PCs, characteristic
action content of the movies was clustered and labelled. Action content (C) for each short clip
was calculated as the number of frames where each of the 109 actions were present (N), and
was normalized by the total number of clip frames (N)

=1l @)
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This yielded a 109-dimensional action content vector for each clip. The action content vectors
were then projected onto the semantic space and were grouped into 10 clusters using k-means.
The number of clusters was optimized using the elbow method (Thorndike, 1953). Average
action content of each clip (A) was calculated as the mean of the clip’s action content vector

A = Zc (3)

109

where € = [cq,€5,C3,...,C109]. To label the clusters, five clips with highest average action
contents within each cluster were selected. Four candidate labels for each cluster were manually
assigned and 15 evaluators were asked to score (from 1 to 5) the correspondence of the selected
clips to each of the four candidate labels. Finally, the label with the highest score was selected to
represent each cluster.

Statistical Analyses

Bootstrap tests were used to assess statistical significance. To assess significance of the
prediction scores, single-voxels predicted responses were resampled 5000 times with
replacement. For each bootstrap sample, prediction score was computed. Significance level (p-
value) of the prediction scores was taken as the fraction of bootstrap samples in which the
prediction scores was greater than 0. Significance level of the unique response variance (Eq. 1)
was taken as the fraction of bootstrap samples in which the unique variance explained by the
category model was greater than 0. All single-voxel significance levels were corrected to account
for multiple comparisons using false-discovery rate correction (FDR; Benjamini and Hochberg
1995).

Significance of TSIy, TSIy, Pleom, and Pl were assessed for each ROI across subjects. To do
this, ROI-wise metrics were resampled across subjects with replacement 10000 times.
Significance level was taken as the fraction of bootstrap samples where the test metric averaged
across resampled subjects is less than O (for right-sided tests) or greater than O (for left-sided
tests). This procedure was performed in a total of 21 functional ROIs separately. All ROI
significance levels were corrected to account for multiple comparisons using FDR.

In ROIs with a significant metric across subjects, the metric was further tested within individual
subjects. To do this, semantic voxels within a given ROI were resampled with replacement
10000 times. For each bootstrap sample, mean value of a given metric was computed across
resampled voxels. Significance level was taken as the fraction of bootstrap samples in which the
tested metric was less than 0 (for right-sided tests) or greater than O (for left-sided tests).

Results

Visual search modulates category responses

Little is known on whether and where in the brain natural visual search for action categories
warps semantic representations. To answer this question, we investigated voxel-wise tuning for

13
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hundreds of object and action categories across cortex. Human subjects viewed natural movies
and covertly searched for communication or locomotion actions. Category regressors were
constructed to label presence of 922 distinct object and action categories in the movies. Separate
category models were then fit in each voxel for each search task. These models enabled us to
measure single-voxel category responses during each search task (Fig. 2a, see Materials and
Methods).

As natural stimuli contain correlations among various levels of features, there is a possibility that
estimated category responses are confounded by voxel tuning for low- and intermediate-level
scene features. To rule out this potential confound, we measured the response variance explained
by low-level motion-energy features, and intermediate-level spatiotemporal interest point (STIP)
features. Motion-energy features were constructed using a pyramid of spatiotemporal Gabor
filters (Nishimoto and Gallant, 2011). STIP features, providing an intermediate representational
basis for human actions, were constructed by measuring optical flow over interest points with
significant spatiotemporal variation (Laptev et al., 2008). We identified voxels in which the
category model explained unique response variance after accounting for these alternative
features via variance partitioning, and subsequent analyses were conducted on this set of
uniquely explained voxels. To prevent bias in voxel selection due to attention, variance
partitioning was performed on a separate dataset collected for this purpose (i.e., passive-viewing
dataset, see Materials and Methods). We find that the category model explains unique response
variance after accounting for low- and intermediate-level features in 25.741.6% of cortical
voxels (meantsem across five subjects; bootstrap test, q(FDR)<0.05; Figs. 4 and 5), yielding
8,613-13,435 voxels in individual subjects (henceforth called the semantic voxels).

Comparison of estimated category responses across search tasks would be justified only if the fit
models can accurately predict BOLD responses that were held-out during model fitting. To
assess prediction performance of the fit category models, we measured average prediction scores
across the two search tasks, taken as product-moment correlation coefficient between the
predicted and measured held-out responses (Fig. 2b). Category models have high prediction
scores (greater than 1 std above the mean) in 46.9+0.6% of the semantic voxels. These include
many voxels spread across the AON comprising occipitotemporal, parietal, and premotor
cortices, as well as voxels in prefrontal and cingulate cortices (Fig. 3).

A recent study provided the first evidence that attention can alter single-voxel category tuning
profiles during search for object categories (Cukur et al., 2013). We thus hypothesised that visual
search for action categories can also cause changes in voxel-wise category tuning. If attentional
tuning changes are significant, the category models fit to individual search tasks should yield
higher prediction scores than a null model fit by pooling data across the two search tasks. To test
this prediction, we compared the prediction scores obtained from the category and null models.
We find that the category model significantly outperforms the null model in 46.1£1.8% of
semantic voxels (bootstrap test, q(FDR)<0.05). Additional control analyses further ensured that
these attentional changes cannot be attributed to residual eye-movements, head-motion,
physiological noise, or target-detection biases (see Methods). Taken together, these results
suggest that many cortical voxels in occipitotemporal, parietal, and prefrontal cortices encode
high-level category information, and that action-based visual search significantly modulates
category responses in single voxels.
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Visual search warps semantic representation of actions

Previous studies suggest that the human brain represents visual categories by embedding them in
a continuous semantic space (Huth et al., 2012). Here, we used linear encoding models to map
category features of natural movies onto the recorded BOLD responses in single voxels. The
model features, namely actions, are fundamental semantic concepts in both language and vision.
The models successfully predict brain activity in cortical voxels, after controlling for lower-
levels of features (i.e., motion energy and STIP features). Thus, from a quantitative perspective,
it could be argued that there is an explicit representation of the semantic categories of actions in
the voxel responses (Naselaris et al., 2011). Note that a theoretical characterization of
relationships among semantic concepts is difficult. In computational semantics, an empirical
approach is adopted instead that is rooted in the distributional hypothesis. This hypothesis states
that concepts with similar statistical distributions have similar meaning. Accordingly, co-
occurrence statistics of concepts in corpora are used as a proxy metric for similarity of meaning
in many methods for learning semantic relationships (Jurafsky and Martin, 2021). Here, to derive
a semantic space underlying action category representations, we performed principal component
analysis (PCA) on the model weights for action categories. Visual search for actions alters
category model weights as reported here, so performing PCA on data from search tasks can bias
estimates of the semantic space. Instead, we derived the semantic space using the passive-
viewing dataset. Action categories that are semantically close to each other should project to
nearby points in this space, whereas semantically dissimilar categories should project to distant
points. The top twelve principal components (PCs) that explained more than 95% of the variance
in responses were selected, which showed a high degree of inter-subject consistency
(r=0.52+0.02 meantsem across subjects; Fig. 7). To visually examine the semantic information
captured by this space, we projected action categories onto the PCs (Fig. 6a; projections onto the
first three dimensions that accounted for 72.8% of the response variance is shown in Fig. 9;
loadings for all PCs are shown in Fig. 10). All further quantitative analyses regarding tuning
shifts were instead conducted in the full semantic space of 12 dimensions, including all the
identified PCs.

Previous evidence suggests that visual search shifts single-voxel tuning profiles to expand the
representation of the targets (Cukur et al., 2013). Thus, it is possible that action-based visual
search also shifts semantic tuning in single-voxels towards the target category. To investigate
this possibility, we projected action category responses onto the semantic space. The first and
third PCs maximally differentiated between actions belonging to the target categories (i.c.,
communication versus locomotion categories, Fig. 8). Therefore, we visually compared the
projections onto these PCs across the two search tasks. We observe that attention causes
semantic tuning modulations broadly across cortex (Fig. 6b; see Figs. 6-1 to 6-5 for results in
individual brain spaces). Specifically, voxels in inferior posterior parietal cortex (PPC), cingulate
cortex, and anterior inferior prefrontal cortex shift their tuning toward communication during
search for communication actions. Meanwhile, voxels in superior PPC and medial parietal cortex
shift their tuning toward locomotion during search for locomotion actions. Several reports
suggest involvement of superior PPC in representing locomotion actions (Corbo and Orban,
2017), and inferior PPC in representing communication actions (Abdollahi et al., 2012, Rizzolatti
and Matelli, 2003). Therefore, our findings suggest that during search for a given action
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category, tuning shifts toward the target category are most prominent in voxels that are primarily
selective for the target.

Visual search for action categories shifts single-voxel semantic tuning profiles

Our inspection of semantic representations during visual search reveals that attention broadly
modulates high-level action representations by shifting semantic tuning profiles in single voxels.
To quantify the magnitude and direction of these tuning changes, we separately measured
semantic selectivity for communication and locomotion action categories in each search task.
The 922-dimensional category responses for individual voxels measured during attention tasks,
and idealised template vectors for the targets were projected onto the semantic space. The
template vector for a target is constructed as a 109-dimensional indicator vector containing ones
for the target category and all its subordinate categories, and zeros for remaining categories. For
instance, the “locomotion” template has ones for locomotion, and for walk, run, crawl, move,
ride, etc. As such, the target template vector indexes the target action as well as actions that are
semantically related to the target according to the WordNet hierarchy (see Methods). For each
attention task, semantic selectivity of a given voxel for a target category was then quantified as
the correlation coefficient between projected 12-dimensional vectors characterizing the voxel-
wise tuning profile and the idealised template in the semantic space. For each voxel, a tuning
shift index (TSIy€ [—1,1]) was taken as the difference in semantic selectivity for targets when
they were attended versus unattended. A positive TSI, indicates shifts towards the target, a
negative TSI, indicates shifts away from the target, and a TSI, of 0 suggests no change in
between tasks (see Materials and Methods).

We find that voxels across many cortical regions shift their tuning toward the attended category
(Fig. 11a; see Figs. 11-1a to 11-5a for results in individual brain spaces). Figure 15a shows
respective tuning shifts in relevant regions of interest (ROIs). Tuning shifts are significantly
greater than zero in many areas across AON including occipitotemporal cortex (posterior STS,
pSTS; posterior MTG, pMTG), posterior parietal cortex (intraparietal sulcus, IPS; AG, SMG),
and premotor cortex (Brodmann’s areas 44, 45, BA44/45; bootstrap test q(FDR)<0.05; Fig. 15a).
This result suggests that focused attention to specific action categories shifts semantic tuning
toward targets in single-voxels, and that these attentional modulations are present at all levels of
the AON hierarchy including occipitotemporal cortex.

Prior evidence suggests that during category-based visual search, semantic tuning shifts grow
stronger toward later stages of semantic processing (Cukur et al., 2013). Here, we find that
semantic tuning shifts in AG and SMG are significantly stronger than those in occipitotemporal
(pSTS, pMTG) and premotor cortices (i.e., averaged over AG and SMG, compared with the
average over pSTS and pMTG, and with the average over dorsal premotor cortex (dPMC) and
BA44/45; Cohen’s d=1.36, p<0.05). Therefore, the tuning shifts reported here could indicate that
AG and SMG are higher nodes in the hierarchy of semantic representation of action categories.
In a previous study, we reported that in medial prefrontal cortex visual search for object
categories causes tuning shifts toward targets while it causes tuning shifts away from targets in
voxels in precuneous (PrCu) and temporo-parietal junction (TPJ; Cukur et al., 2013). Similarly,
by qualitative inspection of the flatmaps, here we observe that visual search for action categories
causes negative tuning shifts in many voxels across PrCu and TPJ. These results suggest that

16



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)

605

606

607

608

609
610
611
612
613
614
615
616

617

618

619
620
621
622
623
624
625
626
627
628
629
630
631
632

633

634

635

636
637
638
639
640
641
642
643
644
645
646
647

648

these areas might be involved in distractor detection and in error monitoring during visual search
for actions (Corbetta and Shulman, 2002).

Visual search shifts semantic tuning for nontarget action categories

Natural visual search for object categories was previously suggested to cause changes in
representations of not only targets but also nontarget categories (Cukur et al., 2013; Seidl et al.,
2012). Thus, it is likely that action-based visual search shifts semantic tuning for nontarget
categories. To address this important question, we first examined the separate contributions of
tuning changes for target versus nontarget categories to the overall tuning shifts. Specifically, we
measured the fraction of overall tuning shifts that can be attributed to the target categories versus
nontarget categories (i.e., all categories excluding communication and locomotion actions). We
find that both target and nontarget categories significantly contribute to the overall tuning shifts
(bootstrap test, q(FDR)<0.05).

However, as would be expected, target categories account for a relatively larger fraction of the
overall tuning shifts compared to nontarget categories in all studied ROIs, except in early visual
cortex (q(FDR)<0.05; Fig. 13). Next, to explicitly quantify tuning shifts for nontarget categories,
we calculated a separate tuning shift index exclusively on nontarget categories (TSI,). To
calculate TSI, the 109-dimensional action category response vectors were masked to select
nontarget categories, prior to projection onto the semantic space (see Materials and Methods).
We observe that tuning shift for nontarget categories is generally smaller than the overall tuning
shift (Fig. 11b versus Fig. 11a and Fig. 12; see Figs. 11-1b to 11-5b for results in individual brain
spaces). Yet, TSIy is non-significant in all ROIs except AG, SMG, and BA45 (q(FDR)<0.05;
Fig. 15b). Note that an insignificant TSI, does not necessarily suggest that attention has not
altered tuning for non-target categories, but rather the direction of tuning changes could be
merely not aligned towards or away from the target categories in the semantic space. Thus, these
results suggest that, compared to occipitotemporal areas, attention more diversely warps
semantic representations in parietal and premotor AON nodes by shifting tuning for both target
and nontarget categories.

Tuning shifts interact with intrinsic selectivity of cortical voxels for action categories

A recent study on visual attention has reported that in strongly object-selective regions voxel
tuning for a preferred object might be robust against attention directed to a nonpreferred object
(e.g., houses for fusiform face area, FFA, and faces for parahippocampal place area, PPA; Cukur
et al., 2013). This previous result suggests that the degree of response modulations in a brain
region might depend on the alignment between the search target and the intrinsically preferred
object. It is thus likely that tuning shifts during search for an action category also interact with
the intrinsic selectivity of cortical voxels for the target category. Tuning shifts as measured by
TSI signal an overall increase in relative selectivity for target versus nontarget categories,
aggregated across search tasks. Yet, interaction of tuning shifts with intrinsic selectivity for
action categories is task-specific by definition. Therefore, to examine potential interactions, we
calculated a target preference index (PIE [—1,1]) separately during search for communication
actions (Pl.,m) and during search for locomotion actions (Pljec). Pleom Was taken as the difference
in selectivity for communication versus locomotion, during search for communication actions.
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Analogously, Pl,. was taken as the difference in selectivity for locomotion versus
communication, during search for locomotion actions.

Voxel-wise Pleom and Py, values were projected onto cortical flat maps for visual inspection
(Fig. 14; see Figs. 11-1c to 11-5¢ for results in individual brain spaces) and quantitatively
examined in ROIs (Fig. 15¢, d). We observe that semantic tuning in areas with indiscriminate
selectivity for behaviourally relevant action categories (e.g., selective for low-level visual
features or static object categories) show insignificant shifts regardless of the search task.
Meanwhile, many voxels across anterior parietal, occipital, and cingulate cortices —with intrinsic
action category preferences— show differential preference for one of the two target action
categories as indicated by high PI index during either search for communication or search for
locomotion actions. Lastly, semantic tuning in voxels across posterior parietal and anterior
prefrontal cortices with broad selectivity for actions shift toward the attended category
irrespective of the search target. These specific cases are discussed in detail below.

Areas where both Pl and Pl are non-significant

We find that Pl.,m and Plj,c are non-significant in retinotopic early visual areas (RET; bootstrap
test, (FDR)>0.05) that represent low-level stimulus features, low-level motion-selective area
(hMT; q(FDR)>0.05), and object-selective areas (FFA; occipitotemporal face area, OFA; PPA;
retrosplenial cortex, RSC; and EBA; (FDR)>0.05). Furthermore, Pley, and Pl are non-
significant in anterior intraparietal cortex (alP; q(FDR)>0.05), which is not involved in
representing communication or locomotion actions (non-significant Sl and Sl
q(FDR)>0.05) (Noppeney, 2008; Rizzolatti et al., 1997; Urgen and Orban, 2021). These results
suggest that during action-based search, semantic tuning does not change substantially in cortical
areas that are selective for lower-level visual features or for neutral high-level action categories
irrelevant to the task.

Areas where either Plgm or Pl are significant

Several previous studies suggest that lateral and medial prefrontal cortices are causally involved
in representing communication actions (Van Overwalle, 2009; Wilson-Mendenhall et al., 2013).
Here, we find that Pl is non-significant while Plop is significantly greater than zero in anterior
inferior frontal gyrus (BA44/45; d=1.94, q(FDR)<0.05; Slconm=0.12, q(FDR)<0.05), in superior
frontal gyrus (SFG; d=1.94, q(FDR)<0.05; Slcom=0.18, q(FDR)<0.05), and in anterior cingulate
cortex (ACC; d=.34, q(FDR)<0.05; Slcom=0.18, q(FDR)<0.05). On the other hand, previous
reports provide evidence for representation of animate locomotion actions in PPC, including IPS
(STioc=0.15, g(FDR)<0.05) (Abdollahi et al., 2012; Battelli et al., 2003; Bremmer et al., 2001; Ilg
et al., 2004). In accord, we find that Pl is non-significant while Pl is significantly greater
than zero in IPS (d=3.95, q(FDR)<0.05). Taken together, our findings suggest that in areas that
are strongly selective for specific action categories, visual search for the preferred action shifts
tuning more vigorously towards the preferred target category. It is also worth noting that these
attentional effects are not limited to the AON, but rather extend to higher-order cortical areas
involved in social cognition. Lastly, we find that Pl is significantly less than zero while Plgoy, is
non-significant (d=0.73, q(FDR)>0.05; Slj,=-0.23, q(FDR)<0.05) in dPMC. This result supports
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the view that dPMC enhances the representation of distractors during search for locomotion
actions (Anticevic et al., 2010; Toepper et al., 2010; Zhou et al., 2012).

Areas where both Plcom and Pl are significant

Posterior STS (pSTS), posterior middle temporal gyrus (pMTG), and SMG are considered as
AON nodes that maintain representation of actions regardless of their semantic category
(Caspers et al., 2010; Jastorff et al., 2016; Lui et al., 2008). We find that both Pl and PIj,. are
significantly greater than zero in pSTS, pMTG, and SMG, consistent with their generic action
selectivity. In addition, several previous studies suggest that MFG —as a node in dorsal attention
network— facilitates visual search by maintaining the representation of targets (Corbetta and
Shulman, 2002; Mars and Grol, 2007; Paneri and Gregoriou, 2017; Ptak et al., 2017).
Accordingly, here we find that Pl and Pl are significantly greater than zero in MFG
(q(FDR)<0.05). Overall, these results indicate that in areas with generic action selectivity and in
high-level cortical areas, attention facilitates action-based search by shifting representations
toward targets irrespective of their semantic category.

The results presented here can be explored online via an interactive brain viewer at
http://www.icon.bilkent.edu.tr/brainviewer/shahdloo_etal/.

Discussion

Several previous studies have reported response modulations during action-based attention in
parietal and prefrontal cortices, but not in occipitotemporal areas (Nastase et al., 2017, 2018;
Nicholson et al., 2017). Yet we observe significant attentional tuning shifts in occipitotemporal
cortex. Unlike previous studies, our analysis approach enables us to measure single-voxel tuning.
Our movie stimulus contains a large set of action categories in natural context in contrast to
controlled stimuli with a handful of actions on a homogeneous background. Lastly, we
investigate actions that are performed by animate actors, known to elicit robust responses across
the occipitotemporal cortex (Isik et al., 2017; Thompson and Parasuraman, 2012; Walbrin and
Koldewyn, 2019; Walbrin et al., 2018). These design factors might have enabled us to detect
tuning shifts in early stages of AON comprising occipitotemporal areas.

Recent studies emphasize the role of AG and SMG in multi-modal semantic representation while
observing actions, hearing action sounds, or reading action words (Bedny and Caramazza, 2011;
van Dam et al., 2010; Liljestrom et al., 2008; Pizzamiglio et al., 2005). Evidence also suggests
that during semantic processing these areas act as central connectivity hubs, passing information
from low-level perceptual areas onto higher-level areas in prefrontal cortex (Farahibozorg et al.,
2019; Hoeren et al., 2013). We find significant tuning shifts toward targets in AG and SMG,
higher than that in occipitotemporal and premotor AON nodes, irrespective of the search target.
Our results can be taken to suggest a higher place for AG and SMG in the hierarchy of
semantic representations compared to remaining AON nodes. Another potential account could be
that areas with stronger action selectivity might undergo stronger tuning shifts and future studies
are warranted to investigate this issue more directly.
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Cortical areas selective for an object category are suggested to retain their preferred tuning even
when a non-preferred category is the search target (Cukur et al., 2013; Reddy and Kanwisher,
2007; Shahdloo et al., 2020). We find that semantic tuning of voxels in locomotion-action-
selective superior parietal cortex are shifted toward locomotion actions only during search for
this target. Likewise, semantic tuning of voxels in communication-selective anterior prefrontal
cortex are shifted toward communication actions only during search for communication. These
results suggest that semantic tuning shifts interact with the intrinsic selectivity for target
categories.

We used WordNet to label action categories in the stimulus and create a one-hot-encoded
stimulus feature matrix. Thus, it is possible to conduct part of the reported analyses by directly
examining modulations of category responses. However, assessments in the 922-dimensional
category space would treat each category independently ignoring semantic similarities, and they
would be inherently noisier reducing our sensitivity for detecting tuning shifts. To assess TSI for
non-target categories, category responses were masked to zero out responses for communication
and locomotion actions. If selectivity measurements had been performed based on one-hot
category features, this masking would eliminate all information related to target categories. It
would then be impossible to quantify whether tuning for non-target categories shifts
towards/away from the attended category. Therefore, we performed our analyses in a dense-
encoded semantic space obtained via PCA. An alternative is voxel-wise modelling with a dense-
encoded stimulus feature matrix derived using embedding models (Mikolov et al., 2013; Devlin
et al., 2019). During preliminary experiments in the current study and prior studies from our lab
(Huth et al, 2018; Celik et al., 2021), we compared the category model against dense embedding
models and estimates of attentional modulations did not vary significantly by choice of model.
As such, we do not expect a profound difference between results from these various models,
although there could be practical differences in terms of interpretation and feature similarity
assessments.

We employed communication and locomotion as target categories to maximize our chances for
detecting semantic tuning shifts, since previous studies suggest that these action categories have
broadly distributed and distinctive representations (Urgen and Orban, 2021). Attentional
modulations in multi-voxel response patterns were recently reported during search for several
other categories related to animal taxonomy or actions (Nastase et al., 2017). We have observed
in preliminary experiments that search for many salient categories in natural movies elicits
tuning shifts (data not shown here). Thus, it is likely that tuning shifts are a ubiquitous
mechanism for response modulation during natural visual search for action categories. However,
there may be differences in the strength and cortical distribution of tuning shifts depending on
the target action, and future studies are warranted to systematically examine whether and how
tuning shifts generalise across action categories. Evidence suggests that attending to an object
can modulate responses to features correlated with the target (O’Craven et al., 1999). We have
previously reported that attending to a target object (e.g., vehicles) enhances the representation of
semantically similar actions (e.g., driving) (Cukur et al., 2013). It is thus possible that attending
to a target action could induce tuning shifts for correlated features such as the object categories
pertaining to the actor. Since we restricted the target actions to be performed by the same
animate actors, we did not examine tuning changes for objects in this study.
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The tuning profile of a voxel refers to its response levels to the examined range of features.
Attention can induce different modulations on this profile including baseline changes, gain
changes and tuning shifts. Baseline changes imply an additive offset, gain changes imply a
multiplicative offset to responses uniformly across features, neither changing the shape of the
profile. Instead, tuning shifts alter shape by shifting selectivity towards the target, changing
responses to both attended and unattended features. Here, we find that the overall tuning shift is
attributed to significant tuning changes for both target and non-target categories. Such broadly
distributed changes imply alteration in the shape of the tuning profile. Since our measurements
are naturally limited by the spatiotemporal resolution of BOLD responses, we cannot make
definitive inferences about the neural mechanisms underlying voxel tuning shifts, which could be
attributed to baseline, gain or selectivity changes in single neurons (Connor et al., 1997; David et
al., 2008; Reynolds et al., 2000). Further electrophysiological work would be needed to
characterize neural tuning shifts during action-based search.

A common practice in fMRI is to collect a relatively limited dataset from a greater number of
subjects to increase reliability of across-subject assessments at the expense of individual-subject
results. Diverting away from this practice, here we collect a larger amount of data per subject to
give greater focus to reliability in single subjects. This procedure substantially increased the
amount and diversity of fMRI data collected per subject, which enhanced the quality of resulting
models and thereby reliability of individual-subject results. However, we acknowledge that
future studies are warranted to assess to what degree the results reported in the current study
generalise to a broader population of subjects.

The natural movie stimuli used here have greater ecological validity compared to simplified or
controlled movie clips used in many action-perception studies. That said, action categories in
natural movies might be correlated with low-level features such as global motion-energy
(Nishimoto et al., 2011; Weiss et al.,, 2006) and intermediate-level features such as scene
dynamics (Grossman and Blake, 2002). Substantial correlations can confound the estimated
category responses and tuning shifts. We employed several procedures to control for potential
biases. First, to minimize correlations between category responses and global motion-energy, we
used a nuisance motion-energy regressor (Nishimoto et al., 2011). Second, we restricted analyses
to voxels uniquely predicted by the category model after accounting for motion-energy and STIP
features. Voxels in areas such as LOC might encode multiple levels of features ranging from
motion-energy and kinematics to semantics. Thus, controlling for motion-energy and STIP
features might reduce sensitivity for attentional modulation of perceptual selectivity in these
areas. Our analyses do not consider attentional tuning shifts that might be evident for motion-
energy and STIP features, or other features such as expected action goals (Hudson et al., 2016a,
2016b), and actors’ perceived attitude (Bach and Schenke, 2017). Some level of ambiguity will
be naturally evident about what specific aspect of the correlated stimulus features are most
relevant for measured cortical representations. Addressing this ambiguity requires complete
decorrelation of all possible feature sets, yet conclusions derived using decorrelated stimuli
deprived from their natural context might no longer be ecologically relevant. It remains
important work to assess the effects of category-based search on multiple levels of feature
representations.
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In conclusion, we showed that natural visual search for a specific action category modulates
semantic representations, causing tuning shifts toward the target in single voxels within and
beyond the AON. Attentional modulations further interact with intrinsic selectivity of neural
populations for search targets. This dynamic attentional mechanism can facilitate action
perception by efficiently allocating neural resources to accentuate the representation of task-
relevant action categories. Overall, these findings offer new insights into the effects of category-
based visual search on brain responses (Cukur et al., 2013; Erez and Duncan, 2015; Harel et al.,
2014; Peelen et al., 2009), as our results help explain humans’ astounding ability to perceive
others’ actions in dynamic, cluttered daily-life experiences.
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Data and software availability

Data supporting the findings of this study are available from the corresponding authors upon
request. Results can be explored online via an interactive brain viewer at
http://www.icon.bilkent.edu.tr/brainviewer/shahdloo_etal/.

The codes used to estimate spatially informed voxelwise model weights is freely available on
GitHub at https://github.com/icon-lab/SPIN-VM.
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Figure Captions

Figure 1. Hypothesised changes in semantic representation of action categories. Recent evidence suggests that
the human brain organises hundreds of object and action categories in a semantic space that is distributed
systematically across the cerebral cortex (Huth et al., 2012). a. Semantic representation for a single subject from
Cukur et al. (2013) is shown on flattened cortical surface and on inflated hemispheres. Colours indicate tuning for
different object or action categories (see colour legend). Regions of interest identified using conventional functional
localizers are denoted by white borders. Abbreviations for regions of interest are listed in Materials and Methods. b.
In the semantic space, action categories that are semantically similar to each other are mapped to nearby points and
semantically dissimilar actions are mapped to distant points. There is evidence that visual search for object
categories warps semantic representation in favour of the targets by shifting single-voxel tuning for object categories
toward target objects (Cukur et al., 2013). Thus, we hypothesised that visual search for a given action category
should similarly expand the semantic representation of the target and semantically similar categories.

Figure 2. Model fitting and validation procedure. Undergoing fMRI, human subjects viewed 60mins of natural
movies and covertly searched for communication or locomotion action categories while fixating on a central dot. a.
An indicator matrix was constructed that identified the presence of each of the 922 object and action categories in
each 1-sec clip of the movies (see Fig. 2-1). Nuisance regressors were included to account for head-motion,
physiological noise, and eye-movement confounds. An additional nuisance regressor was included to account for
target detection confounds. In a nested cross-validation (CV) procedure, regularized linear regression was used to
estimate separate category model weights (i.e., category responses) for each search task that mapped each category
feature to the recorded BOLD responses in single voxels. b. Accuracy of the fit models was cross-validated by
measuring prediction performance on the held-out data in each CV fold, after discarding the nuisance regressors and
the target regressor. Prediction score of the fit models was taken as product-moment correlation coefficient between
estimated and measured BOLD responses, averaged across the two search tasks.

Figure 3. Prediction performance of the category model. To test the performance of fit category models,
prediction score was calculated on held-out data as the product-moment correlation coefficient between the
predicted category responses and measured BOLD responses, and it was averaged across the two search tasks. a.
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Prediction scores of the category model are plotted on flattened cortical surfaces of individual subjects. A variance
partitioning analysis was used to quantify the response variance that was uniquely predicted by the category model
after accounting for low- and intermediate-level stimulus features (see Materials and Methods, Fig. 4). Voxels
where the category model did not explain unique response variance after accounting for these features were masked
(bootstrap test, q(FDR)<0.05; see Fig. 11). b. To visualise single-subject results in a common space, prediction score
values are shown following projection onto the standard brain template from Freesurfer and averaging across
subjects, after getting thresholded in single subjects. Only voxels that were identified as semantic in all individual
subjects were averaged and displayed in the template. Regions of interest are illustrated by white borders. Several
important sulci are illustrated by dashed grey lines. Abbreviations for regions of interest and sulci are listed in
Materials and Methods. The category model predicts responses across ventral-temporal, parietal, and frontal cortices
well, suggesting that visual categories are broadly represented across visual and nonvisual cortex. Results can be
explored via an interactive brain viewer at http://www.icon.bilkent.edu.tr/brainviewer/shahdloo_etal/.

Figure 4. Comparison of category and control models. The prediction scores (raw product-moment correlation
coefficient) of the category and control (the collection of motion-energy and STIP regressors) models were
measured for all cortical voxels. Voxels across all subjects are displayed. Each voxel is represented with a dot. Red
versus blue dots indicate whether the category model or the control model yields higher prediction scores. Black
dots indicate voxels where none of the models has high prediction scores. The category model outperforms the
control model in 53.75+3.29% of cortical voxels (mean+sem; average over five subjects).

Figure 5. Fraction of uniquely predicted voxels in regions of interest (ROIs). We identified voxels in which the
category model explained unique response variance after accounting for low-level motion-energy, and intermediate-
level STIP stimulus features by performing a variance partitioning analysis (see Materials and Methods). Fraction of
these semantic voxels is shown across ROIs, in individual subjects. Asterisk shows across subject significance
(bootstrap test, q(FDR)<0.05).

Figure 6. Attention warps semantic representation of action categories. To assess attentional changes, we
projected voxel-wise tuning profiles onto a continuous semantic space. a. The semantic space was derived from
principal components analysis (PCA) of tuning vectors measured during a separate passive-viewing task, and was
tested to be consistent across subjects (Fig. 7). To illustrate the semantic information embedded within this space,
action categories were projected onto PC1 and PC3 that best delineate the target actions (Fig. 8; words in regular
font show projections of individual categories, see Fig. 9). To illustrate the semantic content of the PCs,
characteristic actions of the movie stimulus were clustered in the semantic space, and cluster centres were projected
onto the PCs after getting labelled (bold-italic words; see Materials and Methods, Fig. 10). Average location of the
communication and locomotion actions are specified with red and green dots. b. Action category responses during
passive viewing and during the two search tasks were projected onto the semantic space, and a two-dimensional
colourmap was used to colour each voxel based on the projection values along PCl and PC3 (see legend).
Projections in individual subjects were mapped onto the standard brain template from Freesurfer, and average
projections across subjects are displayed (see Figs. 6-1 to 6-5 for data in individual subjects). Figure formatting is
identical to Fig. 3. Many voxels across occipitotemporal, parietal, and prefrontal cortices shift their tuning toward
targets, suggesting that attention warps semantic representations of actions. Specifically, voxels in inferior posterior
parietal cortex, cingulate cortex, and anterior inferior prefrontal cortex shift their tuning toward communication
during search for communication actions. Meanwhile, voxels in superior posterior and medial parietal cortex shift
their tuning toward locomotion during search for locomotion actions. Results can be explored via an interactive brain
viewer at http://www.icon.bilkent.edu.tr/brainviewer/shahdloo_etal/.

Figure 7. Consistency of the semantic space across subjects. To test whether the estimated semantic space is
consistent across subjects, leave-one-out cross-validation was performed. In each cross-validation fold, best-
predicted voxels from four subjects were used to derive 12 PCs to construct a semantic space. In the left-out subject,
semantic tuning profile for each voxel was obtained by projecting action category responses during passive viewing
onto the derived PCs. Next, product-moment correlation coefficient was calculated between the tuning profiles in
the derived space and the tuning profiles in the original semantic space. Results were averaged across semantic
voxels in the left-out subject. Correlation coefficients are shown for each PC and each subject. The cross-validated
semantic spaces consistently correlate with the original semantic space.
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Figure 8. The distance between target actions in subspaces spanned by different pairs of PCs. To visualise
attentional modulation of semantic representation in Fig. 6, we compared projections of action category responses
onto a pair of PCs across the search tasks. To maximize our sensitivity in visualising the attentional modulations, we
chose the pair of dimensions that maximally separates the actions belonging to the two target categories (i.e.,
communication and locomotion categories). The Mahalanobis distance between communication actions and
locomotion actions (mean+sem across communication and locomotion actions) in the subspace spanned by each pair
of PCs is shown. Target actions are maximally separated across the subspace spanned by the first and third PCs.

Figure 9. Distribution of action categories across PCs. To illustrate the distribution of action categories embedded
within the semantic space, action categories were projected onto the PCs. Projections onto the first three PCs are
shown (words in regular font show projections of individual categories). To facilitate illustration, categories were
collapsed into 10 clusters and cluster centres were also projected onto the PCs (bold-italic words; see Materials and
Methods). Average location of the communication and locomotion actions are specified with red and green dots. The
estimated semantic space captures reasonable semantic variance across action categories in natural movies.

Figure 10. Projections of action category clusters onto PCs. Each of the 109 action categories were projected
onto the twelve semantic principal components (PCs). The projections were then clustered into 10 groups using k-
means and labelled for interpretation (see Materials and Methods). The projections of the cluster centres onto 12
PCs are shown. The first three dimensions were used to visualise the semantic space. The first dimension
distinguishes between self-movements (e.g., swirl, consume) and actions that are targeted toward other humans or
objects (e.g., reach, talk). The second dimension distinguishes between dynamic (e.g., drive, chase) versus static
actions (e.g., consume, struggle). The third dimension distinguishes between actions that involve humans (e.g., talk,
reach) and dynamic actions (e.g., fly, swirl).

Figure 11. Cortical distribution of tuning shifts. a. To quantify the tuning shifts for the attended versus
unattended categories, a tuning shift index (TSI € [—1,1]) was calculated for each voxel. Tuning shifts toward the
attended category would yield positive TSI (red colour), whereas negative TSI would indicate shifts away from the
attended category (blue colour). TSI, values from individual subjects were projected onto the standard brain
template and averaged across subjects (see Figs. 11-1a to 11-5a for data in individual subjects). Figure formatting is
identical to Fig. 3. AON is outlined by green dashed lines. Voxels across many cortical regions shifted their tuning
toward the attended category. These include regions across AON (occipitotemporal cortex, posterior parietal cortex,
and premotor cortex), lateral prefrontal cortex, and anterior cingulate cortex. b. To examine how representation of
nontarget action categories changes during visual search, we measured a separate tuning shift index specifically for
these categories (TSI,). TSI, values from individual subjects were projected onto the standard brain template and
averaged across subjects (see Figs. 11-1b to 11-5b for data in individual subjects). TSI, shows a similar distribution
to TSI, shown in a, albeit with lower magnitude (Fig. 12). Tuning shift for nontarget categories is positive across
many voxels within posterior parietal cortex and anterior prefrontal cortex, suggesting a more flexible semantic
representation of actions in these cortices, compared to occipitotemporal AON nodes. Results can be explored via an
interactive brain viewer at http://www.icon.bilkent.edu.tr/brainviewer/shahdloo_etal/.

Figure 12. Difference in tuning shift for target, versus non-target categories. The difference between absolute
values of TSI, and TSI, were calculated in individual ROIs. TSI, is significantly larger than TSI, in all areas with
significant tuning shift.

Figure 13. Fraction of the overall tuning shifts. Fraction of the overall tuning shifts explained by shifts in tuning

for target categories (meantsem across subjects) and nontarget categories (i.e., excluding the union of
communication and locomotion categories) is shown. Target categories explain a greater portion of the overall
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tuning shifts broadly across ROIs, except for early retinotopic areas. At the same time, nontarget categories
significantly contribute to the overall tuning shifts.

Figure 14. Interaction of tuning shifts with intrinsic selectivity for individual targets. To examine the
interaction between tuning shifts and the intrinsic selectivity for individual targets, separate target preference indices
(PI) were calculated during search for communication (Pl.y), and locomotion (PI,.) categories. PI during search for
a specific target action was taken as the difference in selectivity for the target versus distractor during search for that
target. Pl.o, and Pl values are shown following projection onto the standard brain template (see Figs. 11-1c to 11-
Sc for data in individual subjects). A two-dimensional colourmap was used to annotate each voxel based on Pl
and PIj, values (see legend). Figure format is identical to Fig. 3. AON is outlined by green dashed lines. Semantic
tuning in voxels across posterior parietal and anterior prefrontal cortices shift toward the attended category
irrespective of the search target. However, tuning in many voxels in anterior parietal, occipital, and cingulate
cortices shift toward the attended category only during search for communication or only during search for
locomotion actions.

Figure 15. Attentional tuning changes in regions of interest. Average (a) TSL,;, (b) TSI, (¢) Pl.m, and (d) Pl
values were examined in cortical areas (meantsem across five subjects). Significant values are denoted by green
bars and grey bars denote non-significant values (bootstrap test, q(FDR)>0.05). Values for individual subjects are
indicated by dots. Grey dots show values in areas with non-significant mean, green dots show non-significant values
in areas with significant mean, and green crosses show significant values in areas with significant mean. Tuning
shift is significantly greater than zero in many regions across all levels of the AON including occipitotemporal
cortex (pSTS, pMTQG), posterior parietal cortex (IPS, AG, SMG), and premotor cortex (BA44, BA45), and in
regions across prefrontal and cingulate cortices (SFG, ACC). Compared to occipitotemporal areas, attention more
diversely modulates semantic representations in parietal and premotor AON nodes, manifested as significantly
positive tuning shift for nontarget categories in posterior parietal cortex (AG, SMG) and anterior inferior frontal
cortex (BA45). Pl is significantly greater than zero in BA44/45, SFG, and ACC. In contrast, Py, is significantly
greater than zero in IPS and AG and is significantly less than zero in dPMC. Both Pl and PIj, are significantly
greater than zero in pSTS, pMTG, SMG, and MFG. Tuning shifts interact with the attention task, and with intrinsic
selectivity of cortical areas for target action categories.

Figure 2-1. Stimulus action categories. Actions belonging to the two target categories, and non-target categories
are specified. Occurrence frequency of each action, calculated as the number of movie frames where a given action
was present, is indicated in parentheses.

Figure 6-1. Cortical flat maps of semantic representation for subject S1. Action category responses during a.
passive viewing, b. search for communication, and c¢. search for locomotion categories were projected onto the
semantic space in subject S1. A two-dimensional colourmap was used to colour each voxel based on the projection
values along the first and third semantic dimensions (see colour legend). Voxels where the category model does not
explain unique response variance after accounting for low- and intermediate-level stimulus features are masked
(bootstrap test, q(FDR)<0.05). Regions of interest are illustrated by white borders. Several important sulci are
illustrated by dashed grey lines. Abbreviations for regions of interest and sulci are listed in Materials and Methods.
Many voxels across occipitotemporal, parietal, and prefrontal cortices shift their tuning toward targets.

Figure 6-2. Cortical flat maps of semantic representation for subject S2. Action category responses during a.
passive viewing, b. search for communication, and c. search for locomotion categories were projected onto the
semantic space in subject S2. Formatting is identical to Fig. 6-1.

Figure 6-3. Cortical flat maps of semantic representation for subject S3. Action category responses during a.

passive viewing, b. search for communication, and c¢. search for locomotion categories were projected onto the
semantic space in subject S3. Formatting is identical to Fig. 6-1.
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Figure 6-4. Cortical flat maps of semantic representation for subject S4. Action category responses during a.
passive viewing, b. search for communication, and ¢. search for locomotion categories were projected onto the
semantic space in subject S4. Formatting is identical to Fig. 6-1.

Figure 6-5. Cortical flat maps of semantic representation for subject S5. Action category responses during a.
passive viewing, b. search for communication, and c. search for locomotion categories were projected onto the
semantic space in subject S5. Formatting is identical to Fig. 6-1.

Figure 11-1. Cortical flat maps of TSI and PI for subject S1. a. Tuning shift index for all action categories
(TSLy), b. tuning shift for nontarget categories (TSI,), and c. preference index values (Plem, Pli,) were projected
onto the semantic space in subject S1 (see legends in Fig. 11 and 14 for the colour map). Only significant voxels are
shown (bootstrap test, q(FDR)<0.05). Formatting is identical to Fig. 6-1.

Figure 11-2. Cortical flat maps of TSI and PI for subject S2. a. Tuning shift index for all action categories
(TSLy;), b. tuning shift for nontarget categories (TSI,), and ¢. preference index values (Pl.,m, Pli,.) were projected
onto the semantic space in subject S2 (see legends in Fig. 11 and 14 for the colour map). Only significant voxels are
shown (bootstrap test, q(FDR)<0.05). Formatting is identical to Fig. 6-1.

Figure 11-3. Cortical flat maps of TSI and PI for subject S3. a. Tuning shift index for all action categories
(TSLyy), b. tuning shift for nontarget categories (TSI,,), and c. preference index values (Pl.m, Pli,) were projected
onto the semantic space in subject S3 (see legends in Fig. 11 and 14 for the colour map). Only significant voxels are
shown (bootstrap test, q(FDR)<0.05). Formatting is identical to Fig. 6-1.

Figure 11-4. Cortical flat maps of TSI and PI for subject S4. a. Tuning shift index for all action categories
(TSLy), b. tuning shift for nontarget categories (TSI,), and ¢. preference index values (Pl.,m, Pli,.) were projected
onto the semantic space in subject S4 (see legends in Fig. 11 and 14 for the colour map). Only significant voxels are
shown (bootstrap test, q(FDR)<0.05). Formatting is identical to Fig. 6-1.

Figure 11-5. Cortical flat maps of TSI and PI for subject S5. a. Tuning shift index for all action categories
(TSLy), b. tuning shift for nontarget categories (TSI,,), and c. preference index values (Plm, Pli,) were projected
onto the semantic space in subject S5 (see legends in Fig. 11 and 14 the colour map). Only significant voxels are
shown (bootstrap test, q(FDR)<0.05). Formatting is identical to Fig. 6-1.
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