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Abstract

Humans are remarkably adept in listening to a desired speaker in a crowded environment, while filtering out nontarget
speakers in the background. Attention is key to solving this difficult cocktail-party task, yet a detailed characterization of
attentional effects on speech representations is lacking. It remains unclear across what levels of speech features and how
much attentional modulation occurs in each brain area during the cocktail-party task. To address these questions, we
recorded whole-brain blood-oxygen-level-dependent (BOLD) responses while subjects either passively listened to
single-speaker stories, or selectively attended to a male or a female speaker in temporally overlaid stories in separate
experiments. Spectral, articulatory, and semantic models of the natural stories were constructed. Intrinsic selectivity
profiles were identified via voxelwise models fit to passive listening responses. Attentional modulations were then
quantified based on model predictions for attended and unattended stories in the cocktail-party task. We find that
attention causes broad modulations at multiple levels of speech representations while growing stronger toward later stages
of processing, and that unattended speech is represented up to the semantic level in parabelt auditory cortex. These results
provide insights on attentional mechanisms that underlie the ability to selectively listen to a desired speaker in noisy
multispeaker environments.
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Introduction
Humans are highly adept at perceiving a target speaker in
crowded multispeaker environments (Shinn-Cunningham and
Best 2008; Kidd and Colburn 2017; Li et al. 2018). Auditory atten-
tion is key to behavioral performance in this difficult “cocktail-
party problem” (Cherry 1953; Fritz et al. 2007; McDermott 2009;
Bronkhorst 2015; Shinn-Cunningham et al. 2017). Literature
consistently reports that attention selectively enhances cortical

responses to the target stream in auditory cortex and beyond,
while filtering out nontarget background streams (Hink and
Hillyard 1976; Teder et al. 1993; Alho et al. 1999, 2003, 2014;
Jäncke et al. 2001, 2003; Lipschutz et al. 2002; Rinne et al. 2008;
Rinne 2010; Elhilali et al. 2009; Gutschalk and Dykstra 2014).
However, the precise link between the response modulations
and underlying speech representations is less clear. Speech
representations are hierarchically organized across multiple
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stages of processing in cortex, with each stage selective for
diverse information ranging from low-level acoustic to high-
level semantic features (Davis and Johnsrude 2003; Griffiths
and Warren 2004; Hickok and Poeppel 2004, 2007; Rauschecker
and Scott 2009; Okada et al. 2010; Friederici 2011; Di Liberto
et al. 2015; de Heer et al. 2017; Brodbeck et al. 2018a). Thus, a
principal question is to what extent attention modulates these
multilevel speech representations in the human brain during a
cocktail-party task (Miller 2016; Simon 2017).

Recent electrophysiology studies on the cocktail-party
problem have investigated attentional response modulations
for natural speech stimuli (Kerlin et al. 2010; Ding and Simon
2012a, 2012b; Mesgarani and Chang 2012; Power et al. 2012;
Zion Golumbic et al. 2013; Puvvada and Simon 2017; Brodbeck
et al. 2018b; O’Sullivan et al. 2019; Puschmann et al. 2019). Ding
and Simon (2012a, 2012b) fit spectrotemporal encoding models
to predict cortical responses from the speech spectrogram.
Attentional modulation in the peak amplitude of spectrotem-
poral response functions was reported in planum temporale
in favor of the attended speech. Mesgarani and Chang (2012)
built decoding models to estimate the speech spectrogram from
responses measured during passive listening and examined the
similarity of the decoded spectrogram during a cocktail-party
task to the isolated spectrograms of attended versus unattended
speech. They found higher similarity to attended speech in
nonprimary auditory cortex. Zion Golumbic et al. (2013) reported
amplitude modulations in speech-envelope response functions
toward attended speech across auditory, inferior temporal,
frontal, and parietal cortices. Other studies using decoding
models have similarly reported higher decoding performance
for the speech envelope of the attended stream in auditory,
prefrontal, motor, and somatosensory cortices (Puvvada and
Simon 2017; Puschmann et al. 2019). Brodbeck et al. (2018b)
further identified peak amplitude response modulations for
sublexical features including word onset and cohort entropy
in temporal cortex. Note that because these electrophysiology
studies fit models for acoustic or sublexical features, the
reported attentional modulations primarily comprised relatively
low-level speech representations.

Several neuroimaging studies have also examined whole-
brain cortical responses to natural speech in a cocktail-party
setting (Nakai et al. 2005; Alho et al. 2006; Hill and Miller 2010;
Ikeda et al. 2010; Wild et al. 2012; Regev et al. 2019; Wikman et al.
2021). In the study of Hill and Miller (2010), subjects were given
an attention cue (attend to pitch, attend to location or rest) and
later exposed to multiple speech stimuli where they performed
the cued task. Partly overlapping frontal and parietal activations
were reported, during both the cue and the stimulus exposure
periods, as an effect of attention to pitch or location in contrast
to rest. Furthermore, pitch-based attention was found to elicit
higher responses in bilateral posterior and right middle superior
temporal sulcus, whereas location-based attention elicited
higher responses in left intraparietal sulcus. In alignment
with electrophysiology studies, these results suggest that
attention modulates relatively low-level speech representations
comprising paralinguistic features. In a more recent study, Regev
et al. (2019) measured responses under 2 distinct conditions:
while subjects were presented bimodal speech-text stories
and asked to attend to either the auditory or visual stimulus,
and while subjects were presented unimodal speech or text
stories. Intersubject response correlations were measured
between unimodal and bimodal conditions. Broad attentional
modulations in response correlation were reported from

primary auditory cortex to temporal, parietal, and frontal
regions in favor of the attended modality. Although this finding
raises the possibility that attention might also affect represen-
tations in higher-order regions, a systematic characterization of
individual speech features that drive attentional modulations
across cortex is lacking.

An equally important question regarding the cocktail-party
problem is whether unattended speech streams are represented
in cortex despite the reported modulations in favor of the target
stream (Bronkhorst 2015; Miller 2016). Electrophysiology studies
on this issue identified representations of low-level spectrogram
and speech envelope features of unattended speech in early
auditory areas (Mesgarani and Chang 2012; Ding and Simon
2012a, 2012b; Zion Golumbic et al. 2013; Puvvada and Simon
2017; Brodbeck et al. 2018b; Puschmann et al. 2019), but no
representations of linguistic features (Brodbeck et al. 2018b).
Meanwhile, a group of neuroimaging studies found broader
cortical responses to unattended speech in superior temporal
cortex (Scott et al. 2004, 2009a; Wild et al. 2012; Scott and McGet-
tigan 2013; Evans et al. 2016; Regev et al. 2019). Specifically, Wild
et al. (2012) and Evans et al. (2016) reported enhanced activity
associated with the intelligibility of unattended stream in parts
of superior temporal cortex extending to superior temporal
sulcus. Although this implies that responses in relatively higher
auditory areas carry some information regarding unattended
speech stimuli, the specific features of unattended speech that
are represented across the cortical hierarchy of speech is lacking.

Here we investigated whether and how attention affects rep-
resentations of attended and unattended natural speech across
cortex. To address these questions, we systematically examined
multilevel speech representations during a diotic cocktail-party
task using naturalistic stimuli. Whole-brain BOLD responses
were recorded in 2 separate experiments (Fig. 1) while subjects
were presented engaging spoken narratives from “The Moth
Radio Hour.” In the passive-listening experiment, subjects lis-
tened to single-speaker stories for over 2 h. Separate voxel-
wise models were fit that measured selectivity for spectral,
articulatory, and semantic features of natural speech during
passive listening (de Heer et al. 2017). In the cocktail-party exper-
iment, subjects listened to temporally overlaid speech streams
from 2 speakers while attending to a target category (male or
female speaker). To assess attentional modulation in functional
selectivity, voxelwise models fit during passive listening were
used to predict responses for the cocktail-party experiment.
Model performances were calculated separately for attended
and unattended stories. Attentional modulation was taken as
the difference between these 2 performance measurements.
Comprehensive analyses were conducted to examine the intrin-
sic complexity and attentional modulation of multilevel speech
representations and to investigate up to what level of speech
features unattended speech is represented across cortex.

Materials and Methods
Participants

Functional data were collected from 5 healthy adult native sub-
jects (4 males and one female; aged between 26 and 31) who
had no reported hearing problems and were native English
speakers. The experimental procedures were approved by the
Committee for the Protection of Human Subjects at University
of California, Berkeley. Written informed consent was obtained
from all subjects.
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Figure 1. Experimental design. (a) “Passive-listening experiment.” 10 stories from Moth Radio Hour were used to compile a single-speaker stimulus set. Subjects were

instructed to listen to the stimulus vigilantly without any explicit task in the passive-listening experiment. (b) “Cocktail-party experiment.” A pair of stories told
by individuals of different genders were selected from the single-speaker stimulus set and overlaid temporally to generate a 2-speaker stimulus set. Subjects were
instructed to attend either to the male or female speaker in the cocktail-party experiment. The same 2-speaker story was presented twice in separate runs while the
target speaker was varied. Attention condition was fixed within runs and it alternated across runs.

Stimuli

Figure 1 illustrates the 2 main types of stimuli used in the exper-
iments: single-speaker stories and 2-speaker stories. Ten single-
speaker stories were taken from The Moth Radio Program: “Alter-
nate Ithaca Tom” by Tom Weiser; “How to Draw a Nekkid Man” by
Tricia Rose Burt; “Life Flight” by Kimberly Reed; “My Avatar and
Me” by Laura Albert; “My First Day at the Yankees” by Matthew
McGough; “My Unhurried Legacy” by Kyp Malone; “Naked” by
Catherine Burns; “Ode to Stepfather”by Ethan Hawke; “Targeted”
by Jen Lee; and “Under the Influence”by Jeffery Rudell. All stories
were told before a live audience by a male or female speaker,
and they were about 10–15 min long. Each 2-speaker story was
generated by temporally overlaying a pair of stories told by
different genders and selected from the single-speaker story set.
When the durations of the 2 single-speaker stories differed, the
longer story was clipped from the end to match durations. Three
2-speaker stories were prepared: from “Targeted” and “Ode to
Stepfather” (cocktail1); from “How to Draw a Nekkid Man” and
“My First Day at the Yankees” (cocktail2); and from “Life Flight”
and “Under the Influence” (cocktail3). In the end, the stimuli
consisted of 10 single-speaker and three 2-speaker stories.

Experimental Procedures

Figure 1 outlines the 2 main experiments conducted in separate
sessions: passive-listening and cocktail-party experiments. In
the passive-listening experiment, subjects were instructed to
listen to single-speaker stories vigilantly without an explicit
attentional target. To facilitate sustained vigilance, we picked
engaging spoken narratives from the Moth Radio Hour (see
Stimuli). Each of the 10 single-speaker stories was presented
once in a separate run of the experiment. Two 2-hour ses-
sions were conducted, resulting in 10 runs of passive-listening
data for each subject. In the cocktail-party experiment, subjects
were instructed to listen to 2-speaker stories while attending

to a target speaker (either the male or the female speaker).
Our experimental design focuses on attentional modulations
of speech representations when a stimulus is attended ver-
sus unattended. Each of the 3 cocktail-stories was presented
twice in separate runs. This allowed us to present the same
stimulus set in attended and unattended conditions to pre-
vent potential biases due to across condition stimulation dif-
ferences. To minimize adaptation effects, different 2-speaker
stories were presented in consecutive runs while maximiz-
ing the time window between repeated presentations of a 2-
speaker story. Attention condition alternated across consec-
utive runs. An exemplary sequence of runs was: cocktail1-M
(attend to male speaker in cocktail1), cocktail2-F (attend to
female speaker in cocktail2), cocktail3-M, cocktail1-F, cocktail2-
M, and cocktail3-F. The first attention condition assigned to each
2-speaker story (M or F) was counterbalanced across subjects.
This resulted in a balanced assignment of “attended” versus
“unattended” conditions during the second exposure to each 2-
speaker story. Furthermore, for each subject, the second expo-
sure to half of the single-speaker stories (3 out of 6 included
within the 2-speaker stories) coincided with the “attended” con-
dition, whereas the second exposure to the other half coincided
with the “unattended” condition. Hence, second exposure to
each story was balanced across “attended” and “unattended”
conditions both within and across subjects. A 2-hour session
was conducted, resulting in 6 runs of cocktail-data. Note that
the 2-speaker stories used in the cocktail-party experiment were
constructed from the single-speaker story set used in passive-
listening experiment. Hence, for each subject, the cocktail-party
experiment was conducted several months (∼5.5 months) after
the completion of the passive-listening experiment to mini-
mize potential repetition effects. The dataset collected from
the passive-listening experiment was previously analyzed (Huth
et al. 2016; de Heer et al. 2017); however, the dataset collected
from the cocktail-party experiment was specifically collected for
this study.
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In both experiments, the length of each run was tailored
to the length of the story stimulus with additional 10 s of
silence both before and after the stimulus. All stimuli were
played at 44.1 kHz and delivered binaurally to both ears using
Sensimetrics S14 in-ear piezo-electric headphones. The Sensi-
metrics S14 is a magnetic resonance imaging (MRI)-compatible
auditory stimulation system with foam canal tips to reduce
scanner noise (above 29 dB as stated in specifications). The
frequency response of the headphones was flattened using a
Behringer Ultra-Curve Pro Parametric Equalizer. Furthermore,
the level of sound was adjusted for each subject to ensure clear
and comfortable hearing of the stories.

MRI Data Collection and Preprocessing

MRI data were collected on a 3T Siemens TIM Trio scanner at the
Brain Imaging Center, UC Berkeley, using a 32-channel volume
coil. For functional scans, a gradient echo EPI sequence was used
with TR = 2.0045 s, TE = 31 ms, flip angle = 70◦, voxel size = 2.24
× 2.24 × 4.1 mm3, matrix size = 100 × 100, field of view = 224
× 224 mm2 and 32 axial slices covering the entire cortex. For
anatomical data, a T1-weighted multiecho MP-RAGE sequence
was used with voxel size = 1 × 1 × 1 mm3 and field of view = 256
× 212 × 256 mm3.

Each functional run was motion corrected using FMRIB’s Lin-
ear Image Registration Tool (FLIRT) (Jenkinson and Smith 2001).
A cascaded motion-correction procedure was performed, where
separate transformation matrices were estimated within single
runs, within single sessions and across sessions sequentially. To
do this, volumes in each run were realigned to the mean volume
of the run. For each session, the mean volume of each run was
then realigned to the mean volume of the first run in the session
(see Supplementary Table 1 for within-session motion statistics
during the cocktail-party experiment). Lastly, the mean volume
of the first run of each session was realigned to the mean volume
of the first run of the first session of the passive-listening
experiment. The estimated transformation matrices were con-
catenated and applied in a single step. Motion-corrected data
were manually checked to ensure that no major realignment
errors remained. The moment-to-moment variations in head
position were also estimated and used as nuisance regressors
during model estimation to regress out motion-related nuisance
effects from BOLD responses. The Brain Extraction Tool in FSL
5.0 (Smith 2002) was used to remove nonbrain tissues. This
resulted in 68 016–84 852 brain voxels in individual subjects. All
model fits and analyses were performed on these brain voxels
in volumetric space.

Visualization on Cortical Flatmaps

Cortical flatmaps were used for visualization purposes, where
results in volumetric space were projected onto the cortical
surfaces using PyCortex (Gao et al. 2015). Cortical surfaces
were reconstructed from anatomical data using Freesurfer
(Dale et al. 1999). Five relaxation cuts were made into the
surface of each hemisphere, and the surface crossing the
corpus callosum was removed. Functional data were aligned
to the individual anatomical data with affine transformations
using FLIRT (Jenkinson and Smith 2001). Cortical flatmaps were
constructed for visualization of significant model prediction
scores, functional selectivity and attentional modulation
profiles, and representational complexity and modulation
gradients.

ROI Definitions and Abbreviations

We defined region of interests for each subject based on an
atlas-based parcellation of the cortex (Destrieux et al. 2010).
To do this, functional data were coregistered to the individual-
subject anatomical scans with affine transformations using
FLIRT (Jenkinson and Smith 2001). Individual-subject anatomical
data were then registered to the Freesurfer standard anatomical
space via the boundary-based registration tool in FSL (Greve
and Fischl 2009). This procedure resulted in subject-specific
transformations mapping between the standard anatomical
space and the functional space of individual subjects. Anatom-
ical regions of interest from the Destrieux atlas were outlined
in the Freesurfer standard anatomical space; and they were
back-projected onto individual-subject functional spaces via the
subject-specific transformations using PyCortex (Gao et al. 2015).
The anatomical regions were labeled according to the atlas. To
explore potential selectivity gradients across the lateral aspects
of Superior Temporal Gyrus and Superior Temporal Sulcus,
these ROIs were further split into 3 equidistant subregions
in posterior-to-anterior direction. Heschl’s Gyrus and Heschl’s
Sulcus were considered as a single ROI as prior reports suggest
that primary auditory cortex is not constrained by Heschl’s
Gyrus and extends to Heschl’s Sulcus as well (Woods et al. 2009,
2010; da Costa et al. 2011). We only considered regions with at
least 10 speech-selective voxels in each individual subject for
subsequent analyses.

Supplementary Table 2 lists the defined ROIs and the number
of spectrally, articulatorily, and semantically selective voxels
within each ROI, with number of speech-selective voxels.
ROI abbreviations and corresponding Destrieux indices are
Heschl’s Gyrus and Heschl’s Sulcus (HG/HS: 33 and 74), Planum
Temporale (PT: 36), posterior segment of Slyvian Fissure (pSF: 41),
lateral aspect of Superior Temporal Gyrus (STG: 34), Superior
Temporal Sulcus (STS, 73), Middle Temporal Gyrus (MTG:
38), Angular Gyrus (AG: 25), Supramarginal Gyrus (SMG: 26),
Intraparietal Sulcus (IPS: 56), opercular part of Inferior Frontal
Gyrus/Pars Opercularis (POP: 12), triangular part of Inferior
Frontal Gyrus/Pars Triangularis (PTR: 14), Precentral Gyrus (PreG:
29), medial Occipito-Temporal Sulcus (mOTS:60), Inferior Frontal
Sulcus (IFS: 52), Middle Frontal Gyrus (MFG:15), Middle Frontal
Sulcus (MFS: 53), Superior Frontal Sulcus (SFS: 54), Superior
Frontal Gyrus (SFG: 16), Precuneus (PreC: 30), Subparietal Sulcus
(SPS: 71), and Posterior Cingulate Cortex (PCC: 9 and 10). The
subregions of STG are aSTG (anterior one-third of STG), mSTG
(middle one-third of STG), and pSTG (posterior one-third of STG).
The subregions of STS are aSTS (anterior one-third of STS), mSTS
(middle one-third of STS) and pSTS (posterior one-third of STS).
MTG was not split into subregions since these subregions did
not have a sufficient number of speech-selective voxels in each
individual subject.

Model Construction

To comprehensively assess speech representations, we con-
structed spectral, articulatory, and semantic models of the
speech stimuli (Fig. 2; de Heer et al. 2017).

Spectral Model
For the spectral model, cochleogram features of speech were
estimated based on Lyon’s Passive Ear model. Lyon’s human
cochlear model involves logarithmic filtering, compression and
adaptive gain control operations applied to input sound (Lyon
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Figure 2. Multilevel speech features. Three distinct feature spaces were constructed to represent natural speech at multiple levels: spectral, articulatory, and semantic

spaces. Speech waveforms were projected separately on these spaces to form stimulus matrices. The spectral feature matrix captured the cochleogram features of the
stimulus in 93 channels having center frequencies between 115 and 9920 Hz. The articulatory feature matrix captured the mapping of each phoneme in the stimulus to
22 binary articulation features. The semantic feature matrix captured the statistical co-occurrences of each word in the stimulus with 985 common words in English.
Each feature matrix was Lanczos-filtered at a cutoff frequency of 0.25 Hz and downsampled to 0.5 Hz to match the sampling rate of fMRI. Natural speech might

contain intrinsic stimulus correlations among spectral, articulatory, and semantic features. To prevent potential biases due to stimulus correlations, we decorrelated
the 3 feature matrices examined here via Gram–Schmidt orthogonalization (see Materials and Methods). The decorrelated feature matrices were used for modeling
BOLD responses.

1982; Slaney 1998; Gill et al. 2006). Depending on the sampling
rate of the input signal, the cochlear model generates 118 wave-
forms with center frequencies between ∼ 84 Hz and ∼ 21 kHz.
Considering the frequency response of the headphones used in
the experiment, 93 waveforms with center frequencies between
115 Hz and 9920 Hz were selected as the features of the spectral
model. The spectral features were Lanczos-filtered at a cutoff
frequency of 0.25 Hz and downsampled to 0.5 Hz to match the
sampling rate of functional MRI. The 93 spectral features were
then temporally z-scored to zero mean and unit variance.

Articulatory Model
For the articulatory model, each phoneme in the stories was
mapped onto a unique set of 22 articulation features; for
example, phoneme /3/ is postalveolar, fricative, and voiced
(Levelt 1993; de Heer et al. 2017). This mapping resulted in 22-
dimensional binary vectors for each phoneme. To obtain the
timestamp of each phoneme and word in the stimuli, the speech
in the stories was aligned with the story transcriptions using the
Penn Phonetics Lab Forced Aligner (Yuan and Liberman 2008).
Alignments were manually verified and corrected using Praat
(www.praat.org). The articulatory features were Lanczos-filtered
at a cutoff frequency of 0.25 Hz and downsampled to 0.5 Hz.
Finally, the 22 articulatory features were z-scored to zero mean
and unit variance.

Semantic Model
For the semantic model, co-occurrence statistics of words
were measured via a large corpus of text (Mitchell et al. 2008;
Huth et al. 2016; de Heer et al. 2017). The text corpus was
compiled from 2 405 569 Wikipedia pages, 36 333 459 user
comments scraped from reddit.com, 604 popular books, and
the transcripts of 13 Moth stories (including the stories used
as stimuli). We then built a 10 470-word lexicon from the
union set of the 10 000 most common words in the compiled
corpus and all words appearing in the 10 Moth stories used
in the experiment. Basis words were then selected as a set of
985 unique words from Wikipedia’s List of 1000 Basic Words.
Co-occurrence statistics of the lexicon words with 985 basis
words within a 15-word window were characterized as a co-
occurrence matrix of size 985 × 10 470. Elements of the resulting
co-occurrence matrix were log-transformed, z-scored across
columns to correct for differences in basis-word frequency, and
z-scored across rows to correct for differences in lexicon-word
frequency. Each word in the stimuli was then represented with
a 985-dimensional co-occurrence vector based on the speech-
transcription alignments. The semantic features were Lanczos-
filtered at a cutoff frequency of 0.25 Hz and downsampled to
0.5 Hz. The 985 semantic features were finally z-scored to zero
mean and unit variance.

Decorrelation of Feature Spaces
In natural stories, there might be potential correlations among
certain spectral, articulatory, or semantic features. If significant,
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such correlations can partly confound assessments of model
performance. To assess the unique contribution of each feature
space to the explained variance in BOLD responses, a decor-
relation procedure was first performed (Fig. 2). To decorrelate
a feature matrix F of size mxn from a second feature matrix
K of size mxp, we first found an orthonormal basis for the
column space of K (col{K}) using economy-size singular value
decomposition:

Kmxp = Umxp x Spxp x Vpxp,

where U contains left singular vectors as columns, V contains
right singular vectors, and S contains the singular values. Left
singular vectors were taken as the orthonormal basis for col{K},
and each column of F was decorrelated from it according to the
following formula:

−→
fd
i = −→

fi −
∑p

j=1

(−→
fi .−→uj

)
.−→uj ,

where
−→
fi , −→uj are the column vectors of F and U respectively, and

−→
fd
i is the column vectors of the decorrelated feature matrix, Fd. To

decorrelate feature matrices for the models considered here, we
took the original articulatory feature matrix as a reference, and
decorrelated the spectral feature matrix from the articulatory
feature matrix, and decorrelated the semantic feature matrix
from both articulatory and spectral feature matrices. This decor-
relation sequence was selected because spectral and articula-
tory features capture lower-level speech representations, and
the articulatory feature matrix had the fewest number of fea-
tures among all models. In the end, we obtained 3 decorrelated
feature matrices whose columns had zero correlation with the
columns of the other 2 matrices.

Analyses

The main motivation of this study is to understand whether
and how strongly various levels of speech representations are
modulated across cortex during a cocktail-party task. To answer
this question, we followed a 2-stage approach as illustrated in
Figure 3. In the first stage, we identified voxels selective for
speech features using data from the passive-listening experi-
ment. To do this, we measured voxelwise selectivity separately
for spectral, articulatory, and semantic features of the single-
speaker stories. In the second stage, we used the models fit
using passive-listening data to predict BOLD responses mea-
sured in the cocktail-party experiment. Prediction scores for
attended versus unattended stories were compared to quantify
the degree of attentional modulations, separately for each model
and globally across all models.

Note that a subset of the 10 single-speaker stories was used
to generate three 2-speaker stories used in the experiments. To
prevent potential bias, a 3-fold cross-validation procedure was
performed for testing models fit using passive-listening data on
cocktail-party data. In each fold, models were fit using 8-run
passive-listening data; and separately tested on 2-run passive-
listening data and 2-run cocktail-party data. The same set of

test stories were used both in the passive-listening and cocktail-
party experiments to minimize risk of poor model generaliza-
tion between the passive-listening and cocktail-party experi-
ments due to uncontrolled stimulus differences. There was no
overlap between the stories in the training and testing runs.
Model predictions were aggregated across 3-fold, and prediction
scores were then computed.

Voxelwise Modeling
In the first stage, we fit voxelwise models in individual sub-
jects using passive-listening data. To account for hemodynamic
delays, we used a linearized 4-tap finite impulse response (FIR)
filter to allow different HRF shapes for separate brain regions
(Goutte et al. 2000). Each model feature was represented as 4
features in the stimulus matrix to account for their delayed
effects in BOLD responses at 2, 4, 6, and 8 s. Model weights, W,
were then found using L2-regularized linear regression:

W =
(
FTF + Iλ

)−1
FTR

Here, λ is the regularization parameter, F is the decorrelated
feature matrix for a given model and R is the aggregate BOLD
response matrix for cortical voxels. A cross-validation procedure
with 50 iterations was performed to find the best regularization
parameter for each voxel among 30 equispaced values in log-
space of 1 : 105. The training passive-listening data was split into
50 equisized chunks, where 1 chunk was reserved for validation
and 49 chunks were reserved for model fitting at each iteration.
Prediction scores were taken as Pearson’s correlation between
predicted and measured BOLD responses. The optimal λ value
for each voxel was selected by maximizing the average predic-
tion score across cross-validation folds. The final model weights
were obtained using the entire set of training passive-listening
data and the optimal λ. Next, we measured the prediction scores
of the fit models on testing data from the passive-listening
experiment. Spectrally, articulatorily, and semantically selective
voxels were separately identified in each ROI based on the set
of significantly predicted voxels by each model. A given ROI was
considered selective for a model, only if it contained 10 or more
significant voxels for that model (q(FDR) < 10−5; t−test). Speech-
selective voxels within the ROI were then taken as the union of
these spectrally, articulatorily, and semantically selective vox-
els. Subsequent analyses were performed on speech-selective
voxels.

1. Model-specific selectivity index. Single-voxel prediction
scores on passive-listening data were used to quantify the
degree of selectivity of each ROI to the underlying model
features under passive-listening. To do this, a model-specific
selectivity index, (SIm), was defined as follows:

SIm = (r)m∑
i (r)i

, i, m ∈ {
spe, art, sem

}
,

where r is the average prediction score across speech-selective
voxels within the ROI during passive-listening. SIm is in the
range of [0, 1], where higher values indicate stronger selectivity
for the underlying model.

2. Complexity index. The complexity of speech representa-
tions was characterized via a complexity index, (CI), which
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Figure 3. Modeling procedures. (a) “Voxelwise modeling.” Voxelwise models were fit in individual subjects using passive-listening data. To account for hemodynamic
response, a linearized 4-tap FIR filter spanning delayed effects at 2–8 s was used. Models were fit via L2-regularized linear regression. BOLD responses were predicted
based on fit voxelwise models on held-out passive-listening data. Prediction scores were taken as the Pearson’s correlation between predicted and measured
BOLD responses. For a given subject, speech-selective voxels were taken as the union of voxels significantly predicted by spectral, articulatory, or semantic models

(q(FDR) < 10−5, t-test). (b) “Assessment of attentional modulation.” Passive-listening models for single voxels were tested on cocktail-party data to quantify attentional
modulations in selectivity. In a given run, one of the speakers in a 2-speaker story was attended while the other speaker was ignored. Separate response predictions
were obtained using the isolated story stimuli for the attended speaker and for the unattended speaker. Since a voxel can represent information from both attended

and unattended stimuli, a linear combination of these predicted responses was considered with varying combination weights (wc in [0 1]). BOLD responses were
predicted based on each combination weight separately. Three separate prediction scores were calculated based on only the attended stimulus (wc = 1), based on only
the unattended stimulus (wc = 0), and based on the optimal combination of the 2 stimuli. A model-specific attention index, (AIm) was then computed as the ratio of
the difference in prediction scores for attended versus unattended stories to the prediction score for their optimal combination (see Materials and Methods).
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reflected the relative tuning of an ROI for low- versus high-
level speech features. The following intrinsic complexity lev-
els were assumed for the 3 speech models considered here:
(cspe, cart, csem) = (0.0, 0.5, 1.0). Afterward, CI was taken as the
average of the complexity levels weighted by the selectivity
indices:

CI =
∑

m
SImcm, m ∈ {

spe, art, sem
}

CI is in the range of [0, 1], where higher values indicate
stronger tuning for semantic features and lower values indicate
stronger tuning for spectral features.

Assessment of Attentional Modulations
In the second stage, we tested the passive-listening models on
cocktail-party data to quantify ROI-wise attentional modula-
tion in selectivity for corresponding model features and to find
the extent of the representation of unattended speech. These
analyses were repeated separately for the 3 speech models.

1. Model-specific attention index. To quantify the attentional
modulation in selectivity for speech features, we compared
prediction scores for attended versus unattended stories
in the cocktail-party experiment. Models fit using passive-
listening data were used to predict BOLD responses elicited
by 2-speaker stories. In each run, only one of the speakers in
a 2-speaker story was attended, whereas the other speaker
was ignored. Separate response predictions were obtained
using the isolated story stimuli for the attended and unat-
tended speakers. Since a voxel can represent information
on both attended and unattended stimuli, a weighted
linear combination of these predicted responses was
considered:

Rc = Rawc + Ru (1 − wc) ,

Where Ra and Ru are the predicted responses for the attended
and unattended stories in a given run; Rc is the combined
response and wc is the combination weight. We computed Rc

for each separate wc value in [0:0.1:1]. Note that Rc = Ra when
wc = 1.0; and Rc = Ru when wc = 0.0. We then calculated
single-voxel prediction scores for each wc value. An illustrative
plot of rc/rmax versus wc is given in Figure 3b, where rc denotes
the prediction scores and rmax denotes the maximum rc value
(the optimal combination). ra and ru are the prediction scores
for attended and unattended stories respectively. To quantify
the degree of attentional modulation, a model-specific attention
index (AIm) was taken as:

AIm = αm

(
ra − ru

rmax

)
m

, αm = (rmax)m∑
i (rmax)i

, m, i ∈ {
spe, art, sem

}
,

where rmax denotes an ideal upper limit for model performance,
and αm reflects the relative model performance under the
cocktail-party task. Note that AIm considers selectivity to the
underlying model features when calculating the degree of
attentional modulation.

2. Global attention index (gAI). We then computed gAI as fol-
lows:

gAI =
∑

m
AIm, m ∈ {

spe, art, sem
}

Both gAI and AIm are in the range [−1,1]. A positive index
indicates attentional modulation of selectivity in favor of the

attended stimuli and a negative index indicates attentional
modulation in favor of the unattended stimuli. A value of zero
indicates no modulation.

Colormap in Selectivity and Modulation Profile Flatmaps
The cortical flatmaps of selectivity and modulation profiles use
a colormap that shows the relative contributions of all 3 models
to the selectivity and attention profiles. For selectivity profiles,
a continuous colormap was created by assigning significantly
positive articulatory, semantic and spectral selectivity to the
red, green and blue (R, G, B) color channels, respectively. During
assignment, selectivity values were normalized to sum of one,
and then normalized to linearly map the interval [0.15 0.85] to
[0 1]. Distinct colors were assigned to 6 landmark selectivity
values: red for (1, 0, 0), green for (0, 1, 0), blue for (0, 0, 1), yellow for
(0.5, 0.5, 0), magenta for (0.5, 0, 0.5), and turquoise for (0, 0.5, 0.5).
The same procedures were also applied for creating a colormap
for modulation profiles.

Statistical Tests

Significance Assessments within Subjects
For each voxel-wise model, the significance of prediction scores
was assessed via a t-test; and resulting P values were false-
discovery-rate corrected for multiple comparisons (FDR; Ben-
jamini and Hochberg 1995).

A bootstrap test was used in assessments of SIm, CI, AIm,
and gAI within single subjects. In ROI analyses, speech-selective
voxels within a given ROI were resampled with replacement
10 000 times. For each bootstrap sample, mean prediction score
of a given model was computed across resampled voxels. Sig-
nificance level was taken as the fraction of bootstrap samples in
which the test metric computed from these prediction scores is
less than 0 (for right-sided tests) or greater than 0 (for left-sided
tests). The same procedure was also used for comparing pairs of
ROIs, where ROI voxels were resampled independently.

Significance Assessments Across Subjects
A bootstrap test was used in assessments of SIm, CI, AIm, and gAI
across subjects. In ROI analyses, ROI-wise metrics were resam-
pled across subjects with replacement 10 000 times. Significance
level was taken as the fraction of bootstrap samples where the
test metric averaged across resampled subjects is less than 0
(for right-sided tests) or greater than 0 (for left-sided tests). The
same procedure was also used for comparisons among pairs
of ROIs. Here, we used a more stringent significance definition
for across-subjects tests that focuses on effects consistently
observed in each individual subject. Therefore, an effect was
taken significant only if the same metric was found significant
in each individual subject.

Results
Attentional Modulation of Multilevel
Speech Representations

To examine the cortical distribution and strength of attention
modulations in speech representations, we first obtained a base-
line measure of intrinsic selectivity for speech features. For
this purpose, we fit voxelwise models using BOLD responses
recorded during passive listening. We built 3 separate mod-
els containing low-level spectral, intermediate-level articulatory,
and high-level semantic features of natural stories (de Heer et al.
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Figure 4. Selectivity for multilevel speech features. (a) “Model-specific selectivity indices.” Single-voxel prediction scores on passive-listening data were used to
quantify the selectivity of each ROI to underlying model features. Model-specific prediction scores were averaged across speech-selective voxels within each ROI and
normalized such that the cumulative score from all models was 1. The resultant measure was taken as a model-specific selectivity index, (SIm). SIm is in the range of

[0, 1], where higher values indicate stronger selectivity for the underlying model. Bar plots display SIm for spectral, articulatory, and semantic models (mean ± standard
error of mean (SEM) across subjects). Significant indices are marked with ∗ (P < 0.05; see Supplementary Fig. 3a–e for selectivity indices of individual subjects). ROIs in
perisylvian cortex are displayed (see Supplementary Fig. 2 for nonperisylvian ROIs; see Materials and Methods for ROI abbreviations). ROIs in LH and RH are shown in the
top and bottom panels, respectively. POPR and PreGR that did not have consistent speech selectivity in individual subjects were excluded (see Materials and Methods). (b)

“Intrinsic selectivity profiles.” Selectivity profiles of cortical ROIs averaged across subjects are shown on the cortical flatmap of a representative subject (S4). Significant
articulatory, semantic, and spectral selectivity indices of each ROI are projected to the red, green, and blue channels of the RGB colormap (see Materials and Methods).
This analysis only included ROIs with consistent selectivity for speech features in each individual subject. Medial and lateral views of the inflated hemispheres are

also shown. A progression from low–intermediate to high-level speech representations are apparent across bilateral temporal cortex in the superior–inferior direction;
consistently in all subjects (see Supplementary Fig. 4 for selectivity profiles of individual subjects). Meanwhile, semantic selectivity is dominant in many higher-order
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2017). Supplementary Fig. 1 displays the cortical distribution of
prediction scores for each model in a representative subject,
and Supplementary Table 2 lists the number of significantly
predicted voxels by each model in anatomical ROIs. We find
“spectrally selective voxels” mainly in early auditory regions
(bilateral HG/HS and PT; and left pSF) and bilateral SMG, and
“articulatorily selective voxels” mainly in early auditory regions
(bilateral HG/HS and PT; and left pSF), bilateral STG, STS, SMG,
and MFS as well as left POP and PreG. In contrast, “semantically
selective voxels” are found broadly across cortex except early
auditory regions (bilateral HG/HS and right PT).

To quantitatively examine cortical overlap among spectral,
articulatory, and semantic representations, we separately
measured the degree of functional selectivity for each feature
level via a model-specific selectivity index (SIm; see Materials
and Methods). Bar plots of selectivity indices are displayed in
Figure 4a for perisylvian cortex and in Supplementary Fig. 2 for
nonperisylvian cortex (see Supplementary Fig. 3a–e for single-
subject results). Distinct selectivity profiles are observed from
distributed selectivity for spectral, articulatory, and semantic
features (e.g., left PT and right pSTG) to strong tuning to a
single level of features (e.g., left IPS and PCC). The selectivity
profiles of the ROIs are also visualized on the cortical flatmap
projecting articulatory, semantic, and spectral selectivity indices
of each ROI to the red, green, and blue channels of the RGB
colormap as seen in Figure 4b (see Supplementary Fig. 4 for
selectivity profile flatmaps in individual subjects; see Materials
and Methods for colormap details). A progression from low–
intermediate to high-level speech representations is apparent
across bilateral temporal cortex in superior–inferior direction
(HG/HS → mSTG → mSTS → MTG) consistently in all subjects.
Furthermore, many higher-order regions in parietal (bilateral
AG, IPS, SPS, PrC, PCC, and POS) and frontal cortices (bilateral
PTR, IFS, MFG, SFS, and SFG; and left POP) manifest dominant
semantic selectivity consistently in all subjects (P < 0.05; see
Supplementary Fig. 3a–e for single-subject results). To examine
the hierarchical organization of the speech representations in a
finer scale, we also defined a complexity index, CI, that reflects
whether an ROI is relatively tuned for low-level spectral or
high-level semantic features. A detailed investigation of the
gradients in CI across 2 main auditory streams (dorsal and
ventral stream) was conducted (see Supplementary Results).
These results corroborate the view that speech representa-
tions are hierarchically organized across cortex with partial
overlap mostly in early and intermediate stages of speech
processing.

Next, we systematically examined attentional modulations
at each level of speech representation during a diotic cocktail-
party task. To do this, we recorded whole-brain BOLD responses
while participants listened to temporally overlaid spoken narra-
tives from 2 different speakers and attended to either a male or
female speaker in these 2-speaker stories. We used the spectral,
articulatory, and semantic models fit using passive-listening
data to predict responses during the cocktail-party task. Since
a voxel can represent information on both attended and unat-
tended stimuli, response predictions were expressed as a con-
vex combination of individual predictions for the attended and
unattended story within each 2-speaker story. Prediction scores

were computed based on estimated responses as the combi-
nation weights were varied in [0 1] (see Materials and Meth-
ods). Scores for the optimal combination model were compared
against the scores from the individual models for attended and
unattended stories. If the optimal combination model signifi-
cantly outperforms the individual models, it indicates that the
voxel represents information from both attended and unat-
tended stimuli.

Figure 5 displays prediction scores of the spectral, articula-
tory, and semantic models as a function of the combination
weight in representative ROIs, including HG, HS, and PT. Scores
based on only attended story (ra), based on only the unattended
story (ru), and based on the optimal combination of the two (rmax)
are marked. A diverse set of attentional effects are observed
for each type of model. For the “spectral model” in left HG/HS,
the optimal combination assigns matched weights to attended
and unattended stories, and rmax is larger than ra (P < 10−4). This
finding implies that spectral representations of the unattended
story are mostly maintained; and there is no apparent bias
toward the attended story at spectral level in left HG/HS. For the
“articulatory model” in left HG/HS, ra is larger than ru (P < 10−4),
whereas rmax is greater than ra (P < 10−2). Besides, the optimal
combination gives slightly higher weight to the attended versus
unattended story. This result suggests that attention moderately
shifts articulatory representations in left HG/HS in favor of the
attended stream such that articulatory representations of the
unattended story are preserved to a degree. For the “semantic
model” in left PT, ra is much higher than ru (P < 10−4). Besides, the
optimal combination assigns substantially higher weight to the
attended story in this case. This finding indicates that attention
strongly shifts semantic representations in left PT toward the
attended stimulus. A simple inspection of these results suggests
that attention may have distinct effects at various levels of
speech representation across cortex. Hence, a detailed quanti-
tative analysis is warranted to measure the effect of attention at
each level.

Level-Specific Attentional Modulations
To quantitatively assess the strength and direction of atten-
tional modulations, we separately investigated the modulatory
effects on spectral, articulatory, and semantic features across
cortex. To measure modulatory effects at each feature level, a
model-specific attention index (AIm) was computed, reflecting
the difference in model prediction scores when the stories were
attended versus unattended (see Materials and Methods). AIm

is in the range of [−1, 1]; a positive index indicates selectiv-
ity modulation in favor of the attended stimulus, whereas a
negative index indicates selectivity modulation in favor of the
unattended stimulus. A value of zero indicates no modulation.

Figure 6a and Supplementary Figure 7 display the atten-
tion index for spectral, articulatory, and semantic models
across perisylvian and nonperislyvian ROIs, respectively
(see Supplementary Fig. 8a–e for single-subject results). The
modulation profiles of the ROIs are also visualized on the
cortical flatmap, projecting articulatory, semantic, and spectral
attention indices to the red, green, and blue channels of the
RGB colormap as seen in Figure 6b (see Supplementary Fig. 9

regions within the parietal and frontal cortices (bilateral AG, IPS, SPS, PrC, PCC, POS, PTR, IFS, SFS, SFG, MFG, and left POP) (P < 0.05; see Supplementary Fig. 3a–e). These
results support the view that speech representations are hierarchically organized across cortex with partial overlap between spectral, articulatory, and semantic
representations in early to intermediate stages of auditory processing.
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Figure 5. Predicting cocktail-party responses. Passive-listening models were tested during the cocktail-party task by predicting BOLD responses in the cocktail-party
data. Since a voxel might represent information from both attended and unattended stimuli, response predictions were expressed as a convex combination of individual

predictions for the attended and unattended story within each 2-speaker story. Prediction scores were computed as the combination weights (wc) were varied in [0 1]
(see Materials and Methods). Prediction scores for a given model were averaged across speech-selective voxels within each ROI (rc). The normalized scores of spectral,
articulatory, and semantic models are displayed in several representative ROIs (HG/HS, HG/HS, and PT). Solid and dashed lines indicate mean and 95% confidence
intervals across subjects. Scores based on only the attended story (ra), based on only the unattended story (ru), and based on the optimal combination of the two (rmax)

are marked with circles. For the “spectral model” in left HG/HS, rmax is larger than ra (P < 10−4); and the optimal combination equally weighs attended and unattended
stories. For the “articulatory model” in left HG/HS, ra is larger than ru (P < 10−4), whereas rmax is greater than ra (P < 10−2). Besides, the optimal combination puts
slightly higher weight to attended story than unattended story. For the “semantic model” in left PT, ra is much higher than ru (P < 10−4), and the optimal combination

puts much greater weight to attended story than unattended one. These representative results imply that attention may have divergent effects at various levels of
speech representations across cortex.

for modulation profile flatmaps in individual subjects). Here
we discuss the attention index for each model individually.
“Spectral modulation” is not consistently significant in each
subject across perisylvian ROIs (P > 0.05). On the other hand,
moderate spectral modulation is found in right SFG consistently
in all subjects (P < 10−3). “Articulatory modulation” starts as early
as HG/HS bilaterally (P < 10−3). In the dorsal stream, it extends
to PreG and POP in the left hemisphere (LH) and to SMG in
the right hemisphere (RH; P < 10−2); and it becomes dominant
only in left PreG consistently in all subjects (P < 0.05). In the
ventral stream, it extends to left PTR and bilateral MTG (P < 10−2).
Articulatory modulation is also found—albeit generally less
strongly—in frontal regions (bilateral MFS; left MFG; and right
IFS and SFG) consistently in all subjects (P < 0.05). In the dorsal
stream, “semantic modulation” starts in PT and extends to POP
in LH (P < 10−2), whereas it is not apparent in the right dorsal
stream (P > 0.05). In the ventral stream, semantic modulation
starts in aSTG and mSTS bilaterally (P < 0.05). It extends to
MTG and PTR, and becomes dominant in both ends of the
bilateral ventral stream (P < 0.05). Lastly, semantic modulation is
observed widespread across higher-order regions within frontal
and parietal cortices consistently in all subjects (P < 0.05), with
the exception of left IPS (P > 0.05). Taken together, these results
suggest that attending to a target speaker alters articulatory and
semantic representations broadly across cortex.

Global Attentional Modulations
It is commonly assumed that attentional effects grow stronger
toward higher-order regions across the cortical hierarchy of
speech (Zion Golumbic et al. 2013; O’Sullivan et al. 2019; Regev
et al. 2019). Yet, a systematic examination of attentional modu-
lation gradients across dorsal and ventral streams is lacking. To

examine this issue, we measured overall attentional modulation
in each region via a gAI (see Materials and Methods). Similar
to the model-specific attention indices, a positive gAI indicates
modulations in favor of the attended stimulus, and a negative
gAI indicates modulations in favor of the unattended stimulus.

1. Dorsal stream. We first examined variation of gAI across
the dorsal stream (left dorsal-1: HG/HSL → PTL → (SMGL)
→ POPL, left dorsal-2: HG/HSL → PTL → (SMGL) → PreGL,
and right dorsal: HG/HSR → PTR → SMGR) as shown in
Figure 7. We find significant increase in gAI across the fol-
lowing left dorsal subtrajectories consistently in all subjects
(P < 0.05; see Supplementary Figure 11 for gradients in indi-
vidual subjects): gAIPT < gAISMG < gAIPOP and gAIPT <

gAISMG < gAIPreG. In contrast, we find no consistent gradient
in the right dorsal stream (P > 0.05). These results suggest
that attentional modulations grow progressively stronger
across the dorsal stream in LH.

2. Ventral stream. We then examined variation of gAI across
the ventral stream (left ventral-1: HG/HSL → mSTGL →
mSTSL → MTGL, left ventral-2: HG/HSL → mSTGL → aSTGL

→ PTRL, right ventral-1: HG/HSR → mSTGR → mSTSR →
MTGR and right ventral-2: HG/HSR → mSTGR → aSTGR →
PTRR), as shown in Figure 7. We find significant increase in
gAI across the following subtrajectories consistently in all
subjects (P < 0.05; see Supplementary Fig. 11 for gradients
in individual subjects): gAIHG/HS < gAImSTG < gAIaSTG and
gAIHG/HS < gAImSTG < gAImSTS in the left ventral stream, and
gAImSTG < gAIaSTG in the right ventral stream. In contrast, we
find no difference between aSTG and PTR bilaterally, between
mSTS and MTG in the left ventral stream, and between
HG/HS, mSTG, mSTS, and MTG in the right ventral stream
(P > 0.05). These results suggest that overall attentional
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Figure 6. Attentional modulation of multilevel speech representations. (a) “Model-specific attention indices.” A model-specific attention index (AIm) was computed
based on the difference in model prediction scores when the stories were attended versus unattended (see Materials and Methods). AIm is in the range of [−1,1], where
a positive index indicates modulation in favor of the attended stimulus and a negative index indicates modulation in favor of the unattended stimulus. For each

ROI in perisylvian cortex, spectral, articulatory, and semantic attention indices are given (mean ± SEM across subjects), and their sum yields the overall modulation
(see Supplementary Fig. 7 for nonperisylvian ROIs). Significantly positive indices are marked with ∗ (P < 0.05, bootstrap test; see Supplementary Fig. 8a–e for attention
indices of individual subjects). ROIs in the LH and RH are shown in top and bottom panels, respectively. These results show that selectivity modulations distribute
broadly across cortex at the linguistic level (articulatory and semantic). (b) “Attentional modulation profiles.” Modulation profiles averaged across subjects are displayed

on the flattened cortical surface of a representative subject (S4). Significantly positive articulatory, semantic, and spectral attention indices are projected onto the
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modulations gradually increase across the ventral stream,
and that the increases are more consistent in LH compared
with RH.

3. Representational complexity versus attentional modulation.
Visual inspection of Supplementary Figure 6b and Figure 7b
suggests that the subtrajectories with significant increases
in CI and in gAI overlap largely in left ventral stream and
partly in left dorsal stream. To quantitatively examine the
overlap in left ventral stream, we analyzed the correlation
between CI and gAI across the left-ventral subtrajectories
where significant increases in CI are observed. We find sig-
nificant correlations in HG/HS → mSTG → mSTS and in
HG/HS → mSTG → aSTG (r > 0.98, bootstrap test, P < 10−4)
consistently in all subjects. In line with a recent study arguing
for stronger attentional modulation and higher represen-
tational complexity in STG compared with HG (O’Sullivan
et al. 2019), our results indicate that attentional modula-
tion increases toward higher-order regions as the represen-
tational complexity increases across the dorsal and ven-
tral streams in LH (more apparent in ventral than dorsal
stream).

4. Hemispheric asymmetries in attentional modulation. To
assess potential hemispheric asymmetries in attentional
modulation, we compared gAI between the left and right
hemispheric counterparts of each ROI. This analysis was
restricted to ROIs with consistent selectivity for speech
features in both hemispheres in each individual subject
(see Materials and Methods). Supplementary Table 3 lists the
results of the across-hemisphere comparison. No consistent
hemispheric asymmetry is found across cortex with the
exception of mSTG having a left-hemispheric bias in gAI
consistently in all subjects (P < 0.05). These results indicate
that there is mild lateralization in attentional modulation of
intermediate-level speech features.

Cortical Representation of Unattended Speech

An important question regarding multispeaker speech percep-
tion is to what extent unattended stimuli are represented in
cortex. To address this question, here we investigated spectral,
articulatory, and semantic representations of unattended stories
during the cocktail-party task. We reasoned that if significant
information about unattended speech is represented in a brain
region, then features of unattended speech should explain sig-
nificant variance in measured BOLD responses. To test this, we
compared the prediction score of a combination model com-
prising the features of both attended and unattended stories
(optimal convex combination) against the prediction score of an
individual model comprising only the features of the attended
story (see Materials and Methods). If the combination model sig-
nificantly outperforms the individual model in an ROI, then the
corresponding features of unattended speech are significantly
represented in that ROI.

Figure 8 displays model performance when responses are
predicted based on speech features from the attended story

alone, and when they are instead predicted based on the opti-
mally combined features from the attended and unattended
stories. Results are shown for each ROI along the dorsal and
ventral streams and in the left and right hemispheres (see
Supplementary Fig. 12a–e for single-subject results). Along the
left (HG/HS → PT → SMG → (POP, PreG)) and right (HG/HS →
PT → SMG) dorsal stream, spectral features of unattended
speech are represented up to PT in LH and up to SMG in RH
(P < 0.01), articulatory features are represented bilaterally up to
PT (P < 0.05), whereas no semantic representation is apparent
(P > 0.05). Along the left ventral stream (HG/HS → mSTG →
mSTS → MTG and HG/HS → mSTG → aSTG → PTR), spectral
and articulatory features are represented in HG/HS (P < 10−4),
again with no semantic representation (P > 0.05). In the right
ventral stream (HG/HS → mSTG → mSTS → MTG and HG/HS →
mSTG → aSTG → PTR), spectral features are represented
in HG/HS; articulatory features are represented up to mSTG
(P < 0.05); and semantic features are represented only in mSTS
(P < 0.05). These results indicate that cortical representations of
unattended speech in multispeaker environments extend from
the spectral to the semantic level, albeit semantic representa-
tions are constrained to right parabelt auditory cortex (mSTS).
Furthermore, representations of unattended speech are more
broadly spread across the right hemisphere. Note that prior
studies have reported response correlations and anatomical
overlap between these belt/parabelt auditory regions and the
reorienting attention system in the right-hemisphere (Corbetta
et al. 2008; Vossel et al. 2014; Puschmann et al. 2017). There-
fore, relatively broader representations of unattended speech in
the right hemisphere might facilitate distractor detection and
filtering during auditory attention tasks.

Discussion
In this study, we investigated the effects of auditory attention
on multilevel speech representations across cortex during a
diotic cocktail-party task with naturalistic stimuli composed of
spoken narratives. To assess baseline selectivity for multilevel
speech features, we first fit spectral, articulatory, and semantic
models using responses recorded during passive listening. We
then quantified the complexity of intrinsic representations in
each brain region. Next, we used fit models that reflect baseline
selectivity for speech features to assess attentional modula-
tion of speech representations. To do this, responses predicted
using stimulus features of attended and unattended stories were
compared with responses recorded during the cocktail-party
task. This study is among the first to quantitatively characterize
attentional modulations in multilevel speech representations of
attended and unattended stimuli across speech-related cortex.

Attentional Modulations

The effects of auditory attention on cortical responses have been
primarily examined in the literature using controlled stimuli
such as simple tones, melodies, and isolated syllables or words
(Alho et al. 1999; Jäncke et al. 2001, 2003; Lipschutz et al. 2002;

red, green and blue channels of the colormap (see Materials and Methods). A progression in the level of speech representations dominantly modulated is apparent
from HG/HS to MTG across bilateral temporal cortex (see Supplementary Fig. 9 for modulation profiles of individual subjects). Articulatory modulation is dominant

in one end of the dorsal stream (left PreG), whereas semantic modulation becomes dominant in both ends of the ventral stream (bilateral PTR and MTG) (P < 0.05;
see Supplementary Figs. 8a–e and 9). On the other hand, semantic modulation is dominant in most of the higher-order regions in the parietal and frontal cortices
consistently in all subjects (bilateral AG, SPS, PrC, PCC, POS, SFG, SFS, and PTR; left MFG; and right IPS) (P < 0.05; see Supplementary Fig. 8a–e).
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Figure 7. Global attentional modulation. (a) “Global attention index.” To quantify overall modulatory effects on selectivity across all examined feature levels, global
attentional modulation (gAI) was computed by summing spectral, articulatory, and semantic attention indices (see Materials and Methods). gAI is in the range of [−1,1]
and a value of zero indicates no modulation. Colors indicate significantly positive gAI averaged across subjects (see legend; see Supplementary Fig. 10 for bar plots of

gAI across cortex). Dorsal and ventral pathways are shown with blue and green lines, respectively: left dorsal-1 (LD-1), left dorsal-2 (LD-2) and right dorsal (RD), left
ventral-1 (LV-1), left ventral-2 (LV-2), right ventral-1 (RV-1) and right ventral-2 (RV-2). Squares mark regions where pathways begin; arrows mark regions where pathways
end; and circles mark relay regions in between. (b) “Modulation hierarchies.” Bar plots display gAI (mean ± SEM across subjects) along LD-1, LD-2, RD, LV-1, LV-2, RV-1 and
RV-2, shown in separate panels. Significant differences in gAI between consecutive ROIs are marked with brackets (P < 0.05, bootstrap test; see Supplementary Fig. 11

for single-subject results). Significant gradients in gAI are gAIPT < gAISMG < gAIPOP in LD-1, gAIPT < gAISMG < gAIPreG in LD-2, gAIHG/HS < gAImSTG < gAImSTS in LV-1,
gAIHG/HS < gAImSTG < gAIaSTG in LV-2, and gAImSTG < gAIaSTG in RV-2. In the LH, gAI gradually increases from early auditory regions to higher-order regions across the
dorsal and ventral pathways. Similar patterns are also observed in the right hemisphere, although the gradients in gAI are less consistent across subjects.

Petkov et al. 2004; Johnson and Zatorre 2005; Degerman et al.
2006; Rinne et al. 2005, 2008; Rinne 2010; Woods et al. 2009, 2010;
Paltoglou et al. 2009; Da costa et al. 2013; Seydell-Greenwald et al.
2014; Riecke et al. 2017). As such, less is known regarding how
attention alters hierarchical representations of natural speech.

Recent studies on this topic have mainly reported attentional
modulations of low-level speech representations comprising
speech-envelope and spectrogram features in early auditory and
higher-order regions during the cocktail-party task (Mesgarani
and Chang 2012; Ding and Simon 2012a, 2012b; Zion Golumbic
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Figure 8. Representation of unattended speech. Passive-listening models were tested on cocktail-party data to assess representation of unattended speech during

the cocktail-party task. Prediction scores were calculated separately for a combination model comprising features of both attended and unattended stories (rmax :
optimal convex combination) and an individual model only comprising features of the attended story (ra). Significant difference in prediction between the 2 models
is an indication that BOLD responses carry significant information on unattended speech. Bar plots display normalized prediction scores (mean ± SEM across
subjects; combination model in light gray and individual model in gray). Significant scores are marked with ∗ (P < 10−4, bootstrap test; see Supplementary Fig. 12a–e

for single-subject results), and significant differences are marked with brackets (P < 0.05). Prediction scores are displayed for ROIs in the dorsal and ventral
streams, with significant selectivity for given model features. (a) “LH.” “Spectral representations” of unattended speech extend up to PT across the dorsal stream
(HG/HS → PT → SMG → (POP, PreG)) and are constrained to HG/HS across the ventral stream (HG/HS → mSTG → mSTS → MTG and HG/HS → mSTG → aSTG → PTR).
“Articulatory representations” of unattended speech extend up to PT across the dorsal stream and are constrained to HG/HS across the ventral stream. No “significant
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et al. 2013; Puvvada and Simon 2017; Puschmann et al. 2019).
Going beyond, here we have explored attentional modulations
spanning from low-level spectral to high-level semantic fea-
tures. Although our results indicate that attentional modula-
tions for articulatory and semantic representations distribute
broadly across cortex, we find no consistent modulations for
spectral representations in speech-related regions. Note that
speech envelope and spectrogram features in natural speech
carry intrinsic information about linguistic features including
syllabic boundaries and articulatory features (Ding and Simon
2014; Di Liberto et al. 2015). These stimulus correlations can
render it challenging to dissociate unique selectivity for articula-
tory versus spectral features. To minimize biases from potential
stimulus correlations, here we leveraged a decorrelation pro-
cedure to obtain orthogonal spectral, articulatory, and seman-
tic feature matrices for the stimulus. Therefore, the distinct
modeling procedures for natural speech features might have
contributed to the disparities between the current and previous
studies on the existence of spectral modulations.

An important question regarding auditory attention is how
the strength of attentional effects is distributed across cortex.
A common view is that attentional modulations grow relatively
stronger toward later stages of processing (Zion Golumbic et al.
2013). Recent studies support this view by reporting bilaterally
stronger modulations in frontal versus temporal cortex (Regev
et al. 2019) and in nonprimary versus primary auditory cortex
(O’Sullivan et al. 2019). Adding to this body of evidence, we
further show that attentional modulations gradually increase
across the dorsal and ventral streams in the LH, as the
complexity of speech representations grow. Although a similar
trend is observed across the right hemisphere, gradients in
attentional modulation are less consistent in right belt and
parabelt auditory regions including PT. Furthermore, attentional
modulations are weaker in the right versus LH within these
regions. Note that belt and parabelt regions are suggested to
be connected to the right temporoparietal junction (TPJ) during
selective listening (Puschmann et al. 2017). TPJ is one of the
central nodes in the reorienting attention system that monitors
salient events to filter out distractors and help maintaining
focused attention (Corbetta and Shulman 2002; Corbetta et al.
2008; Vossel et al. 2014). Hence, less consistent gradients and
relatively weaker attentional modulations in right belt and
parabelt auditory regions might suggest a functional role for
these regions in detecting salient events within the unattended
stream during selective listening tasks.

Another central question regarding mechanisms of selective
attention in a multispeaker environment is how attentional
modulations distribute across well-known dorsal and ventral
streams. The dorsal stream that hosts articulatory represen-
tations is commonly considered to be involved in sound-
to-articulation mapping (Hickok and Poeppel 2007, 2016;
Rauschecker and Scott 2009; Friederici 2011; Rauschecker
2011). The motor-theory of speech perception suggests that
dorsal articulatory representations carry information about
articulatory gestures of the speaker to facilitate the listener’s
comprehension (Liberman and Mattingly 1985; Hickok and
Poeppel 2004; Davis and Johnsrude 2007; Scott et al. 2009b;

Möttönen et al. 2013). Recent studies support this account by
reporting enhanced activity in precentral gyrus and premotor
cortex during challenging listening conditions (Osnes et al. 2011;
Hervais-Adelman et al. 2012; Wild et al. 2012). In accordance
with the motor theory of speech perception, here we find
predominant articulatory selectivity and modulation due to
selective listening in one end of the dorsal stream (PreG). These
articulatory modulations might serve to increase sensitivity to
the target speaker’s gestures to facilitate speech comprehension
during difficult cocktail-party tasks (Wild et al. 2012).

In contrast to the dorsal stream, the ventral stream has
been implicated in sound-to-meaning mapping (Hickok and
Poeppel 2007, 2016; Rauschecker and Scott 2009; Friederici 2011;
Rauschecker 2011). Compatible with this functional role, the
ventral stream is suggested to transform acoustic represen-
tations of linguistic stimuli into object-based representations
(Bizley and Cohen 2013). Here, we find that representational
complexity of the speech features gradually increases across
bilateral ventral stream, and semantic representations become
dominant at the ends of it (bilateral PTR and MTG). In addition,
speech level of attentional modulation also progresses across
the ventral stream, and strong and predominant semantic mod-
ulations manifest toward later stages. Hence, the ventral stream
might serve as a stage for interplay between bottom-up pro-
cessing and top-down attentional modulation to gradually form
auditory objects during selective listening (Bizley and Cohen
2013; Shinn-Cunningham et al. 2017; Rutten et al. 2019).

Representation of the Unattended Speech

Whether unattended speech is represented in cortex during
selective listening and if so, at what feature levels its represen-
tations are maintained are crucial aspects of auditory attention.
Behavioral accounts suggest that unattended speech is primar-
ily represented at the acoustic level (Cherry 1953; Broadbent
1958). Corroborating these accounts, recent electrophysiology
studies have identified acoustic representations of unattended
speech localized to auditory cortex (Ding and Simon 2012a,
2012b; Zion Golumbic et al. 2013; Puvvada and Simon 2017;
Brodbeck et al. 2018b; O’Sullivan et al. 2019; Puschmann et al.
2019). In contrast, here we find that acoustic representations
of unattended speech extend beyond the auditory cortex as far
as SMG in the right dorsal stream. Because SMG partly over-
laps with the reorienting attention system, unattended speech
representations in this region might contribute to filtering of
distractors during the cocktail-party task (Corbetta et al. 2008;
Vossel et al. 2014).

A more controversial issue is whether unattended speech
representations carry information at the linguistic level (Driver
2001; Lavie 2005; Boulenger et al. 2010; Bronkhorst 2015; Kidd
and Colburn 2017). Prior studies on this issue are split between
those suggesting the presence (Wild et al. 2012; Evans et al.
2016) versus absence (Sabri et al. 2008; Brodbeck et al. 2018b)
of linguistic representations. Here, we find that articulatory
representations of unattended speech extend up to belt/parabelt
auditory areas in the bilateral dorsal stream and the right ventral
stream. We further find semantic representation of unattended

semantic representation” is apparent. (b) “Right hemisphere.” “Spectral representations” of unattended speech extend up to SMG across the dorsal stream and are

constrained to HG/HS across the ventral stream. “Articulatory representations” of unattended speech extend up to PT across the dorsal stream, and up to mSTG across
the ventral stream. “Semantic representations” are found only in mSTS. These results suggest that processing of unattended speech is not constrained at spectral
level but extends to articulatory and semantic level.
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speech in the right ventral stream (mSTS). These linguistic rep-
resentations of unattended speech are naturally weaker than
those of attended speech, and they are localized to early-to-
intermediate stages of auditory processing. Our findings sug-
gest that unattended speech is represented at the linguistic
level prior to entering the broad semantic system where full
selection of the attended stream occurs (Bregman 1994; Pul-
vermüller and Shtyrov 2006; Relander et al. 2009; Näätänen
et al. 2011; Rämä et al. 2012; Bronkhorst 2015; Ding et al. 2018).
Overall, these linguistic representations might serve to direct
exogenous triggering of attention to salient features in unat-
tended speech (Moray 1959; Treisman 1960, 1964; Wood and
Cowan 1995; Driver 2001; Bronkhorst 2015). Meanwhile, atten-
uated semantic representations in the ventral stream might
facilitate semantic priming of the attended stream by relevant
information in the unattended stream (Lewis 1970; Driver 2001;
Rivenez et al. 2006).

Future Work

Reliability of statistical assessments in neuroimaging depends
on 2 main factors: sample size and amount of data collected per
subject. Given experimental constraints, it is difficult to increase
both factors in a single study. In this unavoidable trade-off, a
common practice in fMRI studies is to collect a relatively limited
dataset from more subjects. This practice prioritizes across-
subject variability over within-subject variability, at the expense
of individual-subject results. Diverting away from this practice,
we collected a larger amount of data per subject to give greater
focus to reliability in single subjects. This choice is motivated by
the central aims of the voxelwise modeling (VM) approach. The
VM framework aims to sensitively measure tuning profiles of
single voxels in individual subjects. For the natural speech per-
ception experiments conducted here, the tuning profiles were
characterized over 3 separate high-dimensional spaces contain-
ing hundreds of acoustic and linguistic features. To maximize
sensitivity of VM models, we conducted extensive experiments
in each individual subject to increase the amount and diversity
of fMRI data collected. This design enhanced the quality of
resulting VM models and reliability of individual-subject results.
Indeed, here we find highly uniform results across individual
subjects, suggesting that the reported effects are highly robust.
That said, across subject and across language variability might
occur in diverse, multilingual cohorts. Assessment of attentional
effects on speech representations in these broader populations
remains important future work.

In the current study, subjects were presented continuous
natural speech stimuli. In the passive-listening task, they were
instructed to vigilantly listen to the presented story. Our anal-
yses reveal that BOLD responses in large swaths of language-
related areas can be significantly predicted by voxel-wise mod-
els comprising spectral, articulatory and semantic speech fea-
tures. Moreover, the spectral, articulatory and semantic rep-
resentations mapped in single subjects are highly consistent
across subjects. Therefore, these results suggest that the partic-
ipants performed reasonably well in active listening of single-
speaker stories. In the cocktail-party experiment, subjects were
instead instructed to attentively listen to one of 2 speakers. Our
analyses in this case reveal broad attentional modulations in
representation of semantic information across cortex, in favor
of the target speaker. Semantic features of natural speech show
gradual variation across time compared with low-level spectral
information. Therefore, this finding suggests that subjects also

performed well during the sustained attention tasks in the
cocktail-party task. That said, we cannot rule out momentary
shifts in attention away from the target speaker. If momentary
shifts toward the unattended speaker are frequent, they might
increase the proportion of unattended speech information that
BOLD responses carry. In turn, this might have contributed
to the strength of unattended speech representations that we
measured during the cocktail-party task. Postscan question-
naires that assess participants’ comprehension of attended and
unattended stories are a common control for task execution
(Regev et al. 2019). However, postscan memory controls cannot
guarantee the lack of momentary attention shifts that typically
last less than 200 ms (Spence and Driver 1997). On the other
hand, implementing frequent controls during the scan itself
would disrupt the naturalistic experiment flow and efficiency. It
is therefore challenging to experimentally monitor momentary
attentional shifts (Bronkhorst 2015). To assess the influence
of momentary shifts during sustained-attention tasks, future
studies are warranted leveraging more controlled speech stimuli
with systematic variations in the salience and task relevance of
nontarget stimuli (Corbetta et al. 2008; Parmentier et al. 2014;
Bronkhorst 2015).

In the current study, we find that attention strongly
alters semantic representations in favor of the target stream
across frontal and parietal cortices. This is in alignment
with previous fMRI studies that found attentional response
modulations in frontal and parietal regions (Hill and Miller 2010;
Ikeda et al. 2010; Regev et al. 2019). That said, an important
question is whether these modulations predominantly reflect
enhanced bottom-up processing of attended speech or top-
down attentional control signals (Corbetta and Shulman 2002;
Seydell-Greenwald et al. 2014). Note that we find broad semantic
representations across frontal and parietal cortices during the
passive-listening experiment, in the absence of any demanding
attentional tasks. Furthermore, a recent study suggests that
various semantic categories are differentially represented in
these higher-level cortical regions (Huth et al. 2016). Taken
together, these findings imply that semantic modulations in
frontoparietal regions can be partly attributed to bottom-up
effects. Yet, it is challenging to disentangle bottom-up and top-
down contributions in fMRI studies due to the inherently limited
temporal resolution. Future studies are warranted to shed light
on this issue by combining the spatial sampling capability
of fMRI with high temporal resolution of electrophysiology
methods (Çukur et al. 2013; de Heer et al. 2017).

Conclusion
In sum, our results indicate that attention during a diotic
cocktail-party task with naturalistic stimuli gradually selects
attended over unattended speech across both dorsal and
ventral processing pathways. This selection is mediated by
representational modulations for linguistic features. Despite
broad attentional modulations in favor of the attended
stream, we still find that unattended speech is represented
up to linguistic level in the regions that overlap with the
reorienting attention system. These linguistic representations of
unattended speech might facilitate attentional reorienting and
filtering during natural speech perception. Overall, our findings
provide comprehensive insights on attentional mechanisms
that underlie the ability to selectively listen to a desired speaker
in noisy multispeaker environments.
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