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a b s t r a c t 

Multi-contrast MRI protocols increase the level of morphological information available for diagnosis. Yet, 

the number and quality of contrasts are limited in practice by various factors including scan time and 

patient motion. Synthesis of missing or corrupted contrasts from other high-quality ones can alleviate 

this limitation. When a single target contrast is of interest, common approaches for multi-contrast MRI 

involve either one-to-one or many-to-one synthesis methods depending on their input. One-to-one meth- 

ods take as input a single source contrast, and they learn a latent representation sensitive to unique fea- 

tures of the source. Meanwhile, many-to-one methods receive multiple distinct sources, and they learn 

a shared latent representation more sensitive to common features across sources. For enhanced image 

synthesis, we propose a multi-stream approach that aggregates information across multiple source im- 

ages via a mixture of multiple one-to-one streams and a joint many-to-one stream. The complementary 

feature maps generated in the one-to-one streams and the shared feature maps generated in the many- 

to-one stream are combined with a fusion block. The location of the fusion block is adaptively modified to 

maximize task-specific performance. Quantitative and radiological assessments on T 1 ,- T 2 -, PD-weighted, 

and FLAIR images clearly demonstrate the superior performance of the proposed method compared to 

previous state-of-the-art one-to-one and many-to-one methods. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Magnetic resonance imaging (MRI) enables a given anatomy to 

e imaged under different tissue contrasts by simply manipulating 

ulse sequences. In turn, images acquired in several distinct con- 

rasts help better distinguish tissues and increase diagnostic infor- 

ation. For instance, gray and white matter can be better delin- 

ated in T 1 -weighted brain images, whereas fluids and cortical tis- 

ues can be better delineated in PD-weighted images. Yet, multi- 

ontrast acquisitions often prove impractical due to scan time lim- 

tations or excessive artifacts related to patient motion ( Krupa and 

ekiesi ́nska-Figatowska, 2015; Thukral, 2015 ). Therefore, within- 

omain synthesis of missing or corrupted contrasts from other 

igh-quality contrasts is a promising tool to improve the clinical 

easibility and utility of multi-contrast MRI ( Iglesias et al., 2013 ). 
∗ Corresponding author. 

E-mail address: cukur@ee.bilkent.edu.tr (T. Çukur). 
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Prior methods proposed for synthesis of a single target con- 

rast within a multi-contrast MRI protocol can be grouped un- 

er two main titles depending on their input: one-to-one meth- 

ds ( Abramian and Eklund, 2019; Bowles et al., 2016; Dar et al., 

019; Dewey et al., 2018; 2019; Li et al., 2014; Liu, 2019; Sevetlidis 

t al., 2016; Sohail et al., 2019; Van Nguyen et al., 2015; Welander 

t al., 2018; Yang et al., 2018 ) and many-to-one methods ( Chartsias 

t al., 2017; Dar et al., 2020; Dewey et al., 2018; 2019; Hagiwara 

t al., 2019; Joyce et al., 2017; Lee et al., 2019; Lei et al., 2020; Li

t al., 2019; Mehta and Arbel, 2018; Olut et al., 2018; Sharma and 

amarneh, 2019; Wei et al., 2018b ). One-to-one synthesis aims to 

enerate a subject’s image y in a target contrast c T from the same 

ubject’s image x in a source contrast c S . Earlier studies have for- 

ulated one-to-one synthesis as a sparse dictionary reconstruc- 

ion problem ( Huang et al., 2016; 2017; 2018; Jog et al., 2015b; 

oy et al., 2011; 2013a; 2013b; 2016 ), where patch-based dictio- 

aries are formed from a set of co-registered atlas image b S of c S 
nd atlas image b of c . Each patch in x is expressed as a sparse
T T 

https://doi.org/10.1016/j.media.2020.101944
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101944&domain=pdf
mailto:cukur@ee.bilkent.edu.tr
https://doi.org/10.1016/j.media.2020.101944
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inear combination of dictionary atoms of b S , and this combina- 

ion is then used for synthesizing y from b T ( Huang et al., 2016;

017; 2018; Jog et al., 2015b; Roy et al., 2011; 2013a; 2013b; 2016 ).

or improved performance, patch-based non-linear regression us- 

ng random forests ( Jog et al., 2015b ) or location-sensitive neural 

etworks ( Van Nguyen et al., 2015 ) has been proposed for source 

o target mapping. To overcome limitations due to patch-based 

rocessing, later studies have proposed deep network models that 

rocess the entire source image with convolutional layers ( Li et al., 

014; Sevetlidis et al., 2016 ). One powerful method is based on the 

ncoder-decoder architecture ( Sevetlidis et al., 2016 ), where latent 

epresentations of the source image are embedded via an encoder, 

nd the target image is then recovered via a decoder from these 

epresentations ( Sevetlidis et al., 2016 ). Recent deep network mod- 

ls have further incorporated an adversarial loss to better capture 

he high frequency details in the target image ( Abramian and Ek- 

und, 2019; Dar et al., 2019; Sohail et al., 2019; Welander et al., 

018; Yang et al., 2018; Yu et al., 2018; 2019 ). An important adver-

arial method is pGAN ( Dar et al., 2019 ), which additionally utilizes 

ixel-wise and perceptual losses ( Johnson et al., 2016 ) to enhance 

he synthesis performance. 

When several source contrasts are available in a multi-contrast 

RI protocol, a natural alternative is to perform many-to-one syn- 

hesis ( Chartsias et al., 2017; Dar et al., 2020; Dewey et al., 2018;

019; Hagiwara et al., 2019; Jog et al., 2014; 2015; 2016; Joyce 

t al., 2017; Lee et al., 2019; Lei et al., 2020; Li et al., 2019; Mehta

nd Arbel, 2018; Olut et al., 2018; Sharma and Hamarneh, 2019; 

ei et al., 2018b ). In this approach, the goal is to generate the sub-

ect’s image y in the target contrast c T from a collection of source 

mages X = { x m 

: m = 1 , 2 , . . . , K} in varying contrasts C S = { c S m :
 = 1 , 2 , . . . , K} . As in one-to-one synthesis, a common method is

o perform non-linear regression using random forests ( Jog et al., 

014; 2016 ). The random-forest method in Jog et al. (2016) fits a 

on-linear regression model in feature space to estimate intensities 

f the target contrast given multiple source contrasts ( Jog et al., 

016 ). Deep neural network methods have also been proposed 

or many-to-one synthesis ( Chartsias et al., 2017; Dewey et al., 

018; 2019; Mehta and Arbel, 2018; Joyce et al., 2017 ). In Chartsias

t al. (2017) , latent representations of multiple source contrast im- 

ges are encoded through separate encoder architectures. These la- 

ent representations are then used to synthesize the target image 

hrough a joint decoder architecture ( Chartsias et al., 2017 ). Sim- 

lar to one-to-one methods, recent studies have leveraged an ad- 

ersarial loss to improve the quality of many-to-one synthesis ( Dar 

t al., 2020; Hagiwara et al., 2019; Lee et al., 2019; Li et al., 2019;

lut et al., 2018; Sharma and Hamarneh, 2019; Wei et al., 2018b ). 

n important example is MM-GAN ( Sharma and Hamarneh, 2019 ), 

hich learns recovery of missing (target) contrasts from a collec- 

ion of available source contrasts. MM-GAN receives as input the 

oncatenation of the sources, and treats them as separate informa- 

ion channels ( Sharma and Hamarneh, 2019 ). 

In general, one-to-one synthesis methods attempt to recover 

he target image from the latent representation of a given source 

mage. Since these methods are optimized for a single input chan- 

el, they can sensitively learn the unique, detailed features of 

he given source contrast. While this sensitivity can be preferable 

hen the images of the source and target contrast are highly cor- 

elated, it might limit synthesis performance when the two con- 

rasts are weakly linked. On the other hand, many-to-one syn- 

hesis methods aim to recover the target image from a shared 

atent representation of multiple source images. These methods 

aturally manifest increased sensitivity for capturing features that 

re shared across distinct source contrasts, even when these fea- 

ures are weakly present in individual contrasts. Yet, a shared la- 

ent representation might also be less sensitive to complemen- 

ary features that are uniquely present in a specific source con- 
2 
rast. When such unique information is predominantly predic- 

ive of the target image, many-to-one synthesis might perform 

uboptimally. 

Here, we propose a novel method, multi-stream generative ad- 

ersarial network (mustGAN), for enhanced image synthesis in 

ulti-contrast MRI. To alleviate limitations of one-to-one and 

any-to-one synthesis, mustGAN leverages both shared and com- 

lementary features of multiple source images via a mixture of 

ultiple one-to-one streams and a joint many-to-one stream. The 

omplementary feature maps generated in the one-to-one streams 

nd the shared feature maps generated in the many-to-one stream 

re later combined with a fusion block. The optimal position of 

he fusion block is searched over network layers to maximize task- 

pecific performance. A joint network is then trained to recover the 

arget image from the fused feature maps. Comprehensive quanti- 

ative assessments and radiological evaluations are performed on 

ulti-contrast MR images (T 1 -, T 2 -, PD-weighted, and FLAIR im- 

ges) from healthy subjects and high/low grade glioma patients. 

he proposed method yields both quantitatively and qualitatively 

igher performance in multi-contrast MRI synthesis compared to 

tate-of-the-art one-to-one and many-to-one methods. 

. Theory 

.1. Generative adversarial networks 

A generative adversarial network (GAN) consists of a pair of 

ompeting networks; a generator ( G ) and a discriminator ( D ) 

 Goodfellow et al., 2014 ). Recently, GAN models have been suc- 

essfully demonstrated for various tasks including data augmen- 

ation ( Bermudez et al., 2018; Bowles et al., 2018; Calimeri et al., 

017 ) and image synthesis ( Beers et al., 2018; Han et al., 2018;

hao et al., 2018 ). In an image synthesis task, G maps a random

oise vector z to an output image y from a target distribution p(y ) , 

 : z → y, and D estimates the probability that a sample s is drawn

rom p(y ) , D : s . While G is trained to synthesize fake images that

re indistinguishable from real images, D is trained to discriminate 

etween real and generated images ( Goodfellow et al., 2014 ). This 

an be formulated as a minimax game based on an adversarial loss 

unction L GAN . 

in 

G 
max 

D 
L GAN = min 

G 
max 

D 

(
E y [ logD ( y ) ] + E z [ log ( 1 − D ( G ( z ) ) ) ] 

)

(1) 

here E denotes expectation. To improve stability, the negative 

og-likelihood in L GAN is typically replaced by a squared loss func- 

ion ( Mao et al., 2017 ): 

 GAN = −E y 

[
( D ( y ) − 1 ) 

2 
]

− E z 

[
D ( G ( z ) ) 

2 
]

(2) 

.2. Conditional generative adversarial networks 

Recent studies on image-to-image translation have demon- 

trated that conditional GANs (condGANs) are highly effective in 

apping between statistically-dependent source and target images 

 Cai et al., 2019; Choi et al., 2018; 2020; Litjens et al., 2017; Mirza

nd Osindero, 2014; Ran et al., 2019; Ravì et al., 2019; Rubin et al., 

019; Wang et al., 2019; Xu et al., 2020; Yi et al., 2019 ), i.e., when

hese images manifest the same underlying scene in distinct do- 

ains. To capture this dependency, condGANs take as input the 

ource image x as prior information ( Mirza and Osindero, 2014 ). 

he adversarial loss is then expressed as: 

 condGAN = −E x,y 

[
( D ( x, y ) − 1 ) 

2 
]

− E x 

[
D ( G ( x ) ) 

2 
]

(3) 

hen source and target images are spatially registered, a pixel- 

ise loss can be added between the ground truth and generated 
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mages ( Isola et al., 2017 ): 

 pixel −wise = E x,y 

[∣∣∣∣y − G ( x ) 
∣∣∣∣

1 

]
(4) 

he joint loss function then becomes: 

 condGAN = −E x,y 

[
( D ( x, y ) − 1 ) 

2 
]

− E x 

[
D ( x, G ( x ) ) 

2 
]

+ E x,y 

[∣∣∣∣y − G ( x ) 
∣∣∣∣

1 

]
(5) 

In a previous study, we have demonstrated that condGAN-based 

rchitectures yield state-of-the-art performance for one-to-one MR 

mage synthesis, e.g., T 1 → T 2 and T 2 → T 1 ( Dar et al., 2019 ).

et, numerous different contrasts are often collected in an MR 

xam. When multiple source images are available, many-to-one 

ondGAN models may offer improved performance. Given K source 

ontrast images denoted as X = { x m 

: m = 1 , 2 , . . . , K} , a many-to-

ne condGAN model is formulated as: 

 condGAN = −E X,y 

[
( D ( X, y ) − 1 ) 

2 
]

− E X 

[
D ( X, G ( X ) ) 

2 
]

+ E X,y 

[∣∣∣∣y − G ( X ) 
∣∣∣∣

1 

]
(6) 

ote that this formulation corresponds to a single-stream many-to- 

ne network that concatenates multiple source images at the input 

evel. 

. Methods 

.1. Multi-Stream GAN model 

Here, we propose a multi-stream GAN architecture (mustGAN) 

hat leverages information from multiple source contrasts by adap- 

ively combining one-to-one and many-to-one streams ( Fig. 1 ). To 

ynthesize the target image y, mustGAN receives as input a collec- 

ion of source images denoted as X = { x m 

: m = 1 , 2 , . . . , K} . First,

ustGAN learns K independent one-to-one streams, where each 

tream is a condGAN model trained to generate the target im- 

ge from a distinct source image. Second, mustGAN learns a sin- 

le many-to-one stream -again a condGAN model- that is trained 

o generate the target image from all source images concatenated 

t the input level. mustGAN then fuses the unique feature maps 

enerated in the one-to-one streams and the shared feature maps 

enerated in the many-to-one stream. The position of the fusion 

lock is searched over pre-defined network levels to maximize 

ask-specific performance. Finally, mustGAN trains a joint network 

hat synthesizes the target image given the fused feature maps. 

he architecture of this joint network varies depending on the po- 

ition of the fusion block. 

.1.1. One-to-One streams 

The proposed architecture contains K separate one-to-one 

treams, where the m th stream learns to synthesize y from the 

ource contrast image x m 

via a generator G m 

and a discrimina- 

or D m 

. G m 

consists of three sub-networks: an encoder (e m 

) with 

 e convolutional layers, a residual network (r m 

) with n r ResNet 

locks, and a decoder (d m 

) with n d convolutional layers. G m 

is ex- 

ressed as: 

ˆ 
 m 

= G m 

( x m 

) = d m 

( r m 

( e m 

( x m 

) ) ) (7) 

here ˆ y m 

denotes the predicted target image. Meanwhile, D m 

is a 

onvolutional network (c m 

) with n c layers: 

 m 

( x m 

, s ) = c m 

( x m 

, s ) (8) 

here s is either G m 

(x m 

) or y . To train G m 

and D m 

, adversarial and

ixel-wise losses are used: 

 m 

= −E x m ,y 

[
( D m 

( x m 

, y ) − 1 ) 
2 
]

− E x m 

[
D m 

( x m 

, G m 

( x m 

) ) 
2 
]

+ E x m ,y 

[∣∣∣∣y − G m 

( x m 

) 
∣∣∣∣

1 

]
(9) 

 m 

aims to map x m 

to y, and D m 

aims to discriminate between ˆ y m 

nd y . 
3 
.1.2. Many-to-One stream 

mustGAN contains a (K + 1) th stream that performs many-to- 

ne synthesis given all source images. This generator G K+1 again 

onsists of an encoder ( e K+1 ) with n e convolutional layers, a resid- 

al network ( r K+1 ) with n r ResNet blocks, and a decoder ( d K+1 )

ith n d convolutional layers: 

ˆ 
 K+1 = G K+1 (X ) = d K+1 ( r K+1 ( e K+1 ( X ) ) ) (10) 

he discriminator D K+1 containing n c convolutional layers is for- 

ulated as: 

 K+1 (X, s ) = c K+1 (X, s ) (11) 

here s is either G K+1 (X ) or y . The loss function for the (K + 1) th

tream is given as: 

 K+1 = −E X,y 

[
( D K+1 ( X, y ) − 1 ) 

2 
]

− E X 

[
D K+1 ( X, G K+1 ( X ) ) 

2 
]

+ E X,y 

[∣∣∣∣y − G K+1 ( X ) 
∣∣∣∣

1 

]
(12) 

 K+1 learns to predict y given x 1 , x 2 , . . . , x K concatenated at the in-

ut level, and D K+1 learns to discriminate between ˆ y K+1 and y . 

.1.3. Joint network 

Once the K + 1 streams are trained, source images are propa- 

ated separately through the streams up to the fusion block f posi- 

ioned at the i th network layer. f combines the feature maps gen- 

rated at the i th layer of the one-to-one and many-to-one streams 

y performing concatenation. A joint network ( J) is then trained 

o recover the target contrast image from the fused feature maps. 

he position of the fusion block, i, is searched over n e + n r + n d − 1

ossible positions in the network to maximize task-specific perfor- 

ance, where n e denotes the number of network layers in the en- 

oders, n r denotes the number of network layers in the residual 

locks, and n d denotes the number of network layers in the de- 

oders. Therefore, there are n e + n r + n d − 1 possible architectures 

or J depending on the fusion block position. mustGAN chooses the 

ask-optimal fusion strategy among these options, so the embodied 

oint network receives the fused feature maps from a single net- 

ork layer. To simplify analytical descriptions, we separated the 

recise architectures of J under three distinct fusion titles: early, 

ntermediate, and late. 

Early Fusion: Early fusion occurs when f is within the encoder 

i.e., 0 < i < n e ). The feature maps generated by the m th one-to-

ne stream ( g i m 

) and by the many-to-one stream ( g i 
K+1 

) at the i th

ayer are formulated as: 

g i m 

= e m 

(x m 

| i ) 
 

i 
K+1 = e K+1 (X | i ) (13) 

hese feature maps are concatenated by f yielding the fused fea- 

ure maps ( g i 
f 
): 

 

i 
f = f (g i 1 , g 

i 
2 , . . . , g 

i 
K , g 

i 
K+1 ) (14) 

receives as input these fused maps to recover the target image. 

hus, architecture of J for early fusion is as follows: 

ˆ 
 = J(g i F ) = d J (r J (e J (g i f | i ))) (15) 

ntermediate Fusion: Intermediate fusion occurs when f is within 

he residual block (i.e., n e ≤ i < n e + n r ). In this case, the feature

aps generated by the m th one-to-one stream ( g i m 

) and the many-

o-one stream ( g i 
K+1 

) are formulated as: 

g i m 

= r m 

(e m 

(x m 

) | i ) 
 

i 
K+1 = r K+1 (e K+1 (X ) | i ) (16) 

he fused feature maps ( g i 
f 
) are then: 

 

i 
f = f (g i 1 , g 

i 
2 , . . . , g 

i 
K , g 

i 
K+1 ) (17) 



M. Yurt, S.U. Dar, A. Erdem et al. Medical Image Analysis 70 (2021) 101944 

Fig. 1. The generator (G) in mustGAN consists of K one-to-one streams and a many-to-one stream, followed by an adaptively positioned fusion block, and a joint network 

for final recovery. The independent one-to-one streams generate unique feature maps of individual source images, whereas the many-to-one stream generates the shared 

feature maps across all source images. The fusion block then fuses the feature maps generated at the fusion layer by concatenation. Lastly, the joint network synthesizes 

the target contrast image from the fused feature maps. The architecture of the one-to-one and many-to-one streams consists of an encoder with n e convolutional layers 

(shown with color blue), a residual block with n r ResNet blocks (shown with color orange), and a decoder with n d convolutional layers (shown with color red). The unique 

position of the fusion block is optimized over n e + n r + n d − 1 possible network layers for task-specific positioning. The precise architecture of the joint network is therefore 

adaptively modified depending on the fusion block position, and it consists of the remaining network layers after the fusion level. Note that a single fusion level candidate 

out of n e + n r + n d − 1 possible positions is displayed here for illustration. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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i

f  
again receives as input the fused maps to recover the target im- 

ge. Architecture of J for intermediate fusion is as follows: 

ˆ 
 = J(g i f ) = d J (r J (g i f | i )) (18) 

ate Fusion: Late fusion occurs when f is within the decoder (i.e., 

 e + n r ≤ i < n e + n r + n d ). The feature maps by the m th one-to-one

tream ( g i m 

) and by the many-to-one stream at the i th layer ( g i 
K+1 

)

re given as: 

g i m 

= d m 

(r m 

(e m 

(x m 

)) | i ) 
 

i 
K+1 = d K+1 (r K+1 (e K+1 (X )) | i ) (19) 

n turn, the fused feature maps ( g i 
f 
) are: 

 

i 
f = f (g i 1 , g 

i 
2 , . . . , g 

i 
K , g 

i 
K+1 ) (20) 

receives as input the fused maps to recover the target image, 

ielding the following architecture for late fusion: 

ˆ 
 = J(g i f ) = d J (g i f | i ) (21) 
4 
J is also trained in an adversarial setup with a conditional dis- 

riminator D J that has a fixed architecture independent of i . There- 

ore, D J receives as input the source and target contrast images, 

nd consists of a convolutional network ( c J ) with n c layers: 

 J (X, s ) = c J (X, s ) (22) 

here s is either J(g i 
f 
) or y . To train J and D J , a loss function con-

isting of an adversarial loss and pixel-wise L 1 loss is used: 

 J = −E X,y 

[
(D J (X, y ) − 1) 2 

]
− E X 

[
(D J (X, J(g i f ))) 

2 
]

+ E X,y 

[∣∣∣∣y − J(g i f ) 
∣∣∣∣

1 

]
(23) 

.2. Network architecture 

The K one-to-one streams and the many-to-one stream had 

dentical generator ( G ) and discriminator ( D ) architectures adopted 

rom ( Johnson et al., 2016 ) and ( Isola et al., 2017 ), respectively (see
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upp. Methods for further details). G consisted of an encoder ( e ) of 

 convolutional layers, a residual network ( r) of 9 ResNet blocks, 

nd a decoder ( d) of 3 convolutional layers. Meanwhile, D is a con- 

itional patch discriminator that consisted of a convolutional net- 

ork ( c) of 5 layers. It receives as input the concatenation of the 

ource and target contrast images, and returns a 30 × 30 binary 

atrix of fake/real predictions, with each element of the matrix 

enoting the prediction for the corresponding 70 × 70 patch within 

he images. The number of input channels was 1 for G m 

, 2 for D m 

,

for G K+1 , and K + 1 for D K+1 . 

The architecture of the joint network ( J) was adaptively modi- 

ed based on the position of the fusion block ( i ). When 0 < i < 3

early fusion), J consisted of 3 − i convolutional layers, 9 ResNet 

locks, and 3 convolutional layers connected in series. When 3 ≤
 < 12 (intermediate fusion), J consisted of 12 − i ResNet blocks and 

 convolutional layers. When 12 ≤ i < 15 (late fusion), J consisted 

f 15 − i convolutional layers. J receives as input the fused feature 

aps from the streams that have variable tensor dimensions across 

he network layers. Therefore, the number of input channels for J

epended on i . The corresponding conditional discriminator D J had 

dentical architecture with that in the many-to-one stream. The 

umber of input channels was K + 1 for D J . 

All generator and discriminator architectures used in this study 

ere two-dimensional (2D), so mustGAN mapped cross-sectional 

mages of the source and target contrasts. We opted for 2D models 

ince they offer reduced model complexity compared to volumet- 

ic models. Furthermore, individual cross-sections in a volume are 

aken as separate data samples in 2D models, so they also have 

ower demand on training data. 

The tensor dimensions of the source-target images and the 

eature maps are denoted as [ t 1 , t 2 , t 3 , t 4 ] , where t 1 indicates the

atch size, t 2 indicates the number of channels, t 3 indicates the 

eight, and t 4 indicates the width. The tensor dimensions of the 

ource images were [1,1,256,256] for the one-to-one streams, and 

1 , K, 256 , 256] for the many-to-one stream, where K denotes the 

otal number of source contrasts. The ordering of the source con- 

rasts in the many-to-one stream was arbitrarily chosen for a given 

ynthesis task, and the chosen ordering was used thereafter in 

ll experiments. The tensor dimensions of the target images were 

1,1,256,256] for all streams and the joint network. The tensor di- 

ensions of the feature maps varied across network levels but re- 

ained identical across streams for a fixed layer. The feature fu- 

ion implemented in this study was performed as a concatenation 

long the second tensor dimension t 2 . Therefore, the fused fea- 

ure maps had tensor dimensions of [ t 1 , (K + 1) t 2 , t 3 , t 4 ] . The ten-

or dimensions of the subsequent feature maps within the joint 

etwork returned back to their original values (those in the one- 

o-one and many-to-one streams) immediately after the next con- 

olutional layer. 

.3. Datasets 

Demonstrations were performed on two separate neuroimaging 

atasets: the IXI dataset (http://brain-development.org/ixi-dataset/) 

hat contained data from healthy subjects and the ISLES dataset 

 Maier et al., 2017 ) that contained data from high/low grade glioma 

atients. Data normalization was performed to provide comparable 

oxel intensities across subjects. To do this, the maximum inten- 

ity of each brain volume was normalized to 1. This normalization 

as performed separately for each subject and each MR contrast. 

he normalized images were then linearly mapped onto a range of 

 −1 , 1] as the last network layer of the generators included a tanh

unction (see Supp. Methods for details). Prior to PSNR/SSIM mea- 

urements and visualizations, the pixel intensities of the output 

mages from the generators were linearly mapped onto the orig- 
5 
nal range of [0,1]. No data augmentation was performed during 

he experiments. 

IXI Dataset: T 1 -, T 2 - and PD-weighted images from 53 sub- 

ects were used, where 25 were reserved for training, 10 were 

eserved for validation, and 18 were reserved for testing. Sub- 

ect selection was performed sequentially. Approximately 100 axial 

ross-sections that contained artifact-free brain tissue were man- 

ally selected from each subject. The images were acquired with 

he following parameters. T 1 -weighted images: TE = 4 . 603 ms, 

R = 9 . 813 ms, flip angle = 8 ◦, spatial resolution = 0 . 94 × 0 . 94 ×
 . 2 mm 

3 , matrix size = 256 × 256 × 150 . T 2 -weighted images: TE = 

00 ms, TR = 8178 . 34 ms, flip angle = 90 ◦, spatial resolution = 

 . 94 × 0 . 94 × 1 . 2 mm 

3 , matrix size = 256 × 256 × 150 . PD-weighted

mages: TE = 8 ms, TR = 8178 . 34 ms, flip angle = 90 ◦, spatial 

esolution = 0 . 94 × 0 . 94 × 1 . 2 mm 

3 , matrix size = 256 × 256 × 150 .

ote that images of separate contrasts were unregistered in this 

ataset. Therefore, T 2 - and PD-weighted images were registered 

nto T 1 -weighted images by rigid transformation based on mutual- 

nformation. Registration was performed via FSL ( Jenkinson and 

mith, 2001 ). The axial cross-sections used in the experiments 

ere zero-padded to achieve a consistent input-output image size 

f 256 × 256 . 

ISLES Dataset: T 1 -, T 2 -weighted and FLAIR images from 56 sub- 

ects were used, where 25 were reserved for training, 10 were 

eserved for validation, and 21 were reserved for testing. Subject 

election was performed sequentially. Note that the ISLES dataset 

omprised images acquired under a heteregenous set of scan- 

ing parameters, where separate contrasts were collected in dif- 

erent orientations (i.e., T 1 and FLAIR were collected axially, T 2 
as collected sagittally). Although all images were resampled to an 

sotropic resolution of 1 mm 

3 ( Maier et al., 2017 ), synthesis models 

ere built to recover cross-sections in the original orientation of 

ach target contrast. Approximately 100 axial cross-sections con- 

aining artifact-free brain tissues from all contrasts were manu- 

lly selected for T 1 -weighted and FLAIR image synthesis. Mean- 

hile, approximately 110 sagittal cross-sections containing artifact- 

ree brain tissues from all contrasts were manually selected for T 2 - 

eighted image synthesis. Since T 1 - and T 2 -weighted images were 

lready aligned to FLAIR images ( Maier et al., 2017 ), no other reg- 

stration was performed. The image matrix size in this dataset was 

ariable, so for consistency axial and sagittal cross-sections were 

ero-padded to 256 × 256 image size. 

.4. Network training 

The network training procedure for mustGAN comprises two 

equential phases: the individual training of the one-to-one and 

any-to-one streams, and the training of the joint network fol- 

owing fusion. For the first phase, we adopted hyperparameter se- 

ection from a previous study ( Dar et al., 2019 ), where success- 

ul one-to-one image synthesis was demonstrated in multi-contrast 

RI via conditional GAN models. The streams were trained for 100 

pochs via the Adam optimizer ( Kingma and Ba, 2015 ), where the 

earning rate was set to 2 × 10 −4 in the first 50 epochs, and was

inearly decayed from 2 × 10 −4 to 0 in the last 50 epochs. During 

he training, the decay rates of the first moment β1 and the sec- 

nd moment β2 of gradient estimates were set to 0.5 and 0.999, 

espectively. Relative weighting of the pixel-wise loss to adversar- 

al loss was selected as 100. The one-to-one pGAN and many-to- 

ne pGAN many models were also trained using the same hyperpa- 

ameter set as mustGAN. Training pGAN and pGAN many beyond 100 

pochs yielded lower or similar synthesis performance, so these 

odels were also reported for 100 epochs. 

For the second phase, we performed analyses to determine the 

ptimal position of the fusion block for each synthesis task. Since 

he complexity of the joint network also depends on the posi- 
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ion of the fusion block, we reasoned that the required number 

f epochs for convergence should also be optimized. Therefore, we 

erformed grid-search for the fusion block position and number 

f epochs using the validation set. To do this, multiple joint net- 

ork architectures were trained for varying number of epoch val- 

es ( 5 : 5 : 100 ) and fusion block positions ( 1 : 1 : 14 ). The maxi-

um limit for the number of training epochs was determined to 

e 100 since training the joint network architectures beyond 100 

pochs yielded lower synthesis performance. To mitigate excessive 

emand for model storage space, the search step for number of 

pochs was selected as 5. The multiple joint networks were eval- 

ated in terms of PSNR, SSIM and network loss measurements in 

he validation set. While these metrics all gave correlated results 

Supp. Figs. 1-6), we opted for considering PSNR measurements in 

ptimizations since it is a direct and robust metric based solely 

n image quality, unlike network loss that includes an adversar- 

al component suggested to introduce instabilities. Based on the 

SNR evaluations, task-specific values for the position of the fu- 

ion block and the number of epochs denoted as (fusion block po- 

ition, number of epochs) were determined to be (12 , 40) for T 1 - 

eighted, (14,15) for T 2 -weighted and (12,20) for PD -weighted im- 

ge synthesis in the IXI dataset, and (8,50) for T 1 -weighted, (7,55) 

or T 2 -weighted and (6,10) for FLAIR image synthesis in the ISLES 

ataset. Remaining hyperparameters were again adopted from Dar 

t al. (2019) . During the training, the Adam optimizer was em- 

loyed, where the decay rates of the first moment β1 and the sec- 

nd moment β2 of gradient estimates were set to 0.5 and 0.999, 

espectively. Relative weighting of the pixel-wise loss to adversar- 

al loss was selected as 100. For models trained for fewer than 

0 epochs, the learning rate was set to 2 × 10 −4 , and for mod-

ls trained for more than 50 epochs, the learning rate was set to 

 × 10 −4 in the first 50 epochs and decreased by 4 × 10 −6 in each

emaining epoch. While training the joint network, the neural net- 

ork layers in the one-to-one and many-to-one streams prior to 

he fusion block were also fine-tuned. To do this, the Adam opti- 

izer was employed with half the learning rate of the joint net- 

ork. The decay rates of the first moment β1 and the second mo- 

ent β2 of gradient estimates were again set to 0.5 and 0.999, re- 

pectively. 

The total number of network parameters was approximately 

 . 1 × 10 7 for the one-to-one and many-to-one streams, and 2 . 3 ×
0 6 for the discriminators. Meanwhile, it varied from 10 4 to 1 . 1 ×
0 7 for the joint network depending on the fusion level. On a sin- 

le NVIDIA 1080 Ti GPU, training each individual stream required 

–10 hours, and training a single joint network with fine-tuning of 

ne-to-one and many-to-one streams required 14–16 hours (with 

00 epochs and 2500 training instances). For synthesis tasks with 

wo source contrasts, one-to-one and many-to-one streams were 

rst trained in parallel on 3 GPUs. The candidate joint networks at 

4 different fusion layers were trained on 7 GPUs in two batches. 

his resulted in a total training time of nearly 40 hours per syn- 

hesis task. 

.5. Competing methods 

Four state-of-the-art multi-contrast MRI synthesis methods 

ere implemented to comparatively evaluate the performance of 

he proposed method. The first competing method was pGAN 

hat performs one-to-one mapping with adversarial and pixel-wise 

osses ( Dar et al., 2019 ). Since this method receives as input a sin-

le source contrast, multiple pGAN models were trained for target 

ontrast recovery based on available source contrasts. The second 

ompeting method was pGAN many that is a many-to-one variant of 

GAN, where the number of input channels in the architecture was 

et to the number of available source contrasts. Note that pGAN 

nd pGAN many correspond to the independently trained one-to- 
6 
ne and many-to-one streams in mustGAN, respectively. Therefore, 

hese methods were trained with the same hyperparameter set. 

The third competing method was MM-GAN that recovers the 

arget contrast from all available source contrasts by concate- 

ation at the input level ( Sharma and Hamarneh, 2019 ). MM- 

AN was also trained in an adversarial setup with pixel-wise and 

dversarial losses. MM-GAN was implemented based on the ar- 

hitecture/hyperparameters described in Sharma and Hamarneh 

2019) except for the curriculum learning to ensure a standard 

ample selection procedure among GAN models during trainings. 

he last competing method was Multimodal ( Chartsias et al., 2017 ), 

 standard convolutional encoder-decoder network. With multi- 

le encoders, Multimodal generates contrast-invariant latent rep- 

esentations that are later fused with a maximum function. The 

arget contrast is then recovered by either the individual latent 

epresentations or the fused latent representations. Official code 

osted by the authors of Multimodal was used with the proce- 

ure/hyperparameters specified in Chartsias et al. (2017) . 

In addition, we also implemented a constrainted variant of 

ustGAN that only performed fusion across one-to-one streams, 

amed mustGAN one . Similar to mustGAN, the one-to-one streams 

ere trained independently, and then the position of the fusion 

lock and number of epochs were optimized for each specific 

ask. The optimal values denoted as (fusion block position, num- 

er of epochs) were determined to be (14, 35) for T 1 , (10, 25)

or T 2 , and (6, 20) for PD synthesis in the IXI dataset, and (8,

5) for T 1 , (5, 55) for T 2 , and (12, 20) for FLAIR synthesis in the

SLES dataset. The remaining hyperparameters were matched to 

ustGAN. 

.6. Experiments 

Two public multi-contrast MRI datasets (IXI and ISLES) were 

sed to evaluate the performance of the proposed method against 

he competing methods. In the IXI dataset, 6 distinct synthesis 

asks (T 2 → T 1 ; PD → T 1 ; T 1 → T 2 ; PD → T 2 ; T 1 → PD; T 2 → PD)

ere considered for pGAN. Meanwhile, 3 distinct synthesis tasks 

T 2 , PD → T 1 ; T 1 , PD → T 2 ; T 1 , T 2 → PD) were considered

or mustGAN, pGAN many , MM-GAN, and Multimodal. All synthesis 

asks in the IXI dataset were performed using axial cross-sections. 

verall, 6 pGAN, 3 mustGAN, 3 pGAN many , 1 MM-GAN, and 3 Mul- 

imodal models were trained. 

In the ISLES dataset, 6 distinct synthesis tasks (T 2 → T 1 ; 

LAIR → T 1 ; T 1 → T 2 ; FLAIR → T 2 ; T 1 → FLAIR; T 2 → FLAIR)

ere considered for pGAN. Meanwhile, 3 distinct synthesis tasks 

T 2 , FLAIR → T 1 ; T 1 , FLAIR → T 2 ; T 1 , T 2 → FLAIR) were considered

or mustGAN, pGAN many , MM-GAN, and Multimodal. T 1 -weighted 

nd FLAIR images were synthesized using axial cross-sections, 

hereas T 2 -weighted images were synthesized using sagittal cross- 

ections (see Section 3.3 for details). Overall, 6 pGAN, 3 must- 

AN, 3 pGAN many , and 3 Multimodal models were trained. For fair 

omparison, an MM-GAN model was trained using only sagittal 

ross-sections for T 2 synthesis, and a separate MM-GAN model was 

rained using only axial cross-sections for T 1 and FLAIR synthesis. 

For quantitative evaluations, the synthesized and ground truth 

arget images were compared via PSNR and SSIM ( Wang et al., 

004 ). Prior to measurements, maximum pixel intensity of the 

ynthesized and ground truth cross-sectional images was normal- 

zed to 1. For qualitative evaluations, opinion scores of an expert 

adiologist with 25 years of experience were considered. To do this, 

n intermediate cross-section from each subject was randomly se- 

ected. The quality of the synthesized images was then rated by 

he radiologist by evaluating their similarity to the ground truth 

mages using a five-point scale (0: unacceptable, 1: very poor, 2: 

imited, 3: moderate, 4: good, 5: perfect match). To assess sig- 

ificance of PSNR, SSIM and radiological evaluation score differ- 
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Fig. 2. Synthesis quality of mustGAN models with varying positions of the fusion block was evaluated on the validation set in terms of PSNR measurements. The mean of 

the results are plotted together with standard error intervals for three distinct synthesis tasks in the IXI dataset: a) T 2 , PD → T 1 , b) T 1 , PD → T 2 , c) T 1 , T 2 → PD, and for 

three distinct synthesis tasks in the ISLES dataset: d) T 2 , FLAIR → T 1 , e) T 1 , FLAIR → T 2 , f) T 1 , T 2 → FLAIR. 

Fig. 3. a) T 2 -weighted image synthesis from T 1 - and PD-weighted images in the IXI dataset, b) FLAIR image synthesis from T 1 - and T 2 -weighted images in the ISLES dataset. 

Feature maps at a central network layer (8th) in one-to-one (third and fourth columns) and many-to-one models (fifth column) are displayed along with source images and 

ground truth target images (reference). At the 8 th network layer, the feature maps have tensor dimensions of [ t 1 = 1 , t 2 = 256 , t 3 = 64 , t 4 = 64] , where t 1 denotes the batch 

size, t 2 denotes the number of channels, t 3 denotes the height, and t 4 denotes the width. Lastly, the feature maps were averaged along the second tensor dimension, and 

were resampled to achieve a final image size of 256 × 256 . Representative features that are captured with increased sensitivity for each model are marked with ellipses 

(red and green color for the one-to-one models, blue color for the many-to-one model). A concatenation of the feature maps is also shown (sixth column), where separate 

feature maps from the one-to-one and many-to-one mappings are taken as the red-green-blue color channels. Overall, one-to-one mappings manifest increased sensitivity to 

unique, detailed features that are predominantly present in the given source. Contrarily, many-to-one mapping pools information from different sources and manifests high 

sensitivity to shared features, especially when these features are jointly present in multiple sources. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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nces between the competing methods, non-parametric Wilcoxon 

igned-rank tests were employed. All methods were trained and 

ested on the same set of data samples. Training and evaluation 

rocedures were run on NVIDIA Titan X Pascal, Xp and 1080 Ti 

PUs. Implementations of mustGAN, pGAN, pGAN many , and MM- 

AN were performed via the PyTorch framework in Python, and 

mplementation of Multimodal was performed via Keras using the 

heano backend in Python. Code and data for replicating the must- 

AN, pGAN and pGAN many models will be publicly available on 

ttp://github.com/icon-lab/mrirecon . 

. Results 

.1. Task-Specific fusion across multiple streams 

To optimize the mustGAN model for specific tasks, we per- 

ormed experiments to determine the optimal position of the fu- 
7 
ion block in the architecture. Multiple mustGAN models were 

rained while varying the layer of fusion in [1 : 1 : 14] . Experi-

ents were conducted separately on the IXI and ISLES datasets. 

 synthesis tasks were considered in the IXI dataset: T 2 , PD → T 1 ;

 1 , PD → T 2 ; T 1 , T 2 → PD. Performance as a function of fusion

ayer is plotted in terms of PSNR measurements on the validation 

et in Fig. 2 a-c for T 1 -weighted, T 2 -weighted and PD -weighted im- 

ge synthesis in the IXI dataset, respectively. Across all synthesis 

asks in the IXI dataset, mustGAN models performing late fusion 

ostly yield enhanced synthesis performance. Particularly, the op- 

imal position of the fusion block is determined to be the 12th 

ayer for T 1 synthesis, the 14th layer for T 2 synthesis, and the 

2th layer for PD synthesis. Furthermore, optimization of the fu- 

ion layer noticeably improves model performance, where PSNR 

ifference between highest-lowest performing models is 0.390 dB 

or T 1 synthesis, 0.885 dB for T 2 synthesis, and 0.885 dB for PD 

ynthesis. 

http://github.com/icon-lab/mrirecon
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Fig. 4. Methods were compared in terms of quality of T 1 synthesis in the ISLES 

dataset: a) pGAN-A versus pGAN-B, b) pGAN-A versus pGAN many , c) pGAN-B ver- 

sus pGAN many , d) pGAN many versus mustGAN, e) pGAN-A versus mustGAN, f) pGAN- 

B versus mustGAN. Note that pGAN-A receives T 2 -weighted images as input and 

pGAN-B receives FLAIR images as input. Scatter plots show PSNR measurements for 

methods under comparison, and each point denotes a cross-section in the test set. 

The proportion of test samples in which either method yields superior performance 

is also noted in figure legends (blue font for the method on the vertical axis, red 

font for the method on the horizontal axis). (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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In the ISLES dataset, 3 distinct synthesis tasks were considered: 

 2 , FLAIR → T 1 ; T 1 , FLAIR → T 2 ; T 1 , T 2 → FLAIR. Performance as a

unction of fusion layer is plotted in terms of PSNR measurements 

n the validation set in Fig. 2 d-f for T 1 -weighted, T 2 -weighted and 

LAIR image synthesis, respectively. Across all synthesis tasks in 

he ISLES dataset, mustGAN models performing intermediate fu- 

ion mostly yield enhanced synthesis performance. Particularly, the 

ptimal position of the fusion block is determined to be the 8th 

ayer for T 1 synthesis, the 7th layer for T 2 synthesis, and the 6th 

ayer for FLAIR synthesis. Again, optimization of the fusion layer 

oticeably improves model performance, where PSNR difference 

etween highest-lowest performing models is 0.860 dB for T 1 syn- 

hesis, 0.525 dB for T 2 synthesis, and 0.511 dB for FLAIR synthesis. 

hese task-specific fusion layers identified on the validation sets in 

he IXI and ISLES datasets were utilized in all evaluations there- 

fter unless otherwise stated. 

Here, we observed that the optimal fusion block position varies 

s a function of both synthesis task and MRI dataset. Yet, sepa- 

ate synthesis tasks performed on the same dataset yield limited 

hanges in block position, whereas separate datasets with distinct 

RI protocols result in more substantial differences in block po- 

ition. In IXI, synthesis quality is enhanced by performing the fu- 

ion within the decoder, where the fused feature maps have larger 

idth and height and so they reflect a high-resolution represen- 

ation. On the other hand, in ISLES, synthesis quality is enhanced 

y performing the fusion within the residual block, where the 

used feature maps have smaller size, reflecting a relatively lower- 

esolution representation. Note that the IXI dataset contains high- 

uality, high-SNR images, so fusion at the decoder might help bet- 

er recover fine structural details. In contrast, the ISLES dataset 

ostly contains images of relatively moderate quality, so fusing at 

he residual block might help better recover global structural infor- 

ation. 

.2. Demonstrations against one-to-one and many-to-one mappings 

We then performed experiments to demonstrate potential dif- 

erences in feature maps learned in one-to-one versus many-to- 

ne mappings. Three synthesis tasks were considered in the IXI 

ataset (T 2 , PD → T 1 ; T 1 , PD → T 2 ; T 1 , T 2 → PD) and in the ISLES

ataset (T 2 , FLAIR → T 1 ; T 1 , FLAIR → T 2 ; T 1 , T 2 → FLAIR). Rep-

esentative feature maps generated in the one-to-one and many- 

o-one mappings are displayed along with the source and ground 

ruth target images in Fig. 3 and in Supp. Fig. 7. The feature maps

ndicate that one-to-one mappings sensitively capture detailed fea- 

ures that are uniquely present in the given source, whereas many- 

o-one mapping pools information across shared features that are 

ointly present in multiple sources. 

To assess benefits of pooling complementary information from 

nique and shared feature maps, we compared pGAN, pGAN many 

nd mustGAN models. Comparisons in terms of PSNR measured 

cross cross-sections in the test sets are displayed in Supp. Figs. 

–10 for IXI, and in Fig. 4 and Supp. Figs. 11,12 for ISLES. On aver-

ge, pGAN many outperforms pGAN for 81 . 98% of test samples in IXI 

nd for 63 . 14% in ISLES; whereas pGAN outperforms pGAN many for 

8 . 02% in IXI and for 36 . 86% in ISLES. This finding demonstrates

hat not only shared but also unique features can be critical for 

uccessful synthesis of the target contrast. In comparison, must- 

AN outperforms both competing methods, with higher PSNR than 

GAN for 92 . 20% of test samples in IXI and for 87 . 19% in ISLES,

nd with higher PSNR than pGAN many for 88 . 26% in IXI and for

1 . 94% in ISLES. Taken together, these results indicate that aggre- 

ation of information from unique and shared feature maps helps 

ignificantly improve model performance. 

We further demonstrated the improvements in synthesis qual- 

ty due to inclusion of the many-to-one stream within the pro- 
8 
osed method. To do this, we introduced a mustGAN variant, 

amely mustGAN one , that recovers the target contrast image from 

usion of only the unique feature maps generated in the one-to- 

ne streams. We then compared mustGAN with mustGAN one on 

he IXI and ISLES datasets. Note that, we also comprehensively 

ptimized the position of the fusion block and the number of 

pochs for this variant on the validation set for specific tasks 

see Section 3.5 for details). Supp. Table 1 reports the PSNR and 

SIM measurements of mustGAN and mustGAN one for all possible 

ynthesis tasks in the datasets. The results indicate that the ag- 

regation of the shared feature maps in the many-to-one stream 

nhances synthesis quality, where the average increase is 0.16 dB 

SNR and 0.2% SSIM in the IXI dataset, and 0.24 dB PSNR and 0.4% 

SIM in the ISLES dataset. 

.3. Demonstrations against competing methods 

Next, we comparatively evaluated the performance of must- 

AN against several state-of-the-art one-to-one and many-to-one 



M. Yurt, S.U. Dar, A. Erdem et al. Medical Image Analysis 70 (2021) 101944 

Table 1 

Quality of Synthesis in the IXI Dataset: PSNR and SSIM measurements be- 

tween the ground truth and synthesized target images from mustGAN, pGAN, 

pGAN many , MM-GAN, and Multimodal are given as mean ±std calculated across 

test subjects for three different synthesis tasks: T 2 , PD → T 1 ; T 1 , PD → T 2 ; 

T 1 , T 2 → PD. pGAN-A receives the 1st source contrast and pGAN-B receives the 

2nd source contrast i.e., (1,2): (T 2 , PD), (T 1 , PD), (T 1 , T 2 ). Boldface marks the 

model having the highest performance. 

T 2 , PD → T 1 T 1 , PD → T 2 T 1 , T 2 → PD 

PSNR SSIM PSNR SSIM PSNR SSIM 

mustGAN 29.45 0.947 35.89 0.977 34.40 0.974 

±1.19 ±0.012 ±1.20 ±0.005 ±0.97 ±0.005 

pGAN-A 28.39 0.934 28.52 0.925 27.80 0.929 

±1 . 17 ±0 . 013 ±1 . 18 ±0 . 015 ±1 . 16 ±0 . 012 

pGAN-B 28.73 0.936 33.08 0.962 32.17 0.962 

±1 . 18 ±0 . 013 ±0 . 99 ±0 . 007 ±1 . 01 ±0 . 005 

pGAN many 28.80 0.940 34.04 0.964 33.09 0.967 

±1 . 09 ±0 . 013 ±1 . 18 ±0 . 006 ±1 . 09 ±0 . 005 

MM-GAN 28.27 0.943 32.67 0.972 33.35 0.971 

±1 . 51 ±0 . 013 ±1 . 53 ±0 . 005 ±1 . 65 ±0 . 007 

Multimodal 27.35 0.934 34.56 0.965 32.31 0.958 

±1 . 69 ±0 . 013 ±1 . 04 ±0 . 006 ±1 . 16 ±0 . 005 
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Fig. 5. Methods were compared in terms of radiological opinion scores for three 

synthesis tasks in IXI: a) T 2 , PD → T 1 , b) T 1 , PD → T 2 , c) T 1 , T 2 → PD, and for three 

synthesis tasks in ISLES: d) T 2 , FLAIR → T 1 , e) T 1 , FLAIR → T 2 , f) T 1 , T 2 → FLAIR. 

The quality of the synthesized cross-sections were rated by an expert radiologist 

by evaluating their similarity to the ground truth images using a five-point scale 

(0: unacceptable, 1: very poor, 2: limited, 3: moderate, 4: good, 5: perfect match). 

For each synthesis task, an intermediate cross-section from each of the 18 test sub- 

jects in IXI and 21 test subjects in ISLES were evaluated. Due to poor quality ground 

truths, images of 3 subjects for T 2 synthesis and image of a subject for FLAIR syn- 

thesis were removed by the radiologist. The resulting radiological opinion scores 

of the methods are displayed along with standard error intervals. Figure legend de- 

notes the abbreviations and colors used for the methods under comparison. pGAN-A 

receives the 1st source contrast and pGAN-B receives the 2nd source contrast i.e., 

in IXI: (1, 2), (T 2 , PD), (T 1 , PD), (T 1 , T 2 ), and in ISLES: (1, 2), (T 2 , FLAIR), (T 1 , FLAIR), 

(T 1 , T 2 ). 

Table 2 

Quality of Synthesis in the ISLES Dataset: PSNR and SSIM measurements be- 

tween the ground truth and synthesized target images from mustGAN, pGAN, 

pGAN many , MM-GAN, and Multimodal are given as mean ±std calculated across 

test subjects for three different synthesis tasks: T 2 , FLAIR → T 1 ; T 1 , FLAIR → T 2 ; 

T 1 , T 2 → FLAIR. pGAN-A receives the 1st source contrast and pGAN-B receives 

the 2nd source contrast i.e., (1,2): (T 2 , FLAIR), (T 1 , FLAIR), (T 1 , T 2 ). Boldface 

marks the model having the highest performance. 

T 2 , FLAIR → T 1 T 1 , FLAIR → T 2 T 1 , T 2 → FLAIR 

PSNR SSIM PSNR SSIM PSNR SSIM 

mustGAN 28.51 0.929 26.63 0.904 26.08 0.910 

±2.10 ±0 . 018 ±0.74 ±0 . 013 ±1.04 ±0.016 

pGAN-A 25.03 0.886 25.36 0.884 24.91 0.889 

±1 . 92 ±0 . 015 ±0 . 70 ±0 . 012 ±0 . 94 ±0 . 015 

pGAN-B 27.55 0.919 25.68 0.890 23.32 0.861 

±1 . 35 ±0 . 015 ±0 . 70 ±0 . 012 ±0 . 67 ±0 . 012 

pGAN many 27.64 0.921 26.00 0.895 25.11 0.894 

±1 . 88 ±0 . 017 ±0 . 68 ±0 . 012 ±0 . 81 ±0 . 013 

MM-GAN 27.79 0.924 25.67 0.888 24.57 0.898 

±1 . 65 ±0 . 017 ±0 . 54 ±0 . 010 ±0 . 88 ±0 . 015 

Multimodal 27.73 0.934 25.71 0.910 19.62 0.895 

±1 . 91 ±0.017 ±0 . 66 ±0.011 ±1 . 29 ±0 . 011 
ethods (pGAN, pGAN many , MM-GAN, and Multimodal). Three syn- 

hesis tasks were considered in the IXI dataset: T 2 , PD → T 1 ;

 1 , PD → T 2 ; T 1 , T 2 → PD. Table 1 lists the average PSNR and SSIM

easurements across test subjects of mustGAN, pGAN, pGAN many , 

M-GAN, and Multimodal. In all synthesis tasks, mustGAN outper- 

orms the competing methods in terms of PSNR and SSIM mea- 

urements ( p < . 05 ). On average, mustGAN achieves 1.01 dB higher

SNR and 0 . 416% higher SSIM compared to the second-best per- 

orming method in each synthesis task. 

Confirming quantitative results, radiological evaluations in the 

XI dataset also reveal superiority of the proposed method. Fig. 5 a- 

 display radiological scores for T 1 -, T 2 - and PD -weighted im- 

ge synthesis. mustGAN outperforms the competing methods in 

ll synthesis tasks ( p < . 05 ) in terms of radiological evaluation

cores, except for pGAN many in T 2 synthesis, where the two meth- 

ds perform similarly ( p > . 05 ). On average across tasks, mustGAN 

chieves 3.981 radiological opinion score, whereas the second-best 

ompeting method (pGAN many ) achieves 3.685. Superior perfor- 

ance of mustGAN on the IXI dataset is also clearly visible in 

epresentative results shown in Fig. 6 and Supp. Fig. 13. Fig. 6 a,b 

isplay results for T 1 -weighted and PD -weighted image synthesis. 

ompared to other methods, mustGAN depicts tissues with appar- 

ntly lower noise levels and sharper tissue boundaries. 

Having demonstrated mustGAN on healthy subjects, we next 

valuated mustGAN on the ISLES dataset containing images of 

igh/low grade glioma patients. Three synthesis tasks were con- 

idered: T 2 , FLAIR → T 1 ; T 1 , FLAIR → T 2 ; T 1 , T 2 → FLAIR . 

able 2 lists the PSNR and SSIM measurements of mustGAN, pGAN, 

GAN many , MM-GAN, and Multimodal on the test set. mustGAN 

gain outperforms the competing methods in all synthesis tasks 

n terms of PSNR and SSIM measurements ( p < . 05 ). The only ex-

eption is Multimodal for SSIM in T 1 and T 2 synthesis. On average, 

ustGAN achieves 0.77 dB higher PSNR compared to the second- 

est performing method in each synthesis task. Radiological eval- 

ations in the ISLES dataset concur with the quantative measure- 

ents of synthesis quality. Fig. 5 d-f display radiological scores for 

 1 -weighted, T 2 -weighted, and FLAIR image synthesis. mustGAN 

utperforms the competing methods in all synthesis tasks in terms 

f radiological evaluation scores ( p < . 05 ). On average across tasks, 

ustGAN achieves 3.475 radiological opinion score, whereas the 

econd-best method (pGAN many ) achieves 2.780. Superior perfor- 

ance of mustGAN on the ISLES dataset is also clearly visible 

n the representative results shown in Fig. 7 and Supp. Fig. 14. 

ig. 7 a,b display results for T -weighted and FLAIR image synthesis. 
1 

9 
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Fig. 6. The proposed method was demonstrated on healthy subjects from the IXI dataset for two synthesis tasks: a) T 1 -weighted image synthesis from T 2 - and PD-weighted 

images, b) PD-weighted image synthesis from T 1 - and T 2 -weighted images. Synthesized images from mustGAN, pGAN, pGAN many , MM-GAN, and Multimodal are shown along 

with the source images and the ground truth target image. Due to synergistic use of information captured by the one-to-one and many-to-one streams, mustGAN improves 

synthesis accuracy in many regions that are recovered suboptimally in competing methods (marked with arrows or circles in zoom-in displays). Overall, mustGAN yields less 

noisy depiction of tissues and sharper depiction of tissue boundaries. 

Fig. 7. The proposed method was demonstrated on high/low grade glioma patients from the ISLES dataset for three synthesis tasks: a) T 1 -weighted image synthesis from 

T 2 -weighted and FLAIR images, b) FLAIR image synthesis from T 1 - and T 2 -weighted images. Synthesized images from mustGAN, pGAN, pGAN many , MM-GAN, and Multimodal 

are shown along with the source images and the ground truth target image. Due to synergistic use of information captured by the one-to-one and many-to-one streams, 

mustGAN improves synthesis accuracy in many regions that are recovered suboptimally in competing methods (marked with arrows or circles in zoom-in displays). Overall, 

mustGAN yields less noisy depiction of tissues and sharper depiction of tissue boundaries. 
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ompared to other methods, mustGAN depicts tissues with appar- 

ntly lower noise levels and sharper tissue boundaries. 

For further evaluations, the performance of the mustGAN mod- 

ls with varying fusion block positions are additionally reported in 

upp. Table 2 in terms of PSNR and SSIM measurements on the 

est set for all synthesis tasks in the IXI and ISLES datasets. These 

esults indicate that even non-optimized mustGAN variants outper- 

orm state-of-the-art methods for almost all fusion levels. There- 

ore, the computational cost of the fusion block optimization in 

ustGAN (see Section 4.1 for details) can be effectively alleviated 
10 
y performing a coarser search over fewer positions, without sig- 

ificantly compromising synthesis quality. 

. Discussion 

A within-modality synthesis method was introduced for multi- 

ontrast MRI based on conditional generative adversarial net- 

orks. The proposed method aggregates information across one- 

o-one streams that are sensitive to unique information in indi- 

idual source contrasts and a many-to-one stream that is sensitive 
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A  
o shared information across multiple source contrasts. Enhanced 

ynthesis performance was demonstrated in a number of synthe- 

is tasks on brain MRI datasets from normals and glioma patients. 

ompared to isolated one-to-one or many-to-one methods, must- 

AN recovered higher quality images with reduced noise and im- 

roved sharpness. 

A prior state-of-the-art method for multi-contrast MRI synthe- 

is, Multimodal, is based on an encoder-decoder architecture with 

tandard convolutional layers ( Chartsias et al., 2017 ). Given mul- 

iple source contrasts, Multimodal learns contrast-invariant latent 

epresentations for source images by enforcing latent representa- 

ions from separate encoders to be similar. These individual latent 

epresentations are then fused across source contrasts via a max- 

mum function, and the decoder recovers target images based on 

used representations. For improved sensitivity to unique features 

f individual sources, mustGAN does not explicitly seek similar- 

ty across latent representations in one-to-one streams and instead 

ses a separate many-to-one stream to capture shared representa- 

ions across source contrasts. While the position of the fusion block 

s fixed to the initial layer of the decoder in Multimodal, the pro- 

osed method adaptively modifies the position of the fusion block 

o optimize the task-specific performance. Moreover, unlike Multi- 

odal that uses a mean absolute error metric, mustGAN uses ad- 

ersarial loss that has been demonstrated to better capture high- 

patial-frequency information ( Dar et al., 2019 ). 

Several recent studies have proposed GAN-based architectures 

or multi-contrast MRI synthesis. In Dar et al. (2019) , we have pro- 

osed pGAN that uses conditional GAN models for one-to-one syn- 

hesis. In Sharma and Hamarneh (2019) , a multi-input generaliza- 

ion of pGAN was proposed, MM-GAN, that receives as input mul- 

iple source contrasts for enhanced recovery of missing contrasts. 

M-GAN fuses multiple source contrast at the input level by treat- 

ng them as separate information channels, and so it is similar in 

ature to pGAN many implemented here. Our results indicate that, 

ompared to both pGAN many and MM-GAN, mustGAN achieves en- 

anced sensitivity to unique features of individual source contrasts 

ue to the adaptive fusion and presence of additional one-to-one 

treams. 

Different medical imaging modalities can provide complemen- 

ary information of the underlying anatomy and thereby can en- 

ance the diagnostic utility. Yet, acquiring an entire multi-modal 

et may not be feasible due to scanning cost and time limita- 

ions. In such cases, cross-modality medical image synthesis can 

e critical. Several studies based on GAN architectures have been 

ecently proposed for cross-modality synthesis, CT synthesis from 

RI: ( Nie et al., 2017; 2018; Emami et al., 2018 ), MRI synthesis

rom CT: ( Jiang et al., 2018; Jin et al., 2019 ), PET synthesis from

T: ( Ben-Cohen et al., 2019; Bi et al., 2017 ), CT synthesis from

ET: ( Armanious et al., 2020 ), PET synthesis from MRI: ( Pan et al.,

018; Wei et al., 2018a ), MRI synthesis from PET: ( Choi and Lee,

018 ). Although the proposed multi-stream GAN method was pri- 

arily demonstrated for within-modality multi-contrast MRI syn- 

hesis here, it can also be adapted to cross-modality synthesis. In 

uch cases, with synergistic use of multiple one-to-one streams 

nd a many-to-one stream, mustGAN can offer improved perfor- 

ance due to better capture of unique and complementary fea- 

ures in different source modalities. 

An important requirement for successful training of deep net- 

ork architectures is the availability of large datasets. The current 

mplementation of mustGAN assumes availability of paired source- 

arget images from the same group of subjects. However, size of 

aired datasets might be limited especially when relatively less 

ommon contrasts are involved. In such cases, several lines of im- 

rovement can be considered. (1) When the source images are all 

aired but the target images are unpaired, the pixel-wise loss used 

n one-to-one and many-to-one streams can be replaced with a 
11 
ycle-consistency loss. Training procedures for the cycle-consistent 

odels can be adopted from prior studies for both one-to-one 

 Dar et al., 2019 ) and many-to-one ( Lee et al., 2019 ) GAN mod-

ls. (2) When the source images are also unpaired, the many-to- 

ne stream can be removed. The one-to-one streams can again be 

rained with a cycle-consistency loss and then fused for enhanced 

erformance. 

The proposed network model takes as input spatially regis- 

ered source and target images. The datasets analyzed in this 

tudy were either pre-registered, or registration was implemented 

s a pre-processing step (see Methods for procedures on the IXI 

ataset). When an end-to-end network alternative is desired, deep- 

etwork-based registration models ( Yang et al., 2017 ) can instead 

e cascaded to the input of mustGAN to spatially align source- 

arget images. It remains important future work to investigate po- 

ential benefits of an end-to-end registration approach over pre- 

rocessing. 

A central aim of the experiments in this study was to demon- 

trate improvements in synthesis quality over prior state-of-the-art 

ith the novel mustGAN architecture. These demonstrations in- 

olved comprehensive quantitative (i.e., PSNR and SSIM measure- 

ent) and radiological evaluations for numerous multi-contrast 

RI synthesis tasks in multiple datasets. It remains important fu- 

ure work to examine to what extent improvements in image qual- 

ty translate to downstream tasks such as segmentation, registra- 

ion or detection. 
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