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Abstract

The Slit-Robo family of axon guidance molecules works in concert, playing important roles in organ devel-
opment and cancer. Expressions of individual Slit-Robo genes have been used in calculating univariable hazard
ratios (HRuni) for predicting cancer prognosis in the literature. However, Slit-Robo members do not act in-
dependently; hence, hazard ratios from multivariable Cox regression (HRmulti) on the whole gene set can further
lead to identification of cancer-specific, novel, and independent prognostic gene pairs or modules. Herein, we
obtained mRNA expressions of the Slit-Robo family consisting of four Robos (ROBO1/2/3/4) and three Slits
(SLIT1/2/3), along with four types of survival outcome across cancers found in the Cancer Genome Atlas
(TCGA). We used cluster heat maps to visualize closely associated pairs/modules of prognostic genes across
33 different cancers. We found a smaller number of significant genes in HRmulti than in HRuni, suggesting that
the former analysis was less redundant. High ROBO4 expression emerged as relatively protective within the
family, in both types of HR analyses. Multivariable Cox regression, on the other hand, revealed significantly
more HR signatures containing Slit-Robo pairs acting in opposing directions than those containing Slit-Slit or
Robo-Robo pairs for disease-specific survival. Furthermore, we discovered, through the online app SmulTCan’s
lasso regression, Slit-Robo gene subsets that significantly differentiated between high- versus low-risk prog-
nosis patient groups, particularly for renal cancers and low-grade glioma. The statistical pipeline reported herein
can help test independent and significant pairs/modules within a codependent gene family for cancer prog-
nostication, and thus should also prove useful in personalized/precision medicine research.
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Introduction

Initially discovered in the nervous system, the Slit-
Robo pathway has been the focus of recent research due to

its role in organ development (Blockus and Chedotal, 2016), as
well as tumor progression and angiogenesis in several human
cancers (Tong et al., 2019). Slits are large, secreted proteins,
whose axonal repulsive activities are mediated by receptors of

the Roundabout (Robo) family. The three Slit and four Robo
genes are known to act in pairs/modules (Carr et al., 2017; Wu
et al., 2001) and might be co-expressed tissue specifically.

For instance, in liver cancer, Slit-Robo members form
two distinct co-expression modules, splitting into clusters
of ROBO1-ROBO2-SLIT1 and ROBO4-SLIT2-SLIT3 (Avci
et al., 2008). In others, the ROBO1-SLIT2 pair emerges
frequently, for example, in breast cancer, ROBO1 as well as
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ROBO2 are present while deeming SLIT2 a potential che-
moattractant (Choi et al., 2014; Qin et al., 2015; Rezniczek
et al., 2019).

In gastric cancer, ROBO1 and SLIT2 are both down-
regulated (Xia et al., 2019), while SLIT2, upregulated in renal
cell tumors, is expressed by human embryonic kidney cells
where ROBO1 activation leads to malignancy (Ho et al., 2017;
Zhou et al., 2011). In addition to these, SLIT2 can pair with
ROBO3 in regulation of the migration of Gonadotropin-
releasing hormone (GnRH) neurons (Cariboni et al., 2012),
and with ROBO4 in inhibition of pathological neovascu-
larization in the retina (Jones et al., 2009). On the other
hand, the SLIT3-ROBO4 pair can promote angiogenesis
and vascularization in engineered stem cells (Paul et al., 2013).

The abovementioned findings strongly indicate that Slit-
Robo pairs/modules may function as oncogenes or tumor
suppressors cancer and tissue specifically. Indeed, previous
studies have associated the misexpression of Slit-Robo path-
way members with prognostic significance in multiple can-
cers primarily through univariable survival analyses (Schmid
et al., 2007; Xia et al., 2019; Zhang et al., 2015). However,
there is not yet a pan-cancer Slit-Robo family analysis using
multivariable Cox regression, which can provide cancer-
specific independent prognostic signatures.

Survival analyses performed on gene sets report univariable
as well as multivariable estimates using Kaplan–Meier (K-M)
plots and tables of HR (Chen et al., 2020; Meng et al., 2020).
Most often, the univariable estimates are primarily used to filter
genes before the multivariable analysis and reduce the size of
the gene set (Wu et al., 2020). Obtaining risk scores [e.g., RNA
processing genes in colorectal cancer (Lu et al., 2020)] as well
as predicting the best subsets of a given gene set (e.g., netrins
and their receptors (Ozhan et al., 2021)) are among many ad-
vantages of using multivariable Cox regression models.

Herein we report the hazard ratio estimates (HRuni and
HRmulti) of univariable and multivariable Cox regression using
Slit-Robo pathway expression from the Cancer Genome At-
las’s Pan-Cancer (TCGA-PANCAN) dataset (Gao et al., 2019)
obtained from UCSC Xena (Goldman et al., 2020). Both HRuni

and HRmulti estimates identified ROBO4 expression as the
most protective, while the HRmulti signatures of Slit-Robo
pairs acting in opposite directions were more common than
any other Slit-Robo, Slit-Slit, or Robo-Robo pairs. These
findings suggest that Slits and Robos may balance each other
in their expression, and/or those that pair may work together.

Moreover, a median prognostic index (PI) calculated from
Slit-Robo models using SmulTCan (Ozhan et al., 2021)
successfully differentiated between high- and low-risk
groups for several cancers, including those of the kidney and
low-grade glioma. Our findings implicate that gene families
that exhibit interdependence, such as Slit-Robo, can benefit
from multivariable Cox regression to establish the most in-
fluential and independent family members.

Materials and Methods

Computation of HR matrices

The results shown in this study are in whole or in part based
upon data generated by TCGA Research Network: https://
www.cancer.gov/tcga/.

The TCGA-PANCAN TSV file containing normalized RNA-
Seq expression values of the four Robos and the three Slits was

obtained from UCSC Xena (http://xena.ucsc.edu). This file
contained tissue samples across 33 TCGA datasets for the Slit-
Robo genes (https://portal.gdc.cancer.gov). Primary (or primary
blood derived for LAML) tumor samples for each survival type,
that is, overall survival (OS), disease-specific survival (DSS),
disease-free survival (DFS), and progression-free survival
(PFS), were separately analyzed with Cox regression.

The ‘‘UCSCXenaTools’’ Bioconductor package (Wang and
Liu, 2019) was used to download survival TXT files of each of
the datasets from TCGA. Sample sizes of each dataset con-
sisting of primary tumors in the downloaded PANCAN file
from Xena having expression values of all Slit-Robo members
are shown in Supplementary Table S1; these samples were
used in multivariable Cox regression and best-subset coeffi-
cient computations.

The SmulTCan’s statistical pipeline was adopted to cal-
culate the HRuni and HRmulti values as described previously
(Ozhan et al., 2021). Briefly, an HR and its associated p-value
were calculated for each of the seven Slit-Robo genes in each
cancer dataset from both univariable and multivariable Cox
regressions, using the coxph() function of the ‘‘survival’’
package in R (Therneau and Grambsch, 2000). This func-
tion was also used in calculating low:high risk ratios of
the PI analyses (Ozhan et al., 2021).

Datasets GBM, SKCM, THYM, and UVM were excluded
from both univariable and multivariable DFS analyses, due to
absence of information regarding DFS. THYM was excluded
from the DSS, while KICH and MESO were excluded from the
DFS analyses due to multivariable models not converging. The
LAML dataset was used only in the univariable Slit-Robo ana-
lyses for OS, since it lacks data for the remaining survival types.

Statistical comparison of univariable and multivariable
Cox regression results

We summarized, with a workflow diagram, the steps
of statistical comparisons performed between the HRuni and
HRmulti matrices where the rows represented the cancers, and
the columns each of the seven Slit-Robo family members
(Supplementary Fig. S1). Euclidean distances of HRuni and
HRmulti matrices were calculated with the default parameters
of dist() in R. To equalize matrix dimensions for each sur-
vival type, the corresponding dataset in HRuni was removed
for which there were no HRmulti entries. Datasets excluded
from HRuni matrices were LAML in OS and PFS; LAML and
THYM for DSS; and GBM, SKCM, THYM, UVM, LAML,
KICH, and MESO for DFS.

HRuni and HRmulti matrices were then compared using the
Mantel test to identify the correlation between these matrices
by the ‘‘cultevo’’ package with the Spearman method (Stadler,
2018); and the correlation constant r – the standard error (SE)
was reported. Differences between element-wise Euclidean
distances of HRuni and those of HRmulti from Cox regressions
were obtained for each Slit-Robo member in each survival
dataset and the box plots were drawn. The numbers of genes
significant in HRuni and HRmulti, separately, were calculated
and tested in a pair-wise manner with the Wilcoxon signed-
rank test. Finally, for each survival type, we calculated the v2

statistic and its p-value to test the significance of association
between Slit-Robo (SR) or Slit-Slit/Robo-Robo (SS/RR)
pairing and the direction of the HR. The analyses were carried
out in the R v4.0.0 environment (www.r-project.org).
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Data visualization

Visualization of univariable and multivariable Cox re-
gression results with heat maps was achieved using pack-
ages ‘‘gtools’’ (Warnes et al., 2020) and ‘‘heatmaply’’ (Galili
et al., 2018). The ‘‘heatmaply’’ package incorporating the
hclust() function of R was used for hierarchical clustering
with ‘‘complete’’ linkage. ‘‘RColorBrewer’’ (Neuwirth, 2014)
and ‘‘ggpubr’’ (Kassambara, 2020) were used in coloring and
arranging the positions of the plots.

In the heat maps, logarithmically transformed HR values
(log2HR) were used for symmetricity and generating a visual
summary of the clustering patterns of Slit-Robo genes as well
as different cancers. For forest plots, the ggforest() function
from ‘‘survminer’’ (Kassambara et al., 2020) was used and the
results were provided as supplementary figures. Boxplots were
generated using the geom_boxplot() function of ‘‘ggplot2’’
(Wickham, 2016). We provided the Slit-Robo expression TSV
matrix for further analysis using the online tool SmulTCan.

Computation of PIs for the best subsets
of the Slit-Robo pathway

The percent area under the receiver operating character-
istics (ROC) curve (AUC) calculations was made with tools
from the ‘‘riskRegression’’ package (Gerds and Ozenne,
2020). The cv.glmnet() function from ‘‘glmnet’’ was used
to compute coefficients of Slit-Robo using lasso, with the
‘‘nfolds’’ parameter set to the sample size of each dataset and
the ‘‘family’’ parameter set to ‘‘COX.’’ A prognostic index
(PIi) for the ith sample in a cancer dataset was calculated
as previously defined (Ozhan et al., 2021; Xue et al., 2019).
Samples with a PIi value greater than the median PI for the
dataset were labeled as high risk, while remaining samples
were deemed low risk. The survfit() function of ‘‘survival’’
was used to determine p-values of the K-M analyses.

Results

Comparison of HRuni and HRmulti clusters of Slit-Robo
family across TCGA datasets

Mantel’s test provided a statistics for the comparison of
HRuni and HRmulti matrices of Slit-Robo members and in-
dicated that the two matrices were significantly, but moder-
ately correlated for OS (r = 0.68 – 0.14, p = 0.01 · 10-1),

DSS (r = 0.71 – 0.15, p = 0.01 · 10-1), DFS (r = 0.75 – 0.16,
p = 0.01 · 10-1), and PFS (r = 0.74 – 0.13, p = 0.01 · 10-1).
However, the number of genes found significant in HRmulti

was less than that in HRuni (Table 1), suggesting the former
was less redundant. Accordingly, both HRuni and HRmulti

identified the higher expression of ROBO4 in association
with better survival, in general.

The mean difference values between Euclidean distances
of HRuni and HRmulti estimates per gene were less than zero
for all four survival types (Supplementary Fig. S2). This
suggested that TCGA cancers became more similar among
themselves according to the estimates of HRmulti. This was
also supported by the shortened branch lengths among can-
cers in the heat map of HRmulti in each of the four survival
types (Figs. 1–4) when compared with HRuni (Supplementary
Figs. S3 and S4).

Moreover, the topology of HRmulti heat map revealed that
log2HR-based clustering distinctly grouped the TCGA can-
cers, given their prognostic similarities rather than just their
Slit-Robo expression patterns, that is, the cancers within the
same cluster had more similar HR estimates across the gene
set and hence the prognostic signature (Figs. 1–4). This
represents a relatively novel approach to investigate gene or
cancer clustering in transcriptomics. Interestingly, we found
that female cancers BRCA, OV, CESC, and UCEC frequ-
ently clustered together, while BLCA-LUSC, SARC-LIHC,
KICH-PCPG, and KIRC-PAAD were among other cancers
paired in two or more survival types (Figs. 1–4).

On the other hand, the cluster heat maps of HRmulti esti-
mates column-wise provided more insight into which genes
exhibited similar HR profiles. For OS, two main clusters,
namely, ROBO3-SLIT1-SLIT2-ROBO2 and ROBO1-ROBO4-
SLIT3, emerged (Fig. 1). For DSS, the Slit-Robo family split
into more prominent pairs, that is, SLIT3-ROBO4, SLIT2-
ROBO3, and SLIT1-ROBO2 (Fig. 2). For DFS, ROBO1,
ROBO2, and ROBO3, each paired with a different Slit, SLIT1,
SLIT2, and SLIT3, respectively, while ROBO4 was found
separately (Fig. 3). In PFS clustering, again ROBO4 diverged
from the rest of the members, and ROBO2-SLIT1-SLIT2 were
more closely associated (Fig. 4).

HRmulti estimates visualized by heat maps helped sum-
marize the prognostic gene clusters with independent effects
for each of the four survival types. Interestingly, the heat map
of HRmulti estimates consisted of more pairs/modules with

Table 1. Number of Significant Genes ( p < 0.05) for Univariable and Multivariable Analysis Results

for Each Gene in Each Survival Type

OS DSS DFS PFS

Uni Multi Uni Multi Uni Multi Uni Multi

ROBO1 5 2 7 3 4 1 5 4
ROBO2 5 4 8 6 3 2 10 5
ROBO3 5 6 6 5 2 2 4 3
ROBO4 8 7 6 7 2 1 6 6
SLIT1 7 3 8 4 4 2 7 3
SLIT2 4 2 5 4 4 3 5 4
SLIT3 6 4 5 4 4 3 6 3
Wilcoxon signed-rank p-value 0.050 0.058 0.031 0.034

The number of significant genes in the univariable and multivariable analyses was pair-wise compared for each gene, and the Wilcoxon
signed-rank p-values have been indicated for each survival type.

DFS, disease-free survival; DSS, disease-specific survival; Multi, multivariable; OS, overall survival; PFS, progression-free survival;
Uni, univariable.
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members from both Slit and Robo (Figs. 1–4) when compared
with the HRuni heat maps (Supplementary Figs. S3 and S4).
Moreover, the Slit-Robo pairs in opposing HR directions (>1
and <1 or <1 and >1) were observed more often than Slit-Slit
or Robo-Robo pairs in either direction (v2 y 5.49, p < 0.05;
Supplementary Table S2).

Discovery of independent Slit-Robo pairs across
groups of TCGA cancers

Significant HRmulti results showed that several cancers
had two or more Slit-Robo members simultaneously and
independently implicated in prognosis (Tables 2 and 3). We

FIG. 1. Heat map of Slit-Robo OS log2HR values across TCGA datasets for multivariable Cox regression. Significant HR
associations are indicated with *** for p < 0.001, ** for p < 0.01, * for p < 0.05, and + for p < 0.1. HR, hazard ratio; OS,
overall survival.

FIG. 2. Heat map of Slit-Robo DSS log2HR values across TCGA datasets for multivariable Cox regression. Significant
HR associations are indicated with *** for p < 0.001, ** for p < 0.01, * for p < 0.05, and + for p < 0.1. DSS, disease-specific
survival.
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highlighted below many of those recurrent Slit-Robo pairs/
modules that were found to be significantly associated with
prognosis of individual and/or groups of cancers in our
multivariable analyses of TCGA datasets (Blum et al.,
2018).

ROBO3, ROBO4. Multivariable Cox regression analy-
sis of the kidney clear cell carcinoma (KIRC) exhibited one
of the most significant prognostic pairs with respect to Slit-
Robo signaling, such that a higher expression of ROBO3,
and independently lower expression of ROBO4, indicated

FIG. 3. Heat map of Slit-Robo DFS log2HR values across TCGA datasets for multivariable Cox regression. Significant
HR associations are indicated with *** for p < 0.001, ** for p < 0.01, * for p < 0.05, and + for p < 0.1. DFS, disease-free
survival.

FIG. 4. Heat map of Slit-Robo PFS log2HR values across TCGA datasets for multivariable Cox regression. Significant
HR associations are indicated with *** for p < 0.001, ** for p < 0.01, * for p < 0.05, and + for p < 0.1. PFS, progression-free
survival.
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worse prognosis in KIRC patients for OS, DSS, and PFS,
but not DFS, while the effects of remaining Slit-Robo mem-
bers were insignificant (Supplementary Fig. S5). Similarly,
the HRmulti profile indicating a hazardous expression of
ROBO3 and a protective one for ROBO4 was observed for

OS (but not in the other survival types) in chromophobe re-
nal cell (KICH) carcinoma (Supplementary Fig. S6).

SLIT3, ROBO2/ROBO4. Unlike KIRC and KICH, the
papillary cell renal carcinoma KIRP exhibited a relatively

Table 3. Slit-Robo HR Values Resulting from Multivariable Cox Regression Are Given for Those HRs

with p < 0.05, for Survival Types DFS and PFS in the Investigated TCGA Datasets

ROBO1 ROBO2 ROBO3 ROBO4 SLIT1 SLIT2 SLIT3

DFS PFS DFS PFS DFS PFS DFS PFS DFS PFS DFS PFS DFS PFS

ACC — 1.49 — — — — — — — — — 1.14 — —
BLCA — — — — — — — — — — — 1.14 — 0.90
BRCA — — — — — — — — — — — — — 1.25
COAD — — — — — — — — — — — — 0.31 —
DLBC 1.95 — — — — — — — 1.47 — — — — —
HNSC — — — — — — — — — 0.87 — — — —
KICH — — — 1.36 — — — 0.40 — — — — — —
KIRC — — — — — 1.42 — 0.78 — — — — 1.53 —
KIRP — — — 0.79 3.25 — — 0.72 — — — 0.85 0.56 1.67
LGG — — — 1.14 — — — — — 0.82 — — — —
LUAD — — — 0.90 — — — — — — — — — —
LUSC — — — — — — — — — — 1.40 — — —
MESO — 1.54 — — — — — — — — — — — —
PAAD — — — — — — — 0.67 0.64 — 2.06 — — —
PCPG — — 0.21 — — — — 0.57 — — — — — —
PRAD — 0.75 — — — — — — — — — — — —
SARC — 1.24 0.89 — — — — — — — — — — —
SKCM — — — — 1.31 — — — — — 1.37 — — —
STAD — — — — — 1.16 — — — — — — — —
THCA — — — — — — — 0.64 — — — 0.82 — —
UCEC — — — 0.92 — — 0.73 — — — — — — —
UVM — — — — — 0.57 — — — 1.38 — — — —

Refer to Supplementary Table S1 for cancer dataset abbreviations.

Table 2. Slit-Robo HR Values Resulting from Multivariable Cox Regression Are Given for Those HRs

with p < 0.05, for Survival Types OS and DSS in the Investigated TCGA Datasets

ROBO1 ROBO2 ROBO3 ROBO4 SLIT1 SLIT2 SLIT3

OS DSS OS DSS OS DSS OS DSS OS DSS OS DSS OS DSS

ACC — — — — — — — — — — — — 0.73 0.73
BLCA — — — — 0.89 0.87 — — — — 1.14 1.14 — —
BRCA — — — 0.91 — — — — — — — — 1.27 1.37
COAD — — — — 1.24 — — — — — — — — —
DLBC — 4.48 — — 0.14 — — — — — — — — —
ESCA — — — — — — — 1.47 — 1.26 — — — —
HNSC 0.86 — — — — — — — — — — — — —
KICH — — — — 1.60 — 0.21 0.25 — — — — — —
KIRC — — — — 1.41 1.55 0.76 0.63 — — — — — —
KIRP — — 0.80 0.65 — — — 0.66 — — — — 1.52 2.24
LGG — — 1.22 1.20 — — 1.44 1.43 0.76 0.76 — — — —
LUAD — — 0.90 0.88 — — — — — — — — — —
LUSC — 0.83 — 0.88 — 0.84 — — — — — 1.19 — —
MESO 1.56 1.47 — — — — 1.23 — — — — — — —
OV — — — — 0.89 0.88 — — — — — — 1.12 1.16
PAAD — — — — — — 0.64 — 0.87 — — — — —
PCPG — — — — — — 0.21 0.12 — — — — — —
READ — — 0.72 — — — — — — 1.42 — — — —
STAD — — — — — 1.22 1.29 — — — 1.15 — — —
THCA — — — — — — — 0.35 — — — 0.55 — —
UCEC — — — 0.89 — — — — 1.15 1.14 — — — —

Refer to Supplementary Table S1 for cancer dataset abbreviations.
HR, hazard ratio; TCGA, The Cancer Genome Atlas.
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different pattern. In addition to the lower expression of
ROBO4 and that of ROBO2, a simultaneously higher ex-
pression of SLIT3 was significantly associated with poor
prognosis in DSS and PFS, but partly in OS and DFS (Sup-
plementary Fig. S7). SLIT3’s higher expression accompanied
by the decrease in ROBO2 expression was a biomarker of
poor prognosis also in the breast invasive carcinoma (TCGA-
BRCA) dataset for DSS (but not for DFS or PFS; Supple-
mentary Fig. S8).

SLIT2, ROBO4/ROBO3/SLIT3. In this study, HRmulti

values of the stomach adenocarcinoma dataset (TCGA-
STAD) indicated that the SLIT2 and ROBO4 pair could be
significant in prognosis and behaved independently, yet in the
same direction (i.e., increased) for OS, whereas SLIT2 paired
with ROBO3 instead in DFS (Supplementary Fig. S9). Higher
levels of SLIT2 amidst lower levels of ROBO3 were signifi-
cantly associated with worse prognosis also in TCGA-BLCA,
the bladder carcinoma for OS and DSS; although for PFS,
high SLIT2 levels were paired with low SLIT3 (Supplemen-
tary Fig. S10). Similarly, a higher expression of SLIT2, in-
stead of SLIT3, and lower expression of ROBO3, and ROBO1
and ROBO2, were associated with worse prognosis for DSS
in TCGA-LUSC, the lung squamous cell carcinoma dataset
(Supplementary Fig. S11).

SLIT2, SLIT1, ROBO1/ROBO4. Increased expression of
SLIT2 also indicated poor prognosis for PFS in TCGA-ACC,
the adrenocortical cancer dataset, when together with that of
ROBO1 (Supplementary Fig. S12). However, increased
SLIT2 expression paired not with a Robo, but with decreased
SLIT1 expression in TCGA-PAAD, the pancreatic adeno-
carcinoma dataset, resulted in worse prognosis for DFS
(Supplementary Fig. S13).

On the other hand, the decreased expression of SLIT1 when
combined with low ROBO4 levels indicated a worse prognosis
in TCGA-PAAD (Supplementary Fig. S13; for OS). The same
could be concluded for decreased SLIT2 with low ROBO4 in
TCGA-THCA, the thyroid carcinoma dataset (Supplementary
Fig. S14; for DSS and PFS). Nevertheless, a high level of SLIT1
was associated with worse prognosis in the esophageal cancer
dataset TCGA-ESCA (Supplementary Fig. S15), as well as
TCGA-COAD, the colorectal adenocarcinoma dataset (Sup-
plementary Fig. S16). This hazardous effect of SLIT1 expres-
sion was in combination with increased expression of ROBO4
for DSS and that of ROBO1 for DFS, in ESCA (Supplementary
Fig. S15) and COAD (Supplementary Fig. S16), respectively.

SLIT1, ROBO2/ROBO3/ROBO4. As demonstrated in
the cases above, our results showed that a Slit could pair
simultaneously with one or more Robo genes and yet the
same pair could exhibit opposite expression patterns in dif-
ferent cancers. For example, increased SLIT1, but decreased
ROBO2 indicated worse prognosis for DSS in TCGA-UCEC,
the uterine corpus endometrial carcinoma, while the same
was true for increased SLIT1, but decreased ROBO3 for PFS
in TCGA-UVM, the uveal melanoma dataset (Supplementary
Figs. S17 and S18). On the contrary, decreased SLIT1 along
with increased ROBO2 and ROBO4 (instead of ROBO3)
signified poor prognosis for TCGA-LGG, the low-grade
glioma dataset (Supplementary Fig. S19; for OS and DSS).

SLIT3, ROBO3. Similarly, the same pair could be asso-
ciated with different survival types in different cancers, yet
in opposite manners as in the SLIT3-ROBO3 pair for DFS in
TCGA-LGG (Supplementary Fig. S19) and for DSS in
TCGA-OV, the ovarian carcinoma dataset (Supplementary
Fig. S20). Low ROBO3 and high SLIT3 levels were associ-
ated with DFS in TCGA-LGG (Supplementary Fig. S19),
while the opposite was true for OS and DSS in TCGA-OV
(Supplementary Fig. S20).

Others

Several cancers had a single Slit or Robo gene significantly
associated with one or more survival types. For instance, the
HRmulti profile of the Slit-Robo pathway in the lung adeno-
carcinoma dataset TCGA-LUAD showed that higher ROBO2
expression was a significantly better predictor for OS, DSS,
and PFS among lung adenoma patients, while other genes
did not stand out as significant in any of the survival types
(Supplementary Fig. S21).

Several other cancers, including TCGA-CHOL, the cho-
langioma dataset, exhibited significance for single genes rather
than pairs (Supplementary Fig. S22). ROBO4 expression was
protective in the pheochromocytoma and paraganglioma da-
taset TCGA-PCPG (for OS, DSS, and PFS; Supplementary
Fig. S23), and in the liver hepatocellular carcinoma dataset,
TCGA-LIHC, verging on significance (PFS; p < 0.1; Supple-
mentary Fig. S24). Nevertheless, none of the Slit-Robo path-
way members was significantly implicated with prognosis in
the GBM, TGCT, and THYM datasets (Tables 2 and 3).

Discovery of the best Slit-Robo subsets
for prognostication

We adopted the best subset selection method using lasso
regression, as implemented in the SmulTCan app (Ozhan et al.,
2021). PI values revealed (through K-M analyses) the effective
discriminators of prognostic outcomes (Table 4 for OS and
DSS; Table 5 for DFS and PFS) for several of the 15 TCGA
datasets for which a best subset could be found. We empha-
sized below only those having highly significant K-M values.

The SLIT3-ROBO2 pair appeared in the K-M analysis
of KIRP, acting opposingly, whereby SLIT3 contributed to
higher risk and ROBO2 contributed to lower risk for OS, DSS,
and PFS. K-M plots of KIRP in Figure 5 indicated significant
differentiation between prognostic outcomes for three of four
survival types. K-M analyses also produced one of the best
outcomes for the KIRC dataset (Fig. 6) with the strong sepa-
ration of low- and high-risk outcomes and minimal overlap of
their confidence intervals particularly for PFS (Fig. 6c).

Low-to-high risk ratios of KIRC for the antagonistic Slit-
Robo pair were in the range of 0.34–0.51 with AUC% – SE%
scores of PIs = 67.69 – 2.96, 70.71 – 3.25, and 63.56 – 3.06 for
OS, DSS, and PFS, respectively. High ROBO4 expression’s
protective effect was once again revealed in the K-M ana-
lyses, where the gene contributed to lower risk prognosis in
KIRC for OS, DSS, and PFS acting opposingly to ROBO3
(Tables 4 and 5).

SLIT1 was the only contributing gene to the PIs calculated
for LGG and UCEC, but indicated a lower risk in LGG and a
higher one in UCEC. K-M plots of LGG for the four survival
types indicated a significantly large AUC with SLIT1, also
exhibiting one of the highest significances ( p < 0.001 for

SLIT-ROBO PATHWAY PROGNOSTIC SIGNATURES IN CANCER 7
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Fig. 7a–d; Tables 4 and 5). While SLIT3 contributed to lower
risk in TCHA-CHOL, ROBO1 and SLIT1 led to a higher risk
in COAD (AUC% – SE% values of the PIs were
76.90 – 11.70 and 71.85 – 6.05 for CHOL and COAD, re-
spectively). Other K-M plots for significant differentiation
between risk groups were for OS in MESO (see also Sup-
plementary Fig. S25 for the forest plot), for DFS in PAAD,
for OS, DSS, and PFS in ACC and UVM, and for DFS in
KICH (Tables 4 and 5).

Discussion

A prognostic HR GS refers to the expression pattern of
a group of genes associated with the tumor prognosis and
presents great potential for improving the prediction of sur-
vival rates (Wang et al., 2017). The role of axon guidance
cues of the nervous system on cancer progression and prog-
nosis has previously been emphasized (Hao et al., 2020;
Ozhan et al., 2021). In this study we discovered independent
HR GSs as pairs/modules of the Slit-Robo axon guidance
gene family that can predict survival significantly across
TCGA-PANCAN datasets. Moreover, we have demonstra-
ted that the multivariable Cox survival analysis more fre-
quently resulted in the independent pairing between Slits
and Robo rather than only Robo-Robo or only Slit-Slit
pairing.

We also were able to identify several recurrent signatures
within different cancers; hence, these novel cancer-specific yet
independent Slit-Robo pairs and/or modules we identi-
fied could provide promising leads for further tests. Conse-
quently, we propose that such co-dependent ligand/receptor
interactions, as in the case of Slit-Robo molecules, should be
investigated with multivariable regression, applied to the
whole family, without first filtering with univariable regression.

Our results further corroborated the importance of Slit-
Robo in kidney cancers such that ROBO3, ROBO4, and/or
SLIT3 were strongly associated with all three of kidney can-
cers. KIRC and KIHC were more similar to each other than
they were to KIRP, which shared prognostic similarities with
BRCA. The observed compartmentalization of Slit-Robo
members in kidney cancers other than ROBO4 might indicate
the different histological characteristics of clear, papillary,
and chromophobe renal cell carcinomas and the differential
level of expression of Slit-Robo members across their re-
spective tissues.

The protective profile of ROBO4 by itself across many of
the investigated TCGA cancer datasets, including the pheo-
chromocytoma and paraganglioma dataset, TCGA-PCPG
of neuronal origin, could also be attributed to ROBO4’s
angiogenesis-inhibiting properties, demonstrated in wound
healing experiments (Zhang et al., 2016). A previous inde-
pendent study has also indicated a lower ROBO4 in liver

FIG. 5. K-M plots of KIRP for (a) OS, (b) DSS, and (c) PFS. Low- and high-risk prognostic outcomes significantly
differentiated based on the median PI for each survival type. K-M, Kaplan–Meier; PI, prognostic index.

FIG. 6. K-M plots of KIRC for (a) OS, (b) DSS, and (c) PFS. Low- and high-risk prognostic outcomes significantly
differentiated based on the median PI for each survival type.
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tumors (Avci et al., 2008), which our multivariable Cox re-
gression analysis supported this with approaching signifi-
cance in TCGA-LIHC.

Our results show that Slit-Robo pathway expression, when
analyzed with multivariable Cox regression, has revealed
other novel prognostic members of the pathway. One such
example is the lung adenocarcinoma (LUAD) in which pre-
vious studies implicated SLIT2 expression (Rezniczek et al.,
2019) that was shown to inhibit migration (Kong et al., 2015)
and considered a tumor suppressor (Zhang et al., 2015).
However, our analysis with LUAD, based on the whole Slit-
Robo gene family, did not implicate SLIT2 as prognostic, but
instead revealed ROBO2’s higher expression as a marker for
poor prognosis, for three different survival types, that is, OS,
DSS, and PFS.

ROBO2 has been previously shown to be decreased in
prostate cancer as well, but was found to be upregulated in
inflammatory breast cancer (Bieche et al., 2004; Dickinson
et al., 2004); and our study is the first implicating increased
ROBO2 expression, independent of its relationship to the
other Slit-Robo members, in the prognosis of LUAD patients.

In our analysis, SLIT3 was the most significantly associ-
ated with poorer prognosis in BRCA, while independently,
higher levels of ROBO2 were significantly better prognos-
tically, supporting previous findings (Yuasa-Kawada et al.,
2009). Previously, SLIT3 has been found to be a tumor sup-
pressor in lung cancer cells whose silencing increases me-
talloproteinase activity (Zhang et al., 2015); however, in
connection with reduced levels of ROBO2, SLIT3 could be an
oncogene in BRCA.

Previous studies have also shown that specific Slit-Robo
members acting in pairs are involved in various cellular
functions and disorders other than cancer as previously intro-
duced. Our HRmulti analysis demonstrated the presence of
known Slit-Robo pairs also with impacts on cancer survival,
not possible to extract otherwise, that is, using univariable Cox
regression alone. For instance, our study showed that several
well-known pairs from literature were associated with cancers,
that is, the SLIT3-ROBO4 pair (Paul et al., 2013), with KIRP;
the SLIT2-ROBO3 pair (Cariboni et al., 2012), with BLCA; the
SLIT2-ROBO4 pair ( Jones et al., 2009), with KICH; and the
SLIT2-ROBO1 pair (Qin et al., 2015), with ACC.

FIG. 7. K-M plots of LGG for (a) OS, (b) DSS, (c) DFS, and (d) PFS. Low- and high-risk prognostic outcomes
significantly differentiated based on the median PI for each survival type.
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Furthermore, in our analysis, many Slit-Robo pairs acted
antagonistically. For instance, high expression of SLIT2 and
lower expression of ROBO1 were hazardous for DSS in
LUSC, DLBC, and THCA datasets. Other antagonistic pairs
included the SLIT3-ROBO2 pair in KIRP for OS, DSS, and
PFS; the SLIT3-ROBO3 pair in OV for DSS; and the SLIT1-
ROBO2 pair in UCEC for DSS. In all of these, Slits had
higher expression, while Robos had lower expression, and to-
gether they were associated with poor prognosis. It is tempt-
ing to speculate that these antagonistic pairs are likely to
work together, while their individual expressions balance one
another. Accordingly, the emerging role of antagonistic Slit-
Robo pairs in cancer prognosis can be investigated further
experimentally due to their novelty.

Conclusion

Univariable analyses helped compare the impacts of Slit-
Robo members on each dataset across TCGA-PANCAN and
identify which cancer types were more significantly affected
by Slit-Robo alterations. However, the multivariable Cox
regression was required to identify the independent Slit-Robo
pairs and/or modules with significant HR signatures in
cancer- as well as survival-specific manners.

Our study provided AUC% calculations of all the multi-
variable Slit-Robo models in the study for all four survival
types (Supplementary Table S3), which could serve as a
reference in future studies. Our results suggested higher ex-
pressions of SLIT1, SLIT2, and SLIT3 could be associated
with poor prognosis when coupled with lower levels of ex-
pression in one or more Robos, although the opposite patterns
also were detected. Moreover, KIRP and BRCA; BLCA and
LUSC; and KIRC and KICH showed similar Slit-Robo HR
profiles and/or best Slit-Robo subsets.

Our findings implicate that significantly associated members
of the ligand-receptor pathways, as in the case of Slit-Robo
pathway, should be tested as a family to better understand
if they can be used in potential therapeutic applications. Our
analyses further suggest that unique Slit-Robo pairs/modules,
commonly exhibiting antagonistic patterns for DSS, exist
among different cancers that can be used to differentiate be-
tween prognostic outcomes, that is, low or high risk. Fur-
thermore, our methodology can easily be applied to other
ligand-receptor pathways and/or gene sets known to act in
pairs or modules to reveal novel HR GSs and determine how
specific subsets of each pathway’s members could be used to
predict prognostic outcomes.

Availability of Data

The Slit-Robo TSV file obtained from UCSC Xena is
available as a supplemental file (Supplementary Data S1).
Matrices generated from the coxph() HR calculations in this
article can be found in the Supplementary Tables S4–S20.
Forest plots of datasets mentioned in the text, for all ana-
lyzable survival types, can be found in Supplementary
Figures S5–S25.
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GnRH ¼ Gonadotropin-releasing hormone
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PFS ¼ progression-free survival
PI ¼ prognostic index

SE ¼ standard error
TCGA ¼ The Cancer Genome Atlas
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