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Semi-Supervised Learning of MRI Synthesis
without Fully-Sampled Ground Truths
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Abstract— Learning-based translation between MRI con-
trasts involves supervised deep models trained using high-
quality source- and target-contrast images derived from
fully-sampled acquisitions, which might be difficult to col-
lect under limitations on scan costs or time. To facilitate
curation of training sets, here we introduce the first semi-
supervised model for MRI contrast translation (ssGAN)
that can be trained directly using undersampled k-space
data. To enable semi-supervised learning on undersampled
data, ssGAN introduces novel multi-coil losses in image, k-
space, and adversarial domains. The multi-coil losses are
selectively enforced on acquired k-space samples unlike
traditional losses in single-coil synthesis models. Com-
prehensive experiments on retrospectively undersampled
multi-contrast brain MRI datasets are provided. Our results
demonstrate that ssGAN yields on par performance to a
supervised model, while outperforming single-coil models
trained on coil-combined magnitude images. It also outper-
forms cascaded reconstruction-synthesis models where
a supervised synthesis model is trained following self-
supervised reconstruction of undersampled data. Thus,
ssGAN holds great promise to improve the feasibility of
learning-based multi-contrast MRI synthesis.

Index Terms— magnetic resonance imaging, image syn-
thesis, semi-supervised, adversarial, undersampled

[. INTRODUCTION

MRI is a clinical powerhouse in neuroimaging due to its
noninvasiveness and excellent soft-tissue discrimination. Its
unique ability to image the same anatomy under a diverse set
of tissue contrasts empowers it to accumulate complementary
diagnostic information on a single scanner [1], [2]. However,
economic and time costs often limit the number of distinct
contrasts that can be captured within an MRI exam [3], [4].
A promising solution is to synthesize missing images (i.e.,
target-contrast images) within the protocol via translation from
available images (i.e., source-contrast images) [5]. Through
imputation of target images, multi-contrast MRI synthesis can
enhance radiological assessments as well as image analysis
tasks such as registration, segmentation, or detection [6]—[8].
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From a scan-time perspective, synthesis of an unacquired tar-
get image from an acquired source image, and reconstruction
from mutually undersampled acquisitions of source-target con-
trasts could yield similar outcomes [9]. Yet, synthesis offers
several key benefits. While reconstruction may not be able
to suppress artifacts that corrupt target-contrast acquisitions
(e.g., motion artifacts), successful synthesis can be performed
given a high-quality source image [4]. Reconstructions might
be unreliable for target-contrast acquisitions with intrinsically
low signal-to-noise ratio (SNR), yet successful synthesis can
be performed given a high-SNR source image [10]. Finally,
the reconstruction framework requires prolonged scan times
as the number of distinct contrasts grows, albeit synthesis of
multiple target contrasts can be performed efficiently based on
a single source contrast [5].

In recent years, there has been emerging interest in learning-
based MRI synthesis based on deep neural networks, given
their state-of-the-art performance in other computer vision
[11], [12] and medical imaging tasks [13]-[17]. An ear-
lier group of studies proposed convolutional neural networks
(CNNs) to learn nonlinear latent representations that mediate
conversion from source to target images [18]-[22]. These stud-
ies typically involved encoder-decoder architectures, where
the encoder embeds hierarchical image features onto a latent
space that is later used by the decoder to recover the target
image. For improved capture of structural details, a second
group has proposed deep architectures based on conditional
generative adversarial networks (GAN) [23]-[34], where the
generator that performs the source-to-target mapping benefits
from the game-theoretic interplay with the discriminator [12].
Pioneering studies have exploited pixel- or feature-wise cor-
respondence between source-target images in an adversarial
setup [23], [31], [32], [35]. Later studies have proposed unified
models capable of multiple types of contrast translation [24],
[27], [28], [36], or multi-tasking frameworks [24], [27], [33] to
reduce computational complexity. These previous studies have
collectively highlighted the immense potential of learning-
based synthesis in multi-contrast MRI.

That said, existing MRI synthesis models are trained to
translate between coil-combined images pertaining to source
and target contrasts [18], [23]. These training data are canoni-
cally collected in a matching set of subjects, and derived from
Nyquist-sampled acquisitions [18], [23]. Resultant models
leverage supervision regarding pairing of source-target images
across subjects, and regarding the use of ground-truth images
obtained from fully-sampled k-space data [23], [24], [35].
However, compilation of training datasets with paired and
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Fig. 1: Tlustration of the proposed ssGAN model. 1) Fully-supervised
synthesis models demand a training dataset of high-quality images
derived from Nyquist-sampled acquisitions of the source and target
contrasts. 2) Instead, ssGAN uses a training dataset containing only
undersampled acquisitions of the source and target contrasts. To
enable training on undersampled data, ssGAN synthesizes a coil-
combined target image that is backprojected onto individual coils via
an operator P. These multi-coil images are subjected to the sampling
mask (€2) of the reference target-contrast acquisition via operator
M. 3) Afterwards, selective multi-coil losses are defined between
undersampled synthetic and reference target images in image, k-space
and adversarial domains.

fully-sampled acquisitions might prove impractical due to
limitations on scan time or cost [3], [4]. As such, there is
a dire need to lower reliance on these supervision factors in
training of synthesis models to improve practicality.

Recent efforts to lower supervision requirements in MRI
synthesis have primarily focused on model training with
unpaired images across subjects. A successful approach has
been to replace pixel-wise losses in GAN models with cycle-
consistency, shape-consistency or mutual information losses
[23], [27], [37]-[40]. Similar to supervised models, unpaired
models that unify multiple contrast translation tasks have also
been introduced to reduce computational complexity [38],
[41]. As an alternative, [42], [43] have proposed a hybrid
method where the model is trained on a composite dataset with
both paired and unpaired samples. These previous methods
have allowed synthesis models to learn from unpaired data, but
they still leverage explicit supervision on ground-truth images
derived from fully-sampled acquisitions. While unsupervised
training of MRI reconstruction models on undersampled data
has received recent interest [44]-[48], to the best of our
knowledge, no prior study has considered training of MRI
synthesis models using undersampled k-space data.

To avoid reliance on ground-truth images from fully-
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sampled acquisitions, here we propose a novel semi-supervised
generative model for source-to-target contrast translation (Fig.
1). The proposed model, ssGAN, is learned using a training
dataset of undersampled source- and target-contrast acquisi-
tions from accelerated MRI scans. Unlike prior methods that
use single-coil loss terms on coil-combined images, ssGAN
enables learning of MRI synthesis based on undersampled data
by introducing novel multi-coil losses in image, k-space, and
adversarial domains. These losses are selectively enforced on
acquired k-space samples in target-contrast acquisitions, and
the sampling masks are randomized across training subjects
to promote homogeneous learning across k-space.

Comprehensive experiments on retrospectively undersam-

pled brain MRI datasets clearly demonstrate that ssGAN
achieves on par performance to a benchmark supervised model
trained with ground truth derived from fully-sampled acqui-
sitions. Meanwhile, ssGAN outperforms single-coil synthesis
models trained on inverse Fourier transform of undersampled
data, and cascaded reconstruction-synthesis models that in-
volve a reconstruct step to recover images from undersampled
acquisitions and a synthesis step trained on the reconstructed
images. Our results suggest that ssSGAN can facilitate curation
of training datasets for learning-based synthesis by enabling
the use of undersampled MRI acquisitions. Code for ssGAN
is publicly available at https://github.com/icon-lab/ssGAN.

Contributions:

o To our knowledge, ssGAN is the first semi-supervised
method for MRI contrast translation that learns from
a training dataset of undersampled source- and target-
contrast acquisitions.

e For training, ssGAN introduces novel multi-coil losses
expressed only on acquired k-space samples of under-
sampled target acquisitions.

e During inference, ssGAN synthesizes target images di-
rectly from undersampled multi-coil source acquisitions
without the need for intermediate reconstruction.

[I. METHODS

In this section, we first overview basics of generative
adversarial networks, and the foundation of the proposed archi-
tecture for semi-supervised multi-contrast MRI synthesis. We
then describe in detail the datasets and experiments conducted
to evaluate the proposed methodology.

A. Generative Adversarial Networks

Generative adversarial networks (GANs) [12] are
deep generative models comprising a pair of competing
subnetworks: a generator (G) and a discriminator (D). G
aims to map a random noise vector z to a sample resembling
a target-domain distribution, whereas D aims to distinguish
between real and fake samples from the target domain. These
two subnetworks are alternately trained via an adversarial
loss function, formulated as follows:

Lean = Eyllog D(y)] + E:[log(1 — D(G(2)))] (D)

where E denotes expectation, and y is an arbitrary real sample
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in the target domain. A squared loss can be adopted in place
of log-likelihood loss to stabilize the training process [49]:
E.[D(G()] @)

Lean = —Ey[(D(y) — 1)°] -

Upon convergence, G is expected to generate realistic target-
domain samples that D cannot tell apart from the actual
ones. While the initial GAN models generated target samples
from a random noise vector, later studies have demonstrated
success in image-to-image translation with conditional GAN
(cGAN) models. These models receive as input a separate
source-domain image x to capture conditional dependencies
between the source and target domains [12]. The adversarial
loss function is then modified by conditioning G on x:

E.[D(G(2))’]  (3)

Legan = —Er,y[(D(y) - 1)2] -

As the contribution of latent variables is relatively limited in
c¢GANs [12], z is typically removed from the formulation.
When spatially aligned source-target images are available, a
pixel-wise loss can be further included [12]:

— Eay[(D(y) - 1)7)
+ Eayllly — G(@)|1]

Legan = — E,[D(G(x))?]

“4)

Several studies have demonstrated cGANs on multi-contrast
MRI that synthesize target-contrast images from source-
contrast images of the same underlying anatomy [23]-[34].
These models typically learn the source-to-target mapping in a
fully-supervised setup. A comprehensive training set is needed
containing high-quality source and target images derived from
fully-sampled k-space acquisitions (x1, y1), where x1 is an
arbitrary source, y; is an arbitrary target image in the training
set, and 1 denotes the sampling mask for Nyquist-sampled
acquisitions. Such supervised models have demonstrated state-
of-the-art performance for synthetic multi-contrast MRI. How-
ever, they rely on the availability of a training dataset of images
obtained from fully-sampled acquisitions that might prove
impractical to collect. Therefore, methods that can directly
learn from undersampled k-space data are direly needed.

B. Semi-Supervised Generative Adversarial Networks

The proposed semi-supervised model (ssGAN) mitigates
reliance on training datasets composed of fully-sampled MRI
acquisitions (Fig. 1). Instead, ssGAN is trained using under-
sampled acquisitions of source and target contrasts (Fig. 2). To
do this, ssGAN introduces multi-coil loss functions enforced
selectively on the acquired k-space samples of the target-
contrast acquisitions. During inference, ssGAN synthesizes
target-contrast images given as input only multi-coil data
from undersampled source-contrast acquisitions (Fig. 2). The
optimization objectives are detailed in this section.

Receiving as input multi-coil images computed as the
inverse Fourier transform of the undersampled source-contrast
acquisition, sSGAN learns to estimate the corresponding
coil-combined image of the target contrast. To do this, the
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generator GG in ssGAN implements a forward mapping:

G(X%) =g, with X% ={z},..., 2%} (5)

where Xy denotes multi-coil source-contrast images acquired
with a k-space sampling mask A, n depgtes the number
of receive coils with sensitivity maps Cyx computed via
ESPIRIT [50], and gy denotes the coil-combined target-
contrast image. Since supervision based on fully-sampled
data is excluded, no ground truth for the target-contrast
image is available. As reference for the network output,
sSGAN instead leverages multi-coil images computed as the
inverse Fourier transform of the undersampled target-contrast
acquisition: Y¢&' = {y,...,y%} collected with a sampling
mask € and m receive coils of coil sensitivities Cy'. These
reference images are corrupted with aliasing artifacts, so
canonical single-coil loss terms on coil-combined images
cannot be employed. Instead, sSGAN uses multi-coil loss
functions expressed selectively on the acquired subset of
k-space samples. To do this, the synthesized coil-combined
image is first projected onto individual coils:

~ TN ~

=P(3,Cy)=9-Cy 6)

where Y" denotes the synthesized multi-coil target images,
CY denotes coil sensitivity maps estimated via ESPIRIT [50],
and P performs the coil projection in the image domain as
element-wise multiplication between the input image and coil
sensitivity maps. The multi-coil target image projections are
then subjected to the binary sampling mask in Fourier domain:

m— M(FY™),Q)=FY")-Q -
Yo = F (k)
where F denotes the forward and F~! denotes the inverse
Fourier transform, M is the operator that performs binary
masking in k-space with a given sampling mask. In Eq. (7),
A’{{ and Yé” denote undersampled multi-coil data respectively
in k-space and image domain for the synthesized target-
contrast image. Based on undersampled multi-coil data for the
synthesized versus reference target-contrast images, the overall
loss function containing three components is calculated: multi-
coil image, k-space and adversarial losses.

1) Multi-Coil Image Loss: The first component is an image-
domain loss between synthesized versus reference multi-coil
images of the target contrast. The image loss is based on the
L;-norm to reduce sensitivity to outliers:

Li = Exy vy [|[Ye — Y&1] ®)

where Y{, are reference images, and ?g are synthesized
images, both subjected to the same undersampling mask, €.
2) Multi-Coil k-space Loss: Because the training images for
sSGAN are corrupted with aliasing artifacts, a Fourier-domain
loss is used between synthesized and reference multi-coil
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k-space data for the target contrast for improved performance.
Ly = Exg vy [IIM(F(Ye)/B) = M(F(YE)/BIL] O

where F(Y) and F(Yg,) denote undersampled k-space data
for the reference and synthesized images, respectively. To
provide comparable signal intensities across different spatial
frequencies in k-space, both reference and synthesized k-space
data are processed with h, a tanh function with a shape
parameter S controlling its slope [51]. The k-space loss is
based on the L;-norm to reduce sensitivity to outliers [44].
3) Multi-Coil Adversarial Loss: To improve the realism of
synthesis, the third component is an adversarial loss based on
synthesized and reference multi-coil target images:

Ly = ~Eyz [(D(Y]) - 1)%] — Ex;[D(Yg)?]  (10)

where D denotes the discriminator that distinguishes between
undersampled images of the actual and synthetic target con-
trast. To compute Eq. 10, images for individual coils can be
sequentially provided to the discriminator.

The overall loss for ssGAN is constructed as a weighted
combination of the three components as Lssgan = A\xLg +
AiL;+ Ao L,, where \g, A;, and A\, denote the relative weight-
ing of the k-space, image, and adversarial terms. All loss terms
are expressed selectively on the subset of acquired k-space
samples in the undersampled target-contrast acquisition. Using
the same sampling mask across all training subjects would
focus exclusively on a specific k-space subregion, thereby
yield suboptimal learning. Instead, a different random sam-
pling mask is prescribed for each subject in the training set.
Note that within a given subject, the sampling mask is fixed
across all cross-sections, following the common procedure for
implementing accelerated MRI acquisitions [52].

C. Datasets

The IXI dataset (https://brain-development.org/ixi-dataset/)
with single-coil magnitude brain images and an in-house
dataset with multi-coil complex brain images were used.

1) The IXI Dataset: T;- and T,-weighted images from 94
subjects were used, with 64 reserved for training, 10 for
validation, 20 for testing. Images were collected at axial orien-
tation with matrix size = 256x256x130, spatial resolution =
0.94%0.94x 1.2 mm3. For T;-weighted scans, a 3D MPRAGE
sequence was used with TR = 9.81 ms, TE = 4.603 ms, flip
angle = 8°, scan time = 5:26. For T,-weighted scans, a 2D fast
spin-echo (FSE) sequence was used with TR = 8178.34 ms,
TE = 100 ms, flip angle = 90°, turbo factor of 16, scan time
= 6:33. T,-weighted images were spatially registered onto T-
weighted images via FSL [53], using an affine transformation
based on mutual information.

2) In vivo Brain Dataset: T,- and PD-weighted images of
10 healthy volunteers were used, with 7 reserved for training,
1 for validation, 2 for testing. Images were collected using
a 3D FSE sequence at coronal orientation with the following
parameters: matrix size = 256x192x88, spatial resolution =
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Fig. 2: a) The proposed ssGAN model is trained using undersampled
multi-coil acquisitions, so no high-quality ground truth is available.
The source and target contrasts are acquired with different sampling
masks A and ), respectively. b) During inference in a test subject,
ssSGAN receives as input the undersampled acquisition of the source
contrast, and it generates the coil-combined target-contrast image that
is missing from the subject’s MRI exam.

1x1x2 mm?3, flip angle = 90°, a turbo factor of 16. For T,-
weighted scans, TR = 1000 ms, TE = 118 ms, scan time =
17:39 were used. For PD-weighted scans, TR = 750 ms, TE
= 12 ms, scan time = 13:14 were used.

Data were collected on a 3T Siemens Magnetom scanner us-
ing a 32-channel receive-only head coil at Bilkent University,
Ankara, Turkey. Imaging protocols were approved by the local
ethics committee at Bilkent University, and all participants
provided written informed consent. No spatial registration was
performed as analyses in FSL suggested negligible interscan
motion for multi-contrast images within subjects (less than 1
mm in translation and 0.6° in rotation corresponding to the
voxel size in the minimum dimension). To lower computa-
tional complexity, geometric coil compression was performed
to reduce the number of coils from 32 to 5 [54].

3) Retrospective Undersampling: To obtain training datasets
with undersampled source and target acquisitions, data from
the IXI and in vivo datasets were retrospectively undersam-
pled. Undersampling was performed across the two phase-
encoding dimensions in three-dimensional k-space. Undersam-
pling factors and sampling masks were independently selected
for the source and target contrasts. For fair comparison, all
competing methods were implemented based on the same
sampling masks. For IXI, k-space data were obtained as
Fourier transform of coil-combined magnitude images. Data
in axial cross-sections were then randomly undersampled
to achieve undersampling factors R = [2 — 10]. Uniform-
density sampling was performed with a 10x 10 fully-sampled
calibration region. For the in vivo dataset, k-space data for
coronal cross-sections were randomly undersampled to achieve
R = [2—4]. Uniform-density sampling was used with a 16x 16
calibration region to permit coil-sensitivity estimation [50].
A different random sampling mask was generated for each
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contrast within each subject. The mask was kept identical
across separate cross-sections of a given contrast, and was
kept fixed for a given subject across the modeling procedures.
These sampling procedures accurately emulate the way un-
dersampled acquisitions would be performed in practice, as
pervasively utilized in MRI studies [10], [52]. Note that the
fully-sampled acquisitions in IXI or in vivo datasets were not
used for training sSGAN, instead fully-sampled data were only
utilized to measure model performance on test subjects.

D. Implementation Details for ssGAN

The generator and discriminator in sSGAN were adopted
from a previous study on multi-contrast MRI synthesis [23].
The generator contained an encoder of 3 convolutional layers,
a residual network of 9 ResNet blocks, and a decoder of 3
convolutional layers. The discriminator contained 5 convolu-
tional layers. An unlearned coil-combination block was placed
at the input of the generator [55], which recovered real and
imaginary parts of the coil-combined target image given real
and imaginary parts of the coil-combined source image. The
coil-combined target image was backprojected onto individual
coils, and the complex target images from each coil were
sequentially fed to a patch discriminator.

Cross-validation was used to select the relative weighting
of the selective loss components in image, k-space and adver-
sarial domains, as well as the slope of the tanh function in the
k-space loss (A\;, Ak, Ag, B). This selection aimed to minimize
the network loss Lssgany on the validation set. A common
set of parameters (A\;=100, A;=3000, A,=1, $=5000) observed
to yield near-optimal performance consistently across datasets
were used in all experiments, including ssGAN models trained
for varying undersampling factors for the source and target
contrasts (Rg and Ry respectively).

Ablation studies were conducted to demonstrate the in-
fluence of the main building blocks in ssGAN to synthesis
performance. For this purpose, variant ssGAN models were
trained by removing particular loss terms from Lgscan,
by replacing multi-coil loss terms with single-coil versions
following compression of multi-coil data onto a single coil
[54], and by prescribing a fixed sampling mask across training
subjects. All variant models were trained with the same loss
function and hyperparameters as in ssGAN, except for variants
with ablated losses that omitted specific loss components.

E. Competing Methods

We compared ssGAN against a benchmark fully-supervised
model, state-of-the-art single-coil synthesis models, and cas-
caded reconstruction-synthesis models.

1) Benchmark Supervised Model: A supervised model was
trained using fully-sampled multi-coil acquisitions of the
source and target contrasts. This supervised model serves as
an upper performance limit for ssGAN.

fsGAN: A GAN model was implemented with matching
architecture, loss terms and hyperparameters to ssGAN, albeit
each loss term was non-selectively expressed on the entire k-
space to leverage information on fully-sampled acquisitions.
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Fig. 3: Reliability against the undersampling factor of target-contrast
acquisitions in the training set (Rp € [2 : 2 : 10]) and the number
of training subjects (n = [8 : 8 : 64]). The supervised fsSGAN
model was trained with fully-sampled source and target acquisitions
(Rs = 1, Ry = 1); ssGAN was trained with Rg = 1 and varying
R7. PSNR and SSIM are reported in the test set.

2) Single-coil Synthesis Models: We considered two state-
of-the-art single-coil synthesis models designed to operate on
coil-combined magnitude images. To learn these models using
the same training set as sSGAN, training images were formed
via inverse Fourier transform of undersampled acquisitions
followed by coil combination [50]. Models were trained to
translate between the resultant coil-combined magnitude im-
ages of source and target contrasts.

pix2pix: A GAN model was implemented with the architec-
ture, loss terms and hyperparameters adopted from [12].

PGAN: A GAN model was implemented with the architec-
ture, loss terms and hyperparameters adopted from [23].

3) Cascaded Reconstruction-Synthesis Models: Given a
training set of undersampled data, a cascaded reconstruction-
synthesis approach is an alternative to ssGAN. In the absence
of fully-sampled ground truth, an unsupervised model must
be used to reconstruct undersampled data from the source
and target contrasts. A supervised synthesis model can then
be trained on the reconstructed coil-combined source and
target images. Five cascaded models were considered based
on different reconstruction methods. In all cases, synthesis was
implemented based on the pGAN method, with the loss terms
and hyperparameters adopted from [23].

CasCS: For single-coil data in IXI, reconstruction was
implemented using SparseMRI [10]. Hyperparameters were
selected via cross-validation: 4 iterations, total variation weight
of 1074, and wavelet-domain L; weight of 107!,

CasSPIRIT: For multi-coil data from the in vivo dataset,
reconstruction was implemented using L;-SPIRiT [52]. Hyper-
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models with RS = 1, Ry = [2 — 10] were demonstrated on IXI for T — T, mapping against
y with Rg =1, RT = 1. Synthesized images are displayed along with error images underneath (see colorbar). The source

image an(?lg the ground -truth target image derived from fully-sampled acquisitions are also shown.
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Fig. 5: s$sGAN(p g,y models with Rg = 1, Rp = [2: 1 : 4]
were demonstrated on IXI for T, — T; mapping against fSGAN
with Rg = 1, R = 1. Synthesized images are displayed along with
error images. The source image and the ground-truth target image
derived from fully-sampled acquisitions are also shown.

parameters were selected via cross-validation: a 5x5 kernel,
wavelet-domain L; weight of 10~!, Tikhonov weight of 1073,
10 iterations for PD and 20 iterations for T, images.

CasRAKI: Reconstruction was implemented using RAKI
with the architecture and loss terms adopted from [56]. Hy-
perparameters reported in [56] were selected that also yielded
near-optimal performance during cross-validation.

CasUnsup: Reconstruction was implemented using an un-
supervised GAN method with the architecture and loss terms
adopted from [45]. Hyperparameters reported in [45] were
selected that also yielded near-optimal performance during
cross-validation.

CasSSDU: Reconstruction was implemented using a self-
supervised approach, SSDU [44]. As SSDU is a model-
agnostic training strategy, the network architecture and loss
terms were adopted from ssGAN for fair comparison. Un-
dersampled k-space data were split into two nonoverlapping
subsets, where 40% were used for defining losses, and 60%
were used to estimate model weights as proposed in [44]. The
relative weighting of image, k-space, and adversarial losses
was [100, 3000, 1] as determined via cross-validation.

F. Modeling Procedures

All models were trained for 100 epochs using the Adam
optimizer with parameters $1=0.5 and $5=0.999. The learning
rate was set to 0.0002 in the first 50 epochs and linearly
decayed to O in the last 50 epochs. Expectation values of the
loss components were estimated via Monte Carlo sampling
over images sampled from the training set. Models were run
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TABLE I: Image quality in IXI for Rg = 1, Rp = [1 — 4]

T, = Ty T, = T
PSNR SSIM PSNR SSIM
fsGAN(1 1) 28.57+1.39 95.33%1.35 28.62+1.45 95.95+1.38
ssGAN(1 2) 28.63+1.42 95.25+1.33 28.524+1.61 95.79+1.46
ssGAN(y 3) 28.56+1.39 95244132 28.44+1.55 95.72+1.41
ssGAN(1 4) 28.60+£1.43 95.21£1.34 28.4241.56 95.70+1.42

on Nvidia 2080 Ti GPUs in Python2.7 using PyTorch. Training
sSGAN on 32 subjects with 100 cross-sections required nearly
8 hrs. Meanwhile, it required nearly 8 sec of inference for a
single test subject with 100 cross-sections.

Performance was evaluated using peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) on coil-combined
magnitude images derived from synthesized and ground-truth
target-contrast images. The ground-truth image was based on
inverse Fourier transform of the fully-sampled target acquisi-
tion. In Tables, summary statistics of quantitative metrics were
provided as mean = std across test subjects, except for ablation
analyses where metrics were provided as mean. Significance
of PSNR, SSIM, and radiological opinion scores was assessed
via Kruskal Wallis H-test (p < 0.05) to collectively compare
sSGAN models with fsGAN, and via Wilcoxon signed-rank
test (p < 0.05) to individually compare ssSGAN against
competing methods trained under matched Rg 7.

[1l. RESULTS
A. Robustness against training set deficiencies

We first examined the reliability of ssGAN against the
degree of undersampling and the number of subjects in the
training dataset. Models were learned for T; — T, mapping
in the IXI dataset (network input: T;, network output: T,),
while the undersampling factor of target-contrast acquisitions
in the training set ranged in Ry = [2 : 2 : 10] and the
number of training subjects ranged in np = [8 : 8 : 64].
As a benchmark, the fully-supervised fsSGAN model was also
trained for matching ny but with ground-truth images derived
from fully-sampled target-contrast acquisitions R = 1. All
models received as input source-contrast images derived from
fully-sampled acquisitions (Rg = 1). Note that all models
were trained on the same selected set of subjects for a
given np, and they were tested on the same set of test
subjects that did not overlap with training subjects. Synthesis
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Fig. 6: ssGAN was demonstrated on the IXI dataset for the T; — T, synthesis task. Synthesized images from all competing methods trained
at (Rg, R1)=(2, 2) are displayed along with error images underneath (see colorbar). The undersampled source image and the ground-truth

target image are also shown.

performance is displayed in Fig. 3 as a function of Ry and
np. Synthesis quality of ssGAN is on par with the supervised
fsSGAN model (p > 0.05), where ssGAN performance is
within [-0.51,0.13]dB PSNR, [-0.70,0.02]% SSIM of fsGAN.
Synthesized images displayed in Fig. 4 further indicate that
sSGAN models trained with varying R7 yield highly similar
performance, and near-optimal synthesis quality can be main-
tained for a broad range of undersampling rates for target-
contrast acquisitions in the training set.

Synthesis performance naturally improves towards larger np
for both fSGAN and ssGAN as depicted in Fig. 3. Comparing
ny = 16 against np = 32, similar average improvements in
(PSNR, SSIM) are observed with (0.68dB,0.57%) for ssGAN,
and (0.58dB,0.47%) for fsGAN. Yet, because ssGAN permits
training with undersampled acquisitions (i.e., R > 1), a
larger group of training subjects can be recruited under the
same scan budget compared to fSGAN that requires R = 1.
For instance, T;- and T,-weighted images required to train
fSGAN can be collected from 16 subjects in a total scan time
of 192 min. In the same time, training data for ssGAN can
be captured from 32 subjects with this two-contrast protocol
at R = 10. Therefore, ssGAN facilitates curation of training
sets to improve practicality of learning-based MRI synthesis.

We then extended comparison of ssGAN against fsGAN to
the T, — T, task in the IXI dataset with a fixed number of
training subjects nr = 32 (used hereafter in all evaluations

TABLE II: Image quality in IXI for Rg = 2, Ry = {2,4}

in IXI). Measurements of synthesis quality are reported in
Table 1. The reported measurements reveal that ssGAN models
trained with Ry = [2 : 1 : 4] maintain near-optimal synthesis
quality on par with fSGAN. Representative results displayed
in Fig. 5 corroborate the quantitative findings by showing that
sSGAN offers a similar level of accuracy in tissue depiction
to the benchmark supervised model, fsGAN.

B. Single-coil MRI Synthesis

Next, we comparatively demonstrated ssGAN for
Ty — T, and T, — T; on the single-coil IXI dataset.
Competing methods included single-coil synthesis models
trained on magnitude images (pix2pix, pGAN), and
cascaded reconstruction-synthesis models (CasCS, CasUnsup,
CasSSDU, CasRAKI). For all models, the training dataset
comprised undersampled acquisitions of both source and target
contrasts. Models were built for Rg = {2,4}, Ry = {2,4}.
Synthesis performance is reported in Table II for Rg = 2,
Ry = {2,4} and in Table III for Rg = 4, Ry = {2,4}.
sSGAN outperforms all competing models consistently across
tasks (p < 0.05). On average, ssGAN improves PSNR by
7.49dB, SSIM by 14.49% over single-coil models, and PSNR
by 4.86dB, SSIM by 10.09% over cascaded models. Note
that incremental steps from Ry = 2 to Ry = 4 result in
modest performance losses of 0.16dB PSNR, 0.34% SSIM for

TABLE Ill: Image quality in IXI for Rg = 4, Ry = {2,4}

Rs =2,Rp = 2 Rs =2,Rp = 4 Rs =4,Ryp =2 Rs=4,Rr =4
T, — T, T, = T, T, = T, T, = T, T, = T, T, = T, T, = T, T, = T,

PSNR SSIM PSNR SSIM |PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM |PSNR SSIM PSNR SSIM
SGAN 26.92 9348 2747 94.16 | 26.81 93.22 27.30 93.92 SGAN 2549 9139 26.64 92.84 | 25.28 90.90 26.51 92.46
+1.37 +1.54 +1.35 +£1.51|£1.34 £1.50 +1.38 +1.55 +1.39 +1.73 +1.29 +£1.62 | £1.43 +1.83 +1.28 +1.68
PGAN 22.80 8234 1938 82.77 | 18.83 75.83 16.31 77.31 PGAN 2232 80.55 19.06 81.74 | 18.93 75.07 16.23 76.73
+0.70 +£2.03 +0.85 +£2.29|+£0.56 £2.26 +0.66 +2.71 +0.76 +2.25 +0.63 £2.28 | £0.65 £2.47 £0.58 +2.78
pix2pix 22.24 8039 1886 81.41 | 18.78 74.83 16.08 76.52 Pix2pix 21.66 7825 18.89 80.09 | 18.54 73.42 16.07 75.72
+0.79 £2.39 +0.99 +£2.55|+£0.63 £2.58 +0.66 +2.76 +0.84 +2.76 +0.87 +£2.55|+£0.66 £2.78 +0.66 +2.77
CasCS 24.04 8522 21.25 8556 |20.06 79.03 16.81 79.29 CasCS 2349 83.70 21.04 84.42|19.85 77.72 16.87 78.55
+0.81 +£2.12 £1.05 £2.31| £0.6 £2.35 +0.69 +2.68 +090 231 +£1.19 £2.39|+£0.66 £2.52 +0.68 £2.73
CasSSDU 25.04 91.00 25.79 91.80 | 24.83 90.52 25.13 90.33 CasSSDU 23.38 88.39 25.15 90.58 | 23.37 88.20 24.72 89.45
+1.34 +£1.73 £1.36 +1.69 | £1.28 +£1.69 +£1.36 +£1.85 +1.30 +£2.03 +1.32 +1.87 | £1.28 +£2.03 £1.32 +£2.01
CasUnsup 22.55 84.67 23.34 86.05|22.86 84.84 22.04 82.81 CasUnsup 21.63 82.57 23.55 86.28 | 21.80 82.39 22,10 82.82
+1.25 +2.73 +£0.93 +£2.37|£1.36 £2.77 +0.59 +2.40 +1.18 +2.89 +091 +£2.38|+£1.29 £3.07 +0.56 +2.33
CasRAKI 22.51 83.87 16.72 68.32|21.62 809 16.81 69.16 CasRAKI 21.47 81.57 16.70 68.21 | 20.90 79.26 16.82 69.07
+2.05 +3.13 +049 +£2.80|£1.84 £3.15 +0.45 +2.71 +1.92 +3.17 +0.53 +£2.82|£1.77 £3.13 +0.46 +2.64
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Fig. 7: ssGAN was demonstrated on the in vivo dataset for the PD — T, synthesis task. Synthesized images from all competing methods
trained at (Rg, R1)=(2, 2) are displayed along with error images underneath (see colorbar). The undersampled source image and the ground-

truth target images are also shown.

sSGAN. In contrast, performance losses are 3.18dB PSNR,
5.26% SSIM for single-coil models and 1.32dB PSNR, 2.37%
SSIM for cascaded models. Representative synthesis results
are shown in Fig. 6. Single-coil models generate images
with native aliasing artifacts; and cascaded models suffer
from residual errors from the reconstruction step. Meanwhile,
ssGAN yields superior synthesis quality with the sharpest
tissue depiction and highest artifact suppression.

C. Multi-coil MRI Synthesis

We also conducted experiments to demonstrate ssSGAN for
T, — PD and PD — T, tasks on the multi-coil in vivo dataset.
Competing methods included single-coil synthesis models and
cascaded reconstruction-synthesis models. For all methods,
the training dataset comprised undersampled acquisitions of
source and target contrasts (Rg = {2,4}, Rr = {2,4}). Per-
formance is reported in Table IV for Rg = 2 and Ry = {2,4},
and in Table V for Rg = 4 and Ry = {2,4}. Overall, ssGAN
achieves the highest performance among competing methods
in all examined tasks (p < 0.05), except for PSNR against
CasSPIRIT PD — T, with (Rg = 4, R = 2). On average,
sSGAN improves PSNR by 2.30dB, SSIM by 17.71% over
single-coil models, and PSNR by 2.70dB, SSIM by 12.30%
over cascaded models. Representative results displayed in
Fig. 7 corroborate the superior synthesis quality of ssGAN

TABLE |V: Image quality in the in vivo dataset for Rg = 2

over single-coil models that suffer from aliasing artifacts,
and cascaded models that suffer from residual reconstruction
errors. Note that increasing the target-contrast undersampling
factor from Ry = 2 to 4 results in a 0.30dB PSNR, 0.96%
SSIM performance loss for ssGAN, and instead 1.72dB PSNR,
9.52% SSIM loss for single-coil models, and 0.75dB PSNR,
4.60% SSIM loss for cascaded models.

D. Radiological Evaluations

Radiological evaluations were performed to assess synthe-
sized images in terms of their general visual similarity to the
ground-truth target image derived from fully-sampled acquisi-
tions (Fig. 8). On a 5-point Likert scale, we examined the com-
parative performance of sSGAN against three top-contending
competing methods, pGAN, CasSPIRiT, CasSSDU. This eval-
uation was conducted for PD — T, and T, — PD tasks on
the in vivo dataset, where independent models were trained
at (Rg, Rr)=(2,2) and (2,4). ssGAN outperforms all com-
peting methods in opinion scores (p < 0.05). On average,
the proposed method achieves a 3.72 opinion score across
tasks, whereas the opinion score is 1.03 for pGAN, 1.94 for
CasSSDU, and 2.28 for CasSPIRiT.

E. Ablation Studies

We first conducted ablation studies to examine the con-
tribution of individual loss components to ssGAN’s perfor-

TABLE V: Image quality in the in vivo dataset for Rg = 4

Rg =2,Rr =2 Rs=2,Rr =4 Rg =4,Rr =2 Rs=4,Rr =4

T, — PD PD — T, T, — PD PD — T, T, — PD PD — T, T, — PD PD — T,
PSNR SSIM PSNR SSIM | PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM |PSNR SSIM PSNR SSIM
SGAN 25.75 88.14 24.59 86.56 | 25.47 87.72 24.46 85.97 SGAN 2485 86.64 24.70 87.25 | 24.73 86.22 24.05 84.84
+0.01 +1.83 +0.21 £0.52 | £0.15 +1.92 +0.20 +0.30 +0.00 +1.47 +0.35 £0.20 | £0.12 +1.83 +0.38 +0.39
GAN 2346 7392 2450 79.18 | 2041 63.01 2347 69.10 GAN 2288 7221 2445 7777 |20.79 6132 23.05 685
P +0.04 +£2.13 £1.20 £4.29|£0.01 £1.67 £1.33 +5.01 P +0.10 +£2.25 £1.09 £4.17 | £0.11 £2.50 +0.95 +4.89
i 22.19 6938 24.08 7597 |20.72 61.26 2244 65.59 i 21.78 6833 2330 7293 |20.19 59.57 2223 65.22
psp +029 +£2.12 £0.95 £3.56|£0.06 +1.80 +0.80 +4.44 Preep +0.16 +£2.96 +0.96 +£5.31|=£0.08 £2.62 +0.83 +5.78
CasSPIRIT 25.01 8696 24.44 8502|2295 8222 2355 81.53 CasSPIRIT 23.72 8478 25.12 8591 | 2231 80.32 23.51 81.68
+0.03 £1.61 043 +£2.45|+0.59 £2.32 £0.24 £3.03 +0.48 +2.24 +1.33 +£3.81|£0.23 £2.50 £1.17 £3.79
CasSSDU 2322 84.69 23774 8497|2361 8579 23.69 85.25 CasSSDU 2242 82.13 2347 83.87|23.05 83.63 23.61 84.29
+0.1 £1.28 £0.14 £0.38 | +0.01 +£1.03 +£0.13 £0.32 +0.18 £2.12 £0.19 £0.54 | £0.06 £1.50 +0.34 +0.86
18.02 6240 21.09 67.48 | 19.37 65.12 20.13 60.16 17.94 61.51 21.01 65.88 | 19.34 63.82 19.90 58.95

CasUnsup CasUnsup
+0.03 +0.38 £0.36 +1.52|+0.32 +0.44 +040 +1.70 +0.07 +0.27 £0.52 £3.03 | +0.17 +0.88 +0.86 =+3.31
CasRAKI 21.55 7053 2393 77.16 | 19.74 57.56 21.77 62.92 CasRAKI 22.18 69.34 2326 7427|1997 58.10 21.50 61.46
+0.41 +0.86 +£0.78 £2.99|+£0.16 +1.76 +0.16 +1.36 +0.43 +0.78 +£0.54 +£3.38|£0.11 +1.47 +0.74 +3.75
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Fig. 8: Radiological opinion scores for ssGAN, pGAN, CasSPIRIT,
and CasSSDU for the PD — T, and T, — PD tasks on the in vivo
dataset, with independent models trained at (Rg, R7)=(2,2) and (2,4)
are displayed. Error bars denote standard error.

mance by forming three variants: sSSGAN(w/o image) without
image loss, sSGAN(w/o k-space) without k-space loss, and
ssGAN(w/o adv) without adversarial loss. Models were trained
for T} — T, and T, — T; in IXI. The effects of image
and k-space losses were evaluated using PSNR and SSIM,
whereas the effect of adversarial loss was assessed using
Frechlet Inception Distance (FID) [57] and visual inspection
as common in literature [58]. Performance metrics in Table
VI indicate that image and k-space losses serve to improve
synthesis quality in both tasks. Meanwhile, adversarial loss
increases realism with decreased FID scores. Representative
results in Fig. 9 corroborate the quantitative findings by
showing that ssGAN(w/o image) and ssGAN(w/o k-space)
suffer from residual artifacts and ssGAN(w/o adv) suffers from
smoothing. In contrast, ssGAN with all loss components yields
enhanced artifact suppression and visual acuity.

Next, we compared ssGAN against a variant model ss-
GAN(single) with traditional single-coil losses. Models were
trained for T, — PD and PD — T, tasks on the multi-coil in
vivo dataset. Performance metrics are listed for Rg = {2,4}
and Ry = {2,4} in Table VII. ssGAN model consistently
yields enhanced synthesis performance. On average, it im-
proves PSNR by 1.46dB, SSIM by 6.32% over ssGAN(single).
These results demonstrate the value of the multi-coil loss terms
in improving quality of synthetic images.

Finally, we compared ssGAN against a variant model
sSGAN(w/o rand) with a common sampling mask across
training subjects. Models were trained for T, — T, and
T, — T; tasks on the IXI dataset. Performance metrics for
Rs = 2 and Rr = [2 : 2 : 10] are listed in Table VIIL
ssSGAN yields consistently higher performance compared to
the non-randomized variant, with 0.15dB PSNR, 0.25% SSIM
improvement over sSGAN(w/o rand). These results indicate
that leveraging randomized sampling masks across training
subjects helps improve synthesis quality.

IV. DiscuUssION

A novel semi-supervised deep generative model was in-
troduced for image synthesis in multi-contrast MRI. Unlike
supervised models, ssGAN learns to synthesize high-quality
target-contrast images in the absence of training sets composed
of costly Nyquist-sampled acquisitions. Unlike prior synthesis
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TABLE VI: Effects of losses on synthesis performance

T — T, T, = T
PSNR SSIM PSNR SSIM
ssGAN 25.25 90.75 26.47 92.27
ssGAN (w/o image) 25.12 90.36 26.12 91.78
ssGAN (w/o k-space) 24.96 90.30 26.41 92.19
T, — T, T, — T
FID FID
ssGAN 22.89 16.80
ssGAN (w/o adv) 23.13 24.35
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Fig. 9: Variant ssGAN 4 4y models with Rg = 4 and Ry = 4 were
trained on IXI for T, — T (upper row) and T; — T, (lower row)
tasks. Synthesized images are shown for variant models with ablated
image, k-space or adversarial loss along with ssGAN. The source
image derived via inverse Fourier transform of the undersampled
acquisition, and the ground-truth target image derived from a fully-
sampled acquisition are also shown.

models trained on coil-combined magnitude images, ssGAN
is trained on multi-coil complex MRI data from undersampled
acquisitions with selective multi-coil losses. It holds promise
in facilitating curation of large training sets required for
deep-learning models, thereby advancing the practicality of
multi-contrast MRI synthesis. Through imputation of missing
target contrasts, SSGAN can aid in radiological assessment
and image analysis tasks such as registration, segmentation
or detection. Note that ssGAN can receive as input multi-coil
data from undersampled source-contrast acquisitions during
inference without an intermediate reconstruction step. Thus,
a side benefit of sSGAN is to shorten the scan time for
the source-contrast acquisition, albeit obtaining high-quality
source images requires a separate reconstruction.

We find superior synthesis performance with ssGAN over
cascaded models, best attributed to differences in learning
strategy. sSGAN performs end-to-end mapping between un-
dersampled source-target acquisitions to directly maximize
synthesis quality. In contrast, cascaded models recover images
from undersampled acquisitions to maximize reconstruction
quality, and then map between reconstructed images for
synthesis. This step-wise learning causes error propagation
in cascaded models, where the synthesis step supervised by
reconstructed images will learn to reproduce reconstruction
errors. Note that reconstruction performance is primarily dom-
inated by low-spatial-frequency information given k-space
spectra of MR images [10], so elevated reconstruction errors
are typically evident at high frequencies. This can undermine
synthesis performance as contrast translation critically relies
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on high-frequency information regarding shared tissue bound-
aries between contrasts [23].

Several lines of development can be pursued for ssGAN.
Cycle-consistency loss was proposed to improve performance
and enable unsupervised training of GAN-based MRI recon-
struction [45], [59] and synthesis models [16], [23], [60].
Incorporation of cycle-consistency in sSGAN can also permit
training on unpaired source-target contrast acquisitions. A
GAN model proposed for retrospective motion correction of
MRI scans employed a generator with cascaded U-Net back-
bones for improved performance [61]. Synthesis performance
for ssGAN might also benefit from cascading multiple residual
backbones in its generator. Third, many-to-one synthesis was
recently demonstrated with a multi-stream model that adap-
tively fuses one-to-one mapping streams between each individ-
ual source and the target, and a many-to-one mapping stream
between all sources and the target [35]. Unlike the semi-
supervised ssGAN model trained on undersampled acquisi-
tions with multi-coil loss functions, this prior method used a
supervised model trained on fully-sampled acquisitions with
single-coil loss functions. Yet, ssGAN might be generalized
to perform many-to-one synthesis by adopting a multi-stream
approach. Lastly, recent studies demonstrated improvements
in image quality and resolution during joint reconstruction of
multi-contrast MRI scans [9], [17], [62]. Accordingly, recovery
of target-contrast images might be enhanced by modifying
ssGAN to receive as input not only source-contrast but also
undersampled target-contrast acquisitions, and adopting a self-
supervised training procedure [44].

Here, we demonstrated all methods using uniform-density
random sampling patterns that improve peripheral k-space
coverage for a given undersampling factor. Our motivation
was to aid recovery of high-frequency information during MRI
synthesis. An alternative would be to collect low-resolution
images by Nyquist-sampling in a central k-space region to
achieve similar acceleration. A superresolution task on coil-
combined images could then be performed [63]-[65]. Since
superresolution is challenging when both source and target
images are low resolution, external priors might be required to
assist recovery. Another alternative would be to adopt variable-
density sampling that trades-off high-frequency coverage for
increased SNR [10]. While aggregate performance metrics
(e.g., PSNR) that are dominated by low-frequency errors might
be improved, variable-density masks would have relatively
sparse coverage of peripheral k-space compared to uniform-
density masks, potentially compromising recovery of detailed
structure. The influence of sampling patterns on the relative
performance of ssGAN versus cascaded models remains an
important topic for future research.

Training data for ssGAN were obtained via retrospective
undersampling of the IXI and in vivo datasets. When under-
sampled data are derived by masking fully-sampled data, a
paired ground-truth image is available that allows reference-
based performance assessments. That said, our analyses might
be insensitive to certain imperfections in MRI acquisitions.
First, IXI contained coil-combined magnitude images. While
assessment of influences from coil-sensitivity encoding and
image phase are precluded, analyses on IXI still demonstrate
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TABLE VII: Effects of multi-/single-coil loss terms

T, — PD PD —» T,

PSNR SSIM PSNR SSIM
ssGAN(3 2) 2575 88.14 24.59 86.56
ssGAN(, 5)(single) 23.13 80.77 24.51 83.18
sSGAN 3 4) 2547 87.82 24.46 85.97
ssGAN(3 4)(single) 22.91 80.77 24.07 81.00
sSGAN 4, 2) 24.85 86.64 24.70 87.25
ssGAN 4 o)(single) 22.61 7895 23.69 79.90
sSGAN 4 4) 2473 86.22 24.05 84.84
sSGAN(4 4)(single) 2249 7885 23.55 79.45

TABLE VIII: Effects of randomized/non-randomized sampling masks

T, — T, T, = T

PSNR SSIM PSNR SSIM
ssGAN(3 2) 26.89 93.32 27.43 94.05
ssGAN(g o)(W/o rand)  26.82 93.19 27.27 93.75
ssGAN(3 1) 26.77 93.10 27.25 93.80
ssGAN (g 4)(W/o rand)  26.59 92.74 27.18 93.72
ssGAN(2 ¢) 26.70 92.88 27.10 93.67
ssGAN (3 g)(W/o rand)  26.50 92.63 27.07 93.61
ssGAN(3 g) 26.68 92.83 27.14 93.79
ssGAN(y g)(w/o rand) 2644 9240 26.96 93.42
ssGAN(2,10) 26.50 92.43 26.95 93.35
ssGAN(y 10)(W/o rand) 26.26 92.08 26.86 93.22

the benefits of selective expression of loss terms on acquired
k-space coefficients. The in vivo dataset contained multi-
coil complex images, albeit no significant phase perturbations
or swaps were observed within brain tissue, likely due to
adequate shimming. Under large field inhomogeneity, a field
map can be collected or phase unwrapping can be used
against perturbations. Reliability against phase-related effects
remains an important topic for future research. Second, we
estimated coil sensitivities via ESPIRIT that has been reported
to work reliably with undersampled acquisitions [50]. ssGAN
uses sensitivity estimates to combine images across coils, to
backproject the combined image onto individual coils, and
thereby to define its loss function. Thus, significant errors in
sensitivity estimates might affect signal homogeneity in the
combined image, elicit suboptimal weighting across coils that
can degrade SNR, and introduce biases that reduce accuracy of
the loss function. Lastly, prospectively undersampled experi-
ments are warranted to demonstrate the reliability of ssGAN in
practice [61], [66]. Prospective undersampling can be achieved
by modifying stock pulse sequences for acceleration, where
the sampling mask for a scan is either selected from a stored
set of a priori determined random masks, or generated on the
fly as the sequence is initiated.

Here, we followed an empirical risk minimization strategy
for model training, as many other studies in the domain of
multi-contrast MRI synthesis [12], [18], [23], [24], [26], [27].
While this strategy performs desirably when training sets are
sufficiently diverse, the resultant models might suboptimally
generalize to atypical cases scarcely represented in the training
set. Note that the IXI and in vivo datasets only contained
healthy subjects, so atypicaly anatomy was not observed. It

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on August 22,2022 at 13:50:57 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMI.2022.3199155

YURT et al.: SEMI-SUPERVISED MRI SYNTHESIS WITHOUT FULLY-SAMPLED GROUND TRUTHS 11

remains important future work to assess the generalization
performance of ssGAN on patients with brain pathology.
When needed, reliability might be improved by adopting
distributionally robust optimization strategies with asymmetric
risk measures that give higher weight to atypical cases [67].

We examined one-to-one synthesis tasks to translate be-
tween single source and target MRI contrasts. A preliminary
radiological evaluation was conducted where synthesized im-
ages were rated according to their general visual similarity
to the ground-truth images. Since the examined datasets in-
volved only healthy subjects, contrast transfer in pathological
tissue was not evaluated. Future studies are required to assess
the quantitative and radiological performance of ssGAN on
patient cohorts with pathology. Furthermore, it is likely that
desired information in the target contrast may not always be
sufficiently encoded in a single source contrast, particularly
for pathological tissue [27]. In those cases, complementary
information from multiple distinct source-contrast acquisitions
might be required for successful estimation of target-contrast
images. To enable many-to-one synthesis, the ssGAN model
could be modified to receive information from multiple source
contrasts as separate input channels [24], and dedicated fusion
modules can be introduced across higher stages of the network
model for improved performance [25], [35].

The ssGAN implementation considered here leverages a
multi-coil loss between undersampled versions of the syn-
thesized and reference target images. This image-domain
loss implicitly assumes that the source- and target-contrast
acquisitions are spatially registered. The datasets examined
here were either aligned or a registration step was performed
during preprocessing. Alternatively, a deep-learning model can
be cascaded to the input of ssGAN for spatial registration.
It remains important future work to explore this integrated
registration and synthesis approach.

In summary, we proposed a semi-supervised learning frame-
work based on a GAN architecture to train synthesis models
in the absence of fully-sampled ground truth. While the data-
efficiency of ssGAN was primarily demonstrated for MRI
contrast translation in the brain, it can also be adopted to other
anatomies, other recovery tasks including multi-parametric
MRI, or cross-modality mapping [39], [42], [68].
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