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A B S T R A C T   

Background: Survival analysis is widely used in cancer research, and although several methods exist in R, there is 
the need for a more interactive, flexible, yet comprehensive online tool to analyze gene sets using Cox pro
portional hazards (CPH) models. The web-based Shiny application (app) SmulTCan extends existing tools to 
multivariable CPH models of gene sets—as exemplified using the netrins and their receptors (netrins-receptors). 
It can be used to identify survival gene signatures (GSs) and select the best subsets of input gene, microRNA, 
methylation level, and copy number variation sets from the Cancer Genome Atlas (TCGA). 
Objectives: To create a tool for CPH model building and best subset selection, using survival data from TCGA with 
input gene expression files from UCSC Xena. Furthermore, we aim to analyze the input TSV file of netrins- 
receptors in SmulTCan and discuss our findings. 
Methods: SmulTCan uses Shiny’s reactivity with built-in R functions from packages for CPH model analysis and 
best subset selection including “survminer”, “riskRegression”, “rms”, “glmnet”, and “BeSS”. 
Results: Results from the SmulTCan app with the netrins-receptors gene set indicated unique hazard ratio GSs in 
certain renal and neural cancers, while the best subsets for this gene set, obtained via the app, could differentiate 
between prognostic outcomes in these cancers. 
Availability: SmulTCan is available at http://konulabapps.bilkent.edu.tr:3838/SmulTCan/. The input file for 
netrins-receptors is available in the online version of this paper. TCGA dataset folders containing survival files 
are available through https://github.com/aozh7/SmulTCan/. 
Supplementary information: The supplementary information (SI) accompanies the online version of this article.   

1. Introduction 

In recent years, web-based tools developed using the Shiny package 
from R [1] have become prevalent due to their availability, interactivity, 
robustness, and relative simplicity of development. They are frequently 
used as environments for database communication and analysis—with 
applications in a multitude of research areas. Recent examples of Shiny 
applications (apps) include tools for a variety of subjects, such as the 
IPDmada tool for individual patient data meta-analyses [2]; 
Metabolite-Investigator, which incorporates metabolomics data and fa
cilitates metabolite identification in user-input disease datasets [3]; and 
Quickomics that allows for multidimensional statistical analysis of 
omics data [4]. 

Survival analysis is widely used in biomedical research, particularly 

for identifying the effects of continuous and categorical factors on sur
vival rates for different types of cancers, as well as calculating and 
comparing their hazard ratios (HRs). Currently, available tools include 
the Shiny apps ECCDIA—used for Kaplan-Meier (K-M) and Cox regres
sion of esophageal cancer samples [5]—and MEPHAS, for generalized 
statistical analyses with a wide range of user-input data [6]. In addition, 
survival analysis has also been used disease-specifically, e.g., the Shiny 
app brain-coX offers gene prioritization for neuropsychiatric disorders 
[7]. 

The Cancer Genome Atlas (TCGA), a large-scale omics project for 
cancer, contains transcriptomics, genomics, and epigenomics datasets 
along with clinical and survival data (https://portal.gdc.cancer.gov/) 
[8]. Multiple outlets have been developed for TCGA data visualization 
and reuse, including the cBioPortal for Cancer Genomics (https://www. 
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cbioportal.org) [9], University of California, Santa Cruz (UCSC) Xena 
(http://xena.ucsc.edu) [10], and Firehose (https://gdac.broadinstitute. 
org/) [11]. 

Moreover, several apps using TCGA data specific for survival- 
analysis of a single input gene are also present in the literature. GEPIA 
(http://gepia.cancer-pku.cn/) is one such web-based tool that provides 
univariableand interactive tool for univariableKaplan Meier (K-M) plots 
along with exploratory graphics, e.g., principal components analysis 
(PCA), built with HTML5 and JavaScript [12]. PROGgeneV2 
(http://www.progtools.net/gene/) [13]—which accepts genes, gene 
ratios, or gene signatures (GSs) as input to generate expression-based 
K-M plots—is another tool for analyzing TCGA and the Gene Expres
sion Omnibus (GEO) [14] datasets. The online tool KM plotter (https://k 
mplot.com/analysis/) [15] is widely used for generating K-M plots using 
gene and microRNA (miRNA) expression levels with TCGA datasets—so 
is UALCAN (http://ualcan.path.uab.edu) [16]. TRGAted (https://nbo 
rcherding.shinyapps.io/TRGAted/) [17] is another useful and interac
tive tool for univariate protein-level based survival analysis, which can 
be used to determine biomarkers across TCGA Pan-Cancer (TCGA-
PANCAN). CVCDAP (https://omics.bjcancer.org/cvcdap/home.do) 
[18] performs survival analysis with a selected gene, while the app can 
build CPH models when clinical variables are added. 

In addition to the above, SurvExpress (http://bioinformatica.mty. 
itesm.mx/SurvExpress) [19] and SurvMicro (http://bioinformatica. 
mty.itesm.mx/SurvMicro) [20] are tools that can be used for the 
multivariable survival analysis of gene and miRNA sets, respectively. 
Nevertheless, to our knowledge, there is no interactive online app in the 
literature that can perform multivariable survival analysis, which in
corporates recent best subset selection methods with genes and miRNAs, 
and gene-level copy number variations (CNVs) and methylation 
β-values, with data from TCGA-PANCAN. 

In this study, we developed a web-based Shiny app called SmulTCan 
(available online from http://konulabapps.bilkent.edu.tr:3838/ 
SmulTCan/) that accepts gene expression (as well as miRNA expres
sion and gene-level CNV and methylation) files as input, including 
cancer and sample type information downloaded from UCSC Xena by 
the user. Once a Xena TSV file is uploaded to the app, users can analyze 
their genes of interest’s multivariable survival and HR profiles across 33 
TCGA-PANCAN datasets whose survival data are embedded in the app. 
SmulTCan makes use of the Cox proportional hazards (CPH) model to 
analyze the HR GSs of input genes interactively with respect to a selected 
TCGA dataset from a drop-down menu. The CPH model can then be 
validated, and the best subset can be used in the prognostic index (PI) 
and K-M analyses for low vs. high-risk prognoses. 

For the use case with SmulTCan, we chose the netrin family of axon 
guidance molecules and their receptors from the DCC and UNC-5 fam
ilies [21] since their involvement in cancer progression has gained 
recent attention. Netrins promote cell survival, proliferation, and dif
ferentiation; they are also involved in migration, invasion, and angio
genesis [22]. In a study of netrin mutation, expression, and methylation 
profiles across TCGA-PANCAN, several netrins were identified as po
tential diagnostic markers for endocrine tumors [23]. However, an 
approach focusing on multivariable, multi-cancer survival analysis re
mains unexplored with this gene family. The gene expression dataset of 
netrins and their receptors (netrins-receptors) consisted of the six netrins 
NTN1, NTN2, NTN3, NTN4, NTN5, NTNG1, and NTNG2; the receptors of 
the UNC-5 family UNC5A, UNC5B, UNC5C, and UNC5D; and receptors 
DCC and DSCAM [21]. Altogether the dataset comprised twelve genes. 
The use of the netrins-receptor gene set led to identifying novel 
cancer-specific prognostic HR GSs using SmulTCan. In addition, select
ing the most important gene subset for cancer prognosis out of the 
twelve genes can provide potential target genes for in vivo validation 
experiments. 

2. Methods & app architecture 

2.1. Input files 

The required input file format for SmulTCan is presented in the first 
ten rows of Table 1, which shows the TSV file containing gene expres
sions of netrins downloaded from UCSC Xena. The first two columns of 
the file house sample names, followed by columns for each of the 
selected genes containing log2(norm_value + 1) expressions for each of 
the selected genes. Lastly, are the phenotypic input columns “cancer 
type abbreviation” and “sample_type”. Our example file comprises ex
pressions for the full set of twelve netrins-receptors, and the study we 
selected from UCSC Xena was TCGA-PANCAN. This column structure 
should also be followed when working with miRNA, CNV, and methyl
ation β-value sets (all downloadable from UCSC Xena). When working 
with methylation β-values that range between 0 and 1, we recommend 
the values to be multiplied by 100 before uploading the TSV file on 
SmulTCan. 

2.2. Workflow & functionality 

At the core of SmulTCan are the TCGA survival data embedded in the 
app and used to build CPH models for the analysis tabs (Fig. 1). Four 
types of survival data: overall survival (OS), disease-specific survival 
(DSS), disease-free interval (DFI), and the progress-free interval (PFI), 
are stored as TXT files for each of the 33 TCGA-PANCAN datasets 
(https://www.cancer.gov/tcga). These files have been downloaded 
using the “UCSCXenaTools” package from Bioconductor [24] and are 
stored in separate folders within the app. First, the TXT files are read into 
the app with the “readr” [25] function read_delim() upon initiation and 
the custom global set.surv() function is used to select the chosen data
set’s survival file in the app. Next, CPH model data are built within the 
selected sub-tab out of the four survival types and then merged with 
selected gene expressions from the input file. The CPH model data are 
updated whenever the user changes the dataset from the ’’Dataset’’ 
drop-down menu, or the number or names of input genes from the 
side-bar panel; this, in turn, updates the plot and table outputs from all 
the main tabs. 

The app can be divided into two modules: model analysis and best 
subset selection. The model analysis “Forest plot”, “Schoenfeld plots”, 
“ROC”, “ANOVA”, and “Validation” tabs all rely on the CPH model 
created by the function coxph() from the “survival” package in R [26]. 
This reliance also applies to the main “CPH” tab of the best subset se
lection part of the app. These tabs are reactively connected to the same 
CPH model (Fig. 1) that can be interactively displayed and analyzed. 
Default parameters of the coxph() function, including the Efron 
approximation for handling ties, are used. Input gene expressions from 
the CPH model can be viewed reactively as a table in the “Data table” tab 
in the main panel, while displays of the expression distributions are 
found in the “Boxplot” tab (Fig. 1). 

In the “Forest plot” tab (Fig. 1), the ggforest() function from the 
“survminer” package [27] is used to display the HR profile of the CPH 
model. The model is used inside the cox.zph() function, and residuals are 
plotted for the input genes using the ggcoxzph() function from the 
“survminer” in the “Schoenfeld plots” tab. In the “ROC” tab, the Score. 
list() function of the “riskRegression” package [28] is used for gener
ating the receiver operating characteristic (ROC) plots with area under 
the ROC curve (AUC) metrics (Fig. 1). The CPH model from coxph() is 
used reactively inside the cph() function with the “surv” parameter set to 
TRUE, which in turn is used inside anova() and validate() (all three are 
functions from the “rms” package [29]), in the “ANOVA” and “Valida
tion” tabs, respectively. The default parameters for the validate() func
tion include bootstrapping with 40 repetitions and the Akaike 
information criterion (AIC) with cutoff 0 as the stopping rule. The 
“ROC”, “Validation” and “ANOVA” tabs contain the “Plot” and “Stats” 
sub-tabs for the CPH model’s results (Fig. 1). ANOVA plots and plots of 
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selected gene coefficients are drawn using the “ggplot2” package and 
found in the best subset selection tabs [30]. 

The second module of SmulTCan involves selecting gene subsets for 
best predicting survival (module with light blue background in Fig. 1). 
In the “CPH” tab of the main panel, coefficients of the CPH model with p 
< 0.05 can be used to determine the best subsets from the input gene 
combinations in prognostic outcome analyses. In the “glmnet” tab, we 
use an R package with the same name to interactively visualize the best 
subset of input genes using the elastic net method (Fig. 1). The elastic net 
slider starts at 1 by default, corresponding to lasso; the user can then 
adjust the slider values 0–1 where 0 is equal to ridge regression [31]. By 
default, the “glmnet” package uses 10-fold cross-validation, where the 
number of folds can be set to the sample size from the “Folds” menu. 

The cv.glmnet() function with the “family” parameter set to “cox” 
[31] is used inside the built-in function in global.R. For the default 
10-fold cross-validation, the createFolds() function from the “caret” 
package [32] is implemented inside this built-in function to generate a 
“foldid” parameter with the seed set to 123 in the cv.glmnet() function. 
This step is added to prevent variability of the results between sub-tabs 
when 10-fold cross-validation is used. It is important to note that the 
“glmnet” tab builds and analyzes its own CPH model using Breslow 
approximation for tied events [31]. 

In the “BeSS” tab, a method for best subset selection is implemented 
from the “Bioconductor” package with the same name [33]; the bess() 
function with “family” parameter set to “cox” is used for best subset 
selection with ridge regression (Fig. 1). Users can select between the 

Table 1 
First ten TCGA samples of the required input file, as downloaded from UCSC Xena with log2(norm_value + 1) expressions of netrins, as well as columns for the TCGA 
dataset which the sample belongs to and the type of the tumor sample.  

sample samples NTN1 NTN3 NTN4 NTN5 NTNG1 NTNG2 cancer type abbreviation sample_type 

TCGA-DX-A48L-01 TCGA-DX-A48L-01 15.27 3.72 7.91 1.52 0 3 SARC Primary Tumor 
TCGA-DX-AB2H-01 TCGA-DX-AB2H-01 14.98 3.9 7.36 4.14 1.88 5.39 SARC Primary Tumor 
TCGA-DU-6404-02 TCGA-DU-6404-02 14.29 4.97 10 3 8.38 11.47 LGG Recurrent Tumor 
TCGA-DX-A2IZ-01 TCGA-DX-A2IZ-01 14.29 3.15 8.96 4.95 4.37 10.36 SARC Primary Tumor 
TCGA-DX-A48R-01 TCGA-DX-A48R-01 14.15 3.52 6.84 0 7.71 1.82 SARC Primary Tumor 
TCGA-3B-A9HR-01 TCGA-3B-A9HR-01 13.95 2.25 8.09 1.32 1.32 1.53 SARC Primary Tumor 
TCGA-PC-A5DN-01 TCGA-PC-A5DN-01 13.8 4.1 9.46 4.17 5.3 5.28 SARC Primary Tumor 
TCGA-S9-A6WN-01 TCGA-S9-A6WN-01 13.73 4.39 5.63 2.85 7.19 8.46 LGG Primary Tumor 
TCGA-ZB-A969-01 TCGA-ZB-A969-01 13.71 2.94 10.51 5.05 6.67 5.16 THYM Primary Tumor 
TCGA-CQ-6221-01 TCGA-CQ-6221-01 13.7 2.44 9.96 3.79 10.26 4.62 HNSC Primary Tumor  

Fig. 1. Diagram of a simplified version of SmulT
Can’s architecture, consisting of the two modules: 
model analysis and best subset selection. The model 
analysis part can in turn be thought of as made up of 
three smaller submodules, which are for: displaying 
the data inside the CPH model built with coxph(), 
diagnostics of this CPH model and preparation for 
prediction using this model. Each main tab, within 
olive green boxes, is indicated inside the submodule 
they belong to in the figure. The app accepts UCSC 
Xena output files containing normalized gene ex
pressions and incorporates the information of the 
input file with its embedded data from TCGA upon 
upload. The coxph() function, with its default pa
rameters, is at the center of the diagnostics and 
preparation for prediction parts, through which the 
model analysis main tabs “Forest plot”, “Schoenfeld 
plots” and “ROC” are reactively connected to their 
CPH model and its associated data; while the 
“Validation” and “ANOVA” tabs connect to the 
central function through the additional cph() func
tion. Additionally, the “CPH” tab of the best subset 
selection part is also reactively connected to its 
model through the central coxph(). Reactivity in the 
figure is indicated with double-headed arrows. The 
best subset selection tabs “BeSS” and “glmnet” build 
their individual CPH models internally from the 
embedded TCGA data and user-input file. Reactivity 
is stopped in the “BeSS” and “glmnet” tabs, indi
cated with single-headed arrows. Main functions for 
the required analyses of the main tabs are indicated 
under the blue arrows the tab names are connected 
to. The packages which the functions in the figure 
belong to are indicated in the text and listed in the 
References, as well as additional visualization and 
data analysis functions from existing packages and 
built-in functions that make use of them omitted in 
the figure. Detailed information about the outputs 
and results that can be produced from the main tabs 
is given in the text.   

A. Ozhan et al.                                                                                                                                                                                                                                  



Computers in Biology and Medicine 137 (2021) 104793

4

default method “gsection” and “sequential” for determining the optimal 
model size. Additionally, users can filter coefficients from the “BeSS” tab 
based on significance (i.e., keep only those with p < 0.05). The “BeSS” 
tab also builds its own CPH model, though the package internally relies 
on coxph() with the function’s default parameters. 

The isolate() function of Shiny is used to stop reactivity in the “BeSS” 
and “glmnet” tabs to stabilize their responsiveness. An individual PI 
value is calculated for each sample in a selected dataset based on the 
formula from Xue et al. [34], using coefficients associated with the genes 
of the best subset in each of the selection tabs. Samples with a PI value 
greater than the median PI of the dataset are labeled “High” risk, while 
remaining samples are labeled “Low” risk. ROC plots in the “Risk ROC” 
sub-tabs while the Low:High risk ratios in the “K-M data” sub-tabs in the 
best subset selection main tabs are calculated with the coxph() function 
with respect to the computed PI covariate of the selected dataset and 
genes. 

2.3. Warnings, downloads & help 

All analyses in SmulTCan are carried out using only primary (or 
primary blood-derived from acute myeloid leukemia [LAML]) tumor 
samples for the selected TCGA dataset. The correct format of the UCSC 
Xena output TSV file is required to initiate SmulTCan. Warnings in the 
SmulTCan app are intended to protect users from erroneous calculations 
that might arise from CPH models not converging or leading to infinite 
coefficients. For example, users are warned when a selected dataset 
cannot be found, when it lacks information for a survival type or when 
there are missing expressions for one or more input genes in the TSV file 
for the selected dataset. In addition, users would also be informed if a 
best subset selection method cannot find any genes for a selected 
dataset. 

SmulTCan currently supports TSV for downloading tables; and PDF 
or high-resolution PNG formats, depending on the tab, for downloading 
figures. There are download buttons in each of the four survival sub-tabs 
of all tabs. In addition, the SmulTCan app contains a “Walk-though” 
button at the top left of its interface to guide users from file upload to 
gene selection. Information relating to the app can be found in the 
“About” tab of the main panel. Moreover, this paper’s supplementary 
information (SI) can be used as a manual (Supplementary Figs. S1–S6) 
and includes a demonstration of the app with the netrins-receptor 
example input file. 

3. Results 

In this section, we present the SmulTCan features comparison with 
existing multivariable survival analysis tools and briefly present the 
results of our demonstration of the SmulTCan app. We used a TSV file 
containing expression data from twelve netrins-receptors as input (the 
demo TSV file). All twelve genes were used as input in the app’s “Genes” 
menu. Several interesting findings are presented. 

3.1. Comparison of SmulTCan with existing univariable and multivariable 
tools 

We compared the main features of relevant univariable survival 
analysis tools with respect to expression levels in the literature with 
those of SmulTCan. Our comparison revealed that the most dis
tinguishing characteristic of our app is its multivariable nature in terms 
of expression levels and its reactivity (Table 2; see Zheng et al. [35] for a 
more detailed review). We further demonstrated that SmulTCan has 
novel features that are complementary to existing online multivariable 
survival analysis tools like SurvExpress and SurvMicro, which take sets 
of genes and miRNAs as input and use the coxph() function from the 
“survival” package. SurvExpress and SurvMicro multivariable tools rely 
on a PI generated from the CPH model coefficients from all input mol
ecules; it can be visualized through K-M plots, heatmaps, ROC plots, risk 
group expression analyses, and risk optimization plots (Table 3). On the 
other hand, SmulTCan offers direct interactive survival analyses with 
expression levels of selected genes, visualized through forest, ROC, 
ANOVA, and validation plots (Table 3). 

Both SurvExpress and SurvMicro can prioritize gene and miRNA 
subsets, respectively, from significant coefficients of CPH models con
structed with coxph(), whereas SmulTCan also offers the interactive 
elastic net and the BeSS algorithm for best subset selection. Moreover, 
only SmulTCan performs downstream risk analyses of the best subset’s 
PI, which can then be visualized through K-M, cumulative hazard, and 
ROC plots (Table 3). Moreover, SmulTCan allows the use of mRNA or 
miRNA expressions and gene-level CNV and methylation data from the 
same app. On the other hand, SurvExpress and SurvMicro provide op
tions for visualization of gene expression distributions in low vs. high- 
risk sample groups, determined by the PI of the coxph() function’s co
efficients, with boxplots, clustering heatmaps, and risk group optimi
zation curves. They also incorporate expression datasets other than 
TCGA. 

Users can view and download survival data tables with TCGA sam
ples and expressions from the “Data table” tab of SmulTCan, which they 
have worked on with other model analysis tabs in the app. This output 
table generated by SmulTCan for a selected cancer provides a useful 
resource for users who would like to use it as a training set in their 
command-line prediction analyses with their cancer survival test data. 
However, this data table with survival and expression values is neither 
viewable nor downloadable from SurvExpress or SurvMicro. 

3.2. Model analysis with netrins-receptors 

SmulTCan allows for visualization, model development and prepa
ration for prediction using different submodules (those with a light- 
orange background in Fig. 1). For example, a screenshot from the 
“Boxplot” tab displays the expression distributions of the netrins- 
receptors gene set in the low grade glioma (LGG) dataset, which rep
resents the gene expressions in the associated CPH model built using 
coxph() (Fig. 2). In addition, the TSV file obtained from UCSC Xena 
uploaded at the top left of the side-bar panel provides the names of all 

Table 2 
Comparison of SmulTCan features and functionalities with existing online tools for univariable survival analysis with expression levels and TCGA data. Abbreviations 
in the table: TCGA-PANCAN, the Cancer Genome Atlas Pan-Cancer; CPH, Cox proportional hazards; OS, overall survival; DSS, disease-specific survival; DFI, disease- 
free interval; PFI, progress-free interval, K-M, Kaplan-Meier.   

cBioPortal [9] UCSC Xena 
[10] 

GEPIA 
[12] 

PROGgeneV2 
[13] 

KM plotter 
[15] 

UALCAN 
[16] 

TRGAted [17] CVCDAP [18] SmulTCan 

TCGA-PANCAN Yes, others Yes Yes Yes, others In 
development 

Yes, others Yes Yes, others Yes 

Input file required No No No No No No No No Yes 
Survival types (Pan- 

Cancer) 
OS, DSS, DFI, 
PFI 

OS, DSS, 
DFI, PFI 

OS, DFI OS OS, DFI OS OS, DSS, DFI, 
PFI 

OS, DSS, DFI, 
PFI 

OS, DSS, DFI, 
PFI 

Main survival 
analyses 

K-M K-M K-M K-M K-M K-M K-M, CPH K-M, CPH K-M, CPH, 
others  
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twelve genes of netrins-receptors in the “Genes” menu. 
The screenshot for the “Forest plot” tab shown in Fig. 3 for OS in the 

LGG dataset reveals the HR GS of netrins-receptors. The “Forest plot” tab 
is highly useful for determining which genes of the gene set have sig
nificance based on the given confidence intervals and log-rank statistics. 
Among netrins-receptors, NTNG2 is strongly positively associated with 

OS, while NTNG1 and UNC5C are negatively associated. UNC5A, 
UNC5B, and NTN4 are also found to be positively associated with OS in 
LGG. The AIC for this multivariable model is 1159.03, while its log-rank 
p-value is approximately 0.65 × 10− 18. 

The model analysis module of SmulTCan can also provide ROC plots, 
which indicate the overall robustness of multivariable models [36]. For 

Table 3 
Comparison of SmulTCan with currently available online multivariable survival analysis tools SurvMicro and SurvExpress, which work with gene and miRNA ex
pressions, respectively. Abbreviations in the table: K-M, Kaplan-Meier; ROC, receiver operating characteristic; miRNA, microRNA; CNV, copy number variation; 
ANOVA, analysis of variance; PI, prognostic index.   

Input file 
required 

Interactivity & 
reactivity 

Survival analysis Survival visualization Inputs Best subset 
selection 

PI analysis using best 
subset 

SurvExpress 
[19] 
SurvMicro 
[20] 

No No PI from coxph() K-M, heatmaps, ROC, 
risk group optimization 
curves 

Gene/miRNA expressions coxph() No 

SmulTCan Yes Yes expressions, CNVs, 
β-values × 100 

Forest, ROC, ANOVA, 
validation plots 

Gene/miRNA expressions, 
gene-level CNVs, 
methylation β-values 

coxph(), 
glmnet, 
BeSS 

Yes, visualized with K-M, 
ROC, cumulative hazard 
plots  

Fig. 2. Screenshot of the “Boxplot” tab showing distributions of expressions of netrins-receptors for OS in LGG.  

Fig. 3. Screenshot of the forest plot of netrins-receptors in LGG indicates positive association with OS for genes NTNG2, UNC5A, UNC5B, and NTN4 as well as 
negative association for NTNG1 and UNC5C. 
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example, the ROC plot of the netrins-receptors CPH model for OS in 
LGG, generated from the “ROC” tab (Fig. 4), revealed the AUC% score, 
as 87.4, indicating that this CPH model is a good candidate for use in 
prediction algorithms as a training set. Accordingly, the “ROC” tab can 
be used to assess the predictive power of CPH models from SmulTCan, 
while detailed AUC% results of the models can be extracted from its 
“Stats” sub-tab. 

The output of the “Plot” sub-tab of the “ANOVA” main tab for the 
input gene set’s CPH model for the DFI in LGG is given in Fig. 5. The plot 
indicates that NTN4 is the strongest predictor with the lowest p-value (p 
< 0.05) and the highest χ2-df value out of the netrins-receptors gene set 
in the DFI. The χ2, df, and p-values resulting from the CPH model’s 
ANOVA, for all selected input genes, can be viewed as a table from the 
“Stats” sub-tab of the same main tab. 

3.3. Best subset selection with netrins-receptors 

All main tabs for best subset selection contain sub-tabs with a plot of 
coefficients in the selection and a table of the coefficients of the best 
subset. Additionally, the K-M and cumulative hazards plots generated 
from the PI computations of the best subset (module with light blue 
background in Fig. 1) are included. Other sub-tabs include a table of K-M 
statistics with Low:High risk ratios, a table of PI calculations, and the 
ROC plot with the PI of the best subset. The “CV plot” sub-tab of the 
“glmnet” tab shows the distribution of log10λ values, indicating the 
amount of regularization applied. The “GIC” sub-tab of the “BeSS” tab 
plots the growth incidence curve (GIC) of the L (representing the cost of 
inaccuracy in prediction) of the coefficients in the regression model 
[33]. 

As an example, the cumulative hazards plot generated from the 
“CumHz” sub-tab within the main panel’s “glmnet” tab is given in Fig. 6. 
The plot shows DSS for the kidney renal clear cell carcinoma KIRC 
dataset, in which the netrins-receptors gene set seemed to be informa
tive (also check the SI’s model analysis part). According to this, co
efficients determined with the default 10-fold cross-validation and lasso 
could differentiate between high-risk and low-risk prognostic outcomes 
(p < 0.0001) over approximately 11 years. The best subset producing 
this result was NTN4 and NTNG2, with the former contributing posi
tively and the latter negatively to prognosis. According to this best 
subset model, high-risk samples had a prognosis about two-times worse 
than low-risk samples (p < 0.0001), as seen from the “K-M data” sub-tab. 

The plot of the coefficients found with the lasso option of the 

“glmnet” tab for the DSS data from KIRC, with “Folds” set to the sample 
size of the dataset indicated that NTN4 and UNC5D contributed to low- 
risk prognosis, while NTNG2 contributed to high-risk prognosis (Sup
plementary Fig. S7A). These three genes out of the twelve netrins- 
receptors were able to differentiate between the low- and high-risk 
prognostic outcomes (p < 0.0001), as seen in the K-M plot down
loaded from SmulTCan in Supplementary Fig. S7B. Based on this best 
subset model, high-risk samples in KIRC had a prognosis about three 
times worse than low-risk samples (p < 0.0001). 

The plot of the coefficients found for DSS in KIRC also using the 
“BeSS” tab is represented in a screenshot obtained from the app (Fig. 7). 
According to ridge regression results of the BeSS algorithm using the 
default method, the best subset of netrins-receptors consisted of genes 
DSCAM, NTN3, NTN4, NTNG1, NTNG2, UNC5C, and UNC5D. While the 
first six of these genes contributed to a low-risk prognosis for DSS in 
KIRC, the seventh contributed to a high-risk prognosis. BeSS, by default, 
does not exclude the insignificant coefficients from ROC analysis, for 
which users can include only those that are significant. Coefficients of 
the best subset, this time using the PFI for kidney renal papillary cell 
carcinoma (KIRP), computed with lasso when the number of folds is 
equal to the sample size, can be downloaded from the “Coeffs” sub-tab of 
the “glmnet” tab (Supplementary Fig. S8A). The best subset, in this case, 
consisted of the genes NTN4 and NTNG1 that contributed to low-risk 
prognosis, and NTNG2 and UNC5B, which contributed to high-risk 
prognosis. These four genes could differentiate between prognostic 
outcomes (p = 0.0076) though with some overlap in confidence in
tervals, which can be observed in the cumulative hazards plot in Sup
plementary Fig. S8B, downloaded from the “CumHz” sub-tab of this best 
subset selection method. This best subset model predicted a prognosis 
about two times worse for high-risk samples (p < 0.05) with a concor
dance index (CI) of 0.62 (p < 0.05), which could be seen from the “K-M 
data” sub-tab. 

When applied to LGG, coefficients of the best subset for OS, selected 
with lasso regression and the default 10-fold cross-validation from the 
“glmnet” tab, showed that NTN4, NTNG1, and UNC5A contributed to 
low-risk prognosis, while NTNG1 had a slightly positive coefficient 
(Supplementary Fig. S9A). Furthermore, this best subset could signifi
cantly differentiate between the two prognostic outcomes, as shown in 
the K-M plot in Supplementary Fig. S9B, also obtained from the app. 
Accordingly, SmulTCan predicted different sets of netrins-receptors 
associated with prognostic outcomes in different cancers. 

Fig. 4. ROC plot of the full set of netrins-receptors in LGG for OS gives an AUC% score of 87.4.  
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4. Discussion 

The SmulTCan app incorporates several multivariable survival 
analysis tools in a single reactive Shiny app to analyze and visualize CPH 
models constructed from input gene sets. Users can interactively analyze 
their input gene sets’ expression distributions within the CPH model and 
identify and analyze HR GSs from the model. They can also validate the 
model for further prediction analyses in selected cancers for different 
types of survival and predict the best subsets of genes using different 
methods. Moreover, a comparison of SmulTCan with existing online 
tools that perform survival analysis using TCGA datasets demonstrated 
SmulTCan’s unique, modular, and complementary nature (Tables 2 and 
3). 

One of the outstanding attributes of SmulTCan is its ability to reduce 
the gene set input to highly predictive sets using different methods. 
Indeed, best subset selection methods are frequently used in identifying 
the most important genes or biomarkers in multivariable regression 

models, including the CPH model. By incorporating different best subset 
selection methods in a single app, SmulTCan allows users to compare the 
methods among each other and visualize results from parameter ad
justments. Additionally, in SmulTCan, we implemented the elastic net, 
which combines lasso and ridge regression [37]. For example, lasso has 
been previously used successfully in identifying a nine-gene signature 
for non–small cell lung cancer (NSCLC) by Gentles et al. [38], and more 
recently in identifying an eight-gene signature in bladder cancer for OS 
[39]. In general, the lasso method is stricter than ridge regression due to 
its diamond-shaped constraint region instead of the elliptical constraint 
region of ridge regression, which does not set the coefficients to zero 
[40]. An alternative for ridge regression in the app involves the BeSS 
algorithm that has been recently used in the literature [41]. The “CPH” 
main tab in the app extracts the best subsets of input genes directly from 
the CPH model, and the results can be compared with those from the 
“glmnet” and “BeSS” tabs. 

Using SmulTCan for predicting survival with netrins-receptors, our 

Fig. 5. Screenshot of the “Plot” sub-tab of the “ANOVA” tab for DFI in LGG of the netrins-receptors CPH model. The plot can be used to rank genes in the CPH model 
with respect to their χ2-df and p-values. According to the plot, NTN4 is the best predictor of this survival model. 

Fig. 6. Screenshot of the cumulative hazard plot of KIRC for DSS indicates distinct prognostic outcomes for low and high-risk sample groups.  

A. Ozhan et al.                                                                                                                                                                                                                                  



Computers in Biology and Medicine 137 (2021) 104793

8

findings indicated unique HR GSs for this gene set, especially in neural 
and renal cancers such as LGG and KIRC (see also Supplementary Fig. 
S10). In addition, the best subsets of netrins-receptors identified with 
lasso could significantly differentiate between high- and low-risk prog
nostic outcomes. Given the role of netrins and their receptors in the 
nervous system as axon guidance molecules, their involvement in LGG is 
expectable. Our results with kidney cancers KIRP and KIRC seem to 
corroborate those by Hao et al. [23], who studied the impact of netrins 
on survival via methylation studies, e.g., for NTN4 and NTNG1. How
ever, our unique multivariable approach also allows for understanding 
the proportional contribution of genes within the netrins-receptors gene 
set on survival. Therefore, the netrins-receptors and their best subsets 
can be analyzed further experimentally in renal cancers and LGG to 
determine their biological role in these disorders. 

SmulTCan is a potential guide for researchers in identifying signifi
cant gene, miRNA, or gene-level CNV or methylation β-value datasets 
and subsets in specific TCGA datasets. It would be particularly useful in 
understanding the comparative role of each gene in an input gene set. 
The user-friendly, interactive, and layered design of the app allows for 
the quick comparison of different analysis results, methods, and survival 
types. While the app also works with user-uploaded miRNA and gene- 
level CNV and processed methylation files from UCSC Xena, the same 
database’s exon expression files can only be used with the best subset 
selection tabs “BeSS” and “glmnet”, due to independent model building 
within these tabs. We hope SmulTCan aids researchers in understanding 
the roles of gene/miRNA/CNV/methylation sets for survival. 

5. Limitations & future perspectives 

As with computational programs that rely on coxph(), SmulTCan 
might have limitations with respect to the input gene/miRNA/CNV/ 
methylation set’s combination with specific TCGA datasets’ survival 
files causing singularity errors. In these cases, the app displays an error 
message. Currently, SmulTCan requires the upload of a TSV file 
retrieved from the UCSC Xena by the user. Future versions will allow 
automatic access to expression data upon entry of the gene names. We 
also plan to integrate expression data from multiple sources so that 
SmulTCan is not limited to TCGA-PANCAN datasets. Incorporation of 
additional functions allowing the user to filter or stratify the data based 
on clinical and molecular variables are also planned, along with the 
inclusion of newly emerging best subset methods. 

6. Conclusions 

We have created the online tool SmulTCan using Shiny for re
searchers who want to analyze the cancer survival profiles of their gene, 
miRNA, or gene-level CNV or methylation β-value sets, in a multivari
able manner. To this end, we provide a means for interactive use of CPH 
models built from TCGA data embedded in the app for four different 
types of survival. The app’s user-friendly design and reactive function
ality provide interactive and fast model visualization and analysis with 
input gene/miRNA expression, and gene-level CNV and methylation 
level sets. The app contains additional tabs for different methods of best 
subset selection from the input gene set, including the interactive elastic 
net, with incorporated PI analyses of the best subset. Controls in the app 
provide robustness and accuracy. SmulTCan is an app that can be used 
by researchers from a variety of backgrounds with ranging interests. 
Demonstration of the app with the netrins-receptors gene set revealed 
prognostic HR GSs in neural cancer and several renal cancers while 
distinct best subsets selected from this set of twelve genes could signif
icantly differentiate between prognostic outcomes in each of these 
cancers. 
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Fig. 7. Screenshot of the “BeSS” main tab’s “Plot” sub-tab shows the coefficients of the best subset of genes for DSS in KIRC. According to the BeSS algorithm’s 
default model size selection model, the best subset genes DSCAM, NTN3, NTN4, NTNG1, NTNG2, and UNC5C have negative coefficients, while UNC5D has a pos
itive coefficient. 
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