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Visual perception of actions is supported by a network of brain regions in the occipito-

temporal, parietal, and premotor cortex in the primate brain, known as the Action

Observation Network (AON). Although there is a growing body of research that charac-

terizes the functional properties of each node of this network, the communication and

direction of information flow between the nodes is unclear. According to the predictive

coding account of action perception (Kilner, Friston, & Frith, 2007a; 2007b), this network is

not a purely feedforward system but has backward connections through which prediction

error signals are communicated between the regions of the AON. In the present study, we

investigated the effective connectivity of the AON in an experimental setting where the

human subjects’ predictions about the observed agent were violated, using fMRI and

Dynamical Causal Modeling (DCM). We specifically examined the influence of the lowest

and highest nodes in the AON hierarchy, pSTS and ventral premotor cortex, respectively,

on the middle node, inferior parietal cortex during prediction violation. Our DCM results

suggest that the influence on the inferior parietal node is through a feedback connection

from ventral premotor cortex during perception of actions that violate people’s predictions.

© 2020 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the last two decades, neurophysiological and neuro-

imaging studies in primates have identified a network of brain

regions in occipito-temporal, parietal and premotor cortex

that are associated with visual processing of actions, known

as the Action Observation Network (AON, Rizzolatti &

Craighero, 2004; Iacoboni & Dapretto, 2006; Saygin, 2007;

Caspers, Zilles, Laird, & Eickhoff, 2010; Nelissen et al., 2011;

Saygin, 2012). Although significant progress has been made

in understanding the neural correlates of action perception,

one open question in the field is how the nodes of this network

communicate. This question is of particular importance to be

able to specify neural mechanisms that go beyond neural

correlation.

There has been theoretical work that provide a neuro-

mechanistic account of action perception but empirical work

that directly tests it is sparse. One such model by Kilner et al.

(2007a; 2007b) proposes that the AON is a predictive system,

following the principles of predictive coding (Friston, 2010). In

this framework, information is processed throughout the AON

bymeans of forward and backward connections, in contrast to

the classic formulation of the AON, which treats action

perception strictly as a feedforward process (Giese & Poggio,

2003). More specifically, the middle node of the network, pa-

rietal node has reciprocal connections between the occipito-

temporal node (the lower node in the hierarchy) and the

premotor node (the higher node in the hierarchy) (Fig. 1),

which hypothetically enables the forward and backward

connections within the system.

There is indeed empirical evidence for the anatomical

connectivity of the brain regions that comprise the AON. Our

knowledge of the anatomical connectivity patterns in the AON

comes primarily from non-human primates. In the macaque

monkey, area F5 of the premotor cortex and area PF of the

inferior parietal lobule have reciprocal connections (Luppino,

Murata, Govoni, & Matelli, 1999). PF also has reciprocal con-

nections with a portion of the posterior superior temporal
Fig. 1 e Anatomical connectivity between the core nodes of

the AON.
sulcus (pSTS) that is sensitive to biological movements

(Seltzer & Pandya, 1994). Analogous connectivity patterns

have been proposed in the human brain (Rushworth, Behrens,

& Johansen-Berg, 2006; Igelstr€om & Graziano, 2017).

Therearealsoahandful ofexperimental studies thatprovide

support for predictive processing account of action perception.

Kilner, Vargas,Duval, Blakemore, andSirigu (2004), using event-

related brain potentials, found that during action observation,

the human brain generated a motor-preparation-like negative

potential when the actionwas in a predictable context; no such

potential was found when observation occurred within an un-

predictable context. In a monkey neurophysiology study,

Maranesi, Livi, Fogassi, Rizzolatti, and Bonini (2014) provide

direct evidence for predictive activity of visuo-motor neurons in

premotor cortex and therefore it is considered to be a founda-

tional step in supporting the predictive processing account of

action understanding (Urgen & Miller, 2015). There are also a

number of fMRI studies in humans that show that actions are

processed by a network that has both forward and backward

connections (Cardellicchio, Hilt, Olivier, Fadiga, & D’Ausilio,

2018; Gardner, Goulden, & Cross, 2015; Maffei et al., 2015;

Sasaki, Kochiyama, Sugiura, Tanabe, & Sadato, 2012; Sokolov

et al., 2018). Among these, Schippers and Keysers (2011) pro-

vide evidence for directed information flow from premotor

cortex to the other nodes of the action observation network

during action prediction. Moreover, a handful of brain stimula-

tion studies show the causal role of motor system, especially

premotor cortex in action prediction (Avenanti, Paracampo,

Annella, Tidoni, & Aglioti, 2018; Cardellicchio et al., 2018).

In another study, using an fMRI-adaptation paradigm,

Saygin, Chaminade, Ishiguro, Driver, and Frith (2012) found

that the parietal node of the AON showed more adaptation to

actions that violate predictions (via an agent who showed a

mismatch between appearance and motion) than to actions

that do not (via agent who shows a match between appear-

ance and motion). The authors interpreted the differential

adaptation in the parietal cortex for the prediction violations

as reflecting prediction error signals generated due to a

mismatch between the appearance and movement of the

observed actor. Note that the direction of prediction errors is a

matter of debate in neuroscience today. While some accounts

suggest that prediction errors are transmitted from lower re-

gions to higher regions (Friston, 2010), other accounts propose

the opposite (Heeger, 2017).

Regardless of the debate, due to the adaptation-based

analysis in Saygin et al. (2012), it could not be determined

whether the influence on parietal cortex came as a feedforward

(bottom-up) influence from earlier visual areas via pSTS, or as

a feedback (top-down) modulation from premotor cortex in

AON in the mismatch condition. The current study builds on

this work and aims to reveal where that influence on parietal

cortex might be generated from. Is it a top-down influence

from premotor cortex or a bottom-up influence from pSTS?

Based on the available evidence (Avenanti et al., 2018;

Cardellicchio et al., 2018; Schippers & Keysers, 2011) we hy-

pothesized that the influence on parietal cortex comes from

premotor cortex. To test this, we studied the effective con-

nectivity patterns in the AON of the human brain and their

modulation by the agent characteristics using functional

magnetic resonance imaging (fMRI) and dynamical causal

https://doi.org/10.1016/j.cortex.2020.03.014
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Fig. 2 e Stimuli used in the action perception experiment. There were three agents: Human with biological appearance and

biological motion (match between appearance and motion), Android with biological appearance and nonbiological motion

(mismatch between appearance and motion), and Robot with nonbiological appearance and nonbiological motion (match

between appearance and motion).
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modeling (DCM) (Friston, Harrison, & Penny, 2003). Specif-

ically, we investigated the influence of two nodes of the AON,

pSTS and premotor cortex over the third node, parietal cortex

and how this influencewas affected by themismatch between

the appearance and motion of the observed agent.
2. Materials and methods

The fMRI data used in the present study are the same as the

one collected in Urgen, Pehlivan, and Saygin (2019). The

methodological details are provided below.

2.1. Participants

27 subjects (12 females, 15 males) from the student commu-

nity at the University of California, San Diego participated in

the study. Sample size was determined based on previous

studies of action observation, in particular the study by Saygin

et al. (2012) on which the current study was built on. Data of 4

subjects were not included in the analysis due to excessive

head movements (3 subjects) or technical problems during

data acquisition (1 subject). The subjects had no history of

neurological disorders and normal or corrected-to-normal

vision. Informed consent was obtained in accordance with

UCSD Human Research Protections Program. The subjects

were paid $25 for 1.5 h participation in the study. All ROIs of

interest for DCM analysis were identified in 18 subjects so

those subjects were included in the DCM analysis.

2.2. Stimuli

Stimuli consisted of video clips of actions performed by 3

agents: a human agent, and the humanoid robot Repliee Q2 in

two different appearances (human-like and robotic). These

agents are referred here as Human, Android, Robot, respec-

tively (Fig. 2, also see Saygin et al., 2012; Urgen, Plank, Ishiguro,

Poizner, & Saygin, 2013, 2019) for additional (details about the

stimuli).
The agents differed from each other in terms of visual

appearance and motion. The Human agent had biological

appearance and biological motion, the Android agent had

biological appearance and nonbiological motion, and the

Robot agent had nonbiological appearance and nonbiological

motion. So, in this setting both Human and Robot had a match

between their appearance and motion (both biological and

nonbiological, respectively), whereas Android had a mismatch

between the appearance andmotion. Our earlier study, Urgen,

Kutas, & Saygin (2018), indeed has shown that the Android

elicited an N400 effect (whereas Human and Robot did not),

which is known to be a marker of predictive processing and

expectation violation in the case ofmismatches. All the agents

performed 8 different actions. The actions were comprised of

a variety of actions included drinking from a cup, grasping an

object, throwing a paper, wiping a table, nudging, turning the

body to the right, handwaving, and talking (for introducing

herself).

2.3. Procedure

Each participant was given exactly the same introduction to

the study and the same exposure to the videos as prior

knowledge can induce biases against artificial agents (Saygin

& Cicekli, 2002). Before starting fMRI scans, subjects were

shown each video and were told whether each agent was a

human or a robot (and thus were not uncertain about the

identity of the agents during the experiment). We recorded

fMRI BOLD response as subjects watched 2 s action clips in a

total of 8 runs. In each run, the experiment had a block

design in which blocks consisted of video clips of one agent

type (Human, Android, or Robot, see Fig. 2). The experiment

had 18 stimuli blocks (6 Human, 6 Android, 6 Robot) and they

were presented in a pseudo-randomized order ensuring that

all order combinations were presented (i.e., H-A-R, H-R-A, A-

H-R, A-R-H, R-H-A, R-A-H). A rest block followed the pre-

sentation of the three blocks of agents. There, subjects

fixated on a cross for a time interval varying between 8.1 s

and 13.5 s. Each block had 9 trials (8 different actions and

https://doi.org/10.1016/j.cortex.2020.03.014
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repetition of a randomly chosen action once) with .1 s inter-

stimulus interval in between the trials. Each subject was

presented a different order of blocks and of stimuli within

each block. In order to keep subjects’ attention throughout

the experiment, an incidental one-back task was performed

in which subjects pressed a button whenever a movie was

repeated.

2.4. Image acquisition, preprocessing and first-level
analysis

We scanned our subjects at the Center for fMRI at UC San

Diego using the 3 T GE MR750 scanner (Functional/EPI im-

ages: TR ¼ 2.7 s, TE ¼ 30, Flip angle ¼ 90, number of

slices ¼ 35, voxel size ¼ 3 mm � 3 mm x 3 mm, 152 volumes

in each run, sequential acquisition; Structural images: 172

volumes, 256 � 256 pixel, T1-weighted). The stimuli were

presented on a projector through a mirror mounted in the

head cover in the scanner. First, the fMRI data of each subject

were pre-processed with standard procedures including

motion correction, slice-time correction (referenced to 1st

slice in the series), normalization, and smoothing (8 mm)

using the SPM8 software. Then, two different first-level an-

alyses (i.e., within subject) were performed using a general

linear model (GLM). In the first analysis, each agent type

(Human, Android, Robot) as well as the rest blocks (fixation)

were modeled as a separate condition and beta images were

generated for these conditions. This analysis was done to

identify the overall activity patterns and determine the

nodes or the regions of interest (ROIs) of the AON. After the

first level analysis was run for each subject, we ran the

second-level random-effects analysis to compute the group

level activationmap. To this end, we created the contrast [All

Agents (Human, Android, Robot) e Fixation] (p < .001) and

extracted our ROIs from this map (See Section 2.5). The sec-

ond analysis was done to investigate the modulations in the

effective connectivity of the AON via dynamical causal

modeling (See Section 2.6). In the second analysis, we defined

two conditions: The first conditionwas defined asActions and

consisted of actions of all three agents (Human, Android,

Robot) to investigate the modulations of the connections by

any action stimulus regardless of agent. The second condi-

tion was defined as the Mismatch condition, and consisted of

the actions only by the Android, which featured a mismatch

between appearance and motion, to investigate the modu-

lations of the connections by the Mismatch condition. In this

paradigm, we are using “mismatch” in the sense that visual

predictions, under a high level representation of biological

movement - are violated when watching the human-like

robot (i.e., Android) move. In other words, the mismatch is

between predictions under a pre-potent generative model of

the visual consequences of any given agent (i.e., human-like

motion based on human-like appearance) and what is actu-

ally observed (non-human like motion). In addition, we also

included the Match condition to compare with the Mismatch

condition, which consisted of the action videos performed by

the Human and the Robot, as there was a match between the

appearance and motion of these agents. Motion parameters

generated in the preprocessing stage were used as regressors

in both analyses.
2.5. Identification of ROIs

We identified the ROIs of the AON by contrasting the overall

activation patterns for all stimuli conditions compared to

fixation (p < .001 uncorrected, cluster threshold k ¼ 5 voxels)

using the first first-level analysis for each subject (described in

Section 2.4 above). We chose the central voxel of the activa-

tion in each node of the AON and extracted a spherical ROI

that contained the subject-specific activation. We did this for

all 18 subjects for whom we identified all ROIs of interest. The

ROI time series data was then extracted using the principal

eigenvariate of all voxels (that survived the threshold of

p < .05) within a sphere with 4 mm radius.

2.6. Specification of the network models

In order to investigate whether a mismatch between appear-

ance and motion of an agent during action perception was

mediated through a bottom-up process from pSTS to inferior

parietal cortex, or as a top-down process from ventral pre-

motor cortex to inferior parietal cortex, we analyzed our fMRI

data with dynamical causal modeling (DCM).

Dynamical causal modeling (DCM) is an effective connec-

tivity technique to estimate the directed connectivity between

different regions of interest with fMRI (Friston et al., 2003;

Penny, Stephan, Mechelli, & Friston, 2004). DCM consists of

two stages: Model specification and estimation, and model

selection. In the model specification and estimation stage,

several model architectures are specified based on the known

anatomy between brain regions of interest and the hypothesis

about how the connections might be modulated by the

experimental manipulations. Three parameters are esti-

mated: 1) Intrinsic connections between brain regions, 2) How

the intrinsic connections are modulated by experimental

manipulations, 3) The extrinsic input strength into the sys-

tem. In the model selection stage, Bayesian Model Selection

(BMS) procedure is used to determine the most likely model

that generated the observed data. In this procedure, each

model architecture in the model space is assigned a proba-

bility for explaining the observed data. Themodel that has the

highest probability is then considered to be the “winning” or

the optimal model.

To test our hypothesis, we constructed 3 models that

consisted of themain three ROIs of the AON, namely pSTS, the

inferior parietal node, and the ventral premotor node (See the

coordinates listed in Table 2) for each subject and in each

hemisphere. To constrain the model space, in each of these

models, the intrinsic connections between the ROIs were

informed by the known anatomical connections between the

regions. As such, pSTS and the parietal node, and the parietal

node and the premotor node had reciprocal connections be-

tween each other (Fig. 3A). Furthermore, in all models, pSTS

was considered to be the node where the visual input entered

the system, and all intrinsic connections were modulated by

the observation of actions (Action condition, see Section 2.4). In

this setting, Action condition served both as the visual driving

input from pSTS and the modulatory influence on the recip-

rocal connections of the AON. In other words, the observation

of actions was assumed to evoke activity in pSTS first (input to

the system), and then subsequently propagated to parietal

https://doi.org/10.1016/j.cortex.2020.03.014
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Fig. 3 e DCM models tested in the model space. (A) The DCM model that forms the basis for all tested models in the model

space in (B). There are reciprocal intrinsic connections between pSTS and parietal node, and the parietal node and the

premotor node informed by anatomy (red arrows). The input to the system is assumed to enter to the AON through pSTS

since pSTS gets information from the visual cortex (blue dashed arrow). All the intrinsic connections are modulated by

observation of actions (dashed blue lines). (B) The model space that consists of three models that correspond to our

hypothesis about how the mismatch condition (as well as the match condition) might modulate the intrinsic connections.

Model 1 tests a bottom-up modulation from pSTS to parietal node, Model 2 tests a top-down modulation from premotor

node to parietal node, and Models 3 tests both a bottom-up and a top-down modulation.
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and premotor cortex based on the known anatomical con-

nections. After the first feedforward flow of information from

a lower area to a higher area, feedback from a higher area to a

lower area occurred in all models.

The three models differed with regard to which connec-

tions were modulated by the Mismatch condition (See Section

2.4, Fig. 3B). The first model posits that influence on parietal

cortex activity is through connections from pSTS to parietal

cortex, i.e., a bottom-up modulation (Model 1). The second

model posits that the influence on parietal cortex is through

feedback from ventral premotor cortex, i.e., a top-down

modulation (Model 2). A third possibility is that the influence

would be expressed through both pSTS and premotor cortex

connections (Model 3). In all these alternative models, the

Match condition was considered to modulate the same con-

nection(s) as of the Mismatch condition to be able to compare

the connection strengths in the Match and Mismatch

conditions.
In the specification of DCMs, default parameters in SPM8

were used: Modulatory effects were specified to be bilinear,

one-state model was run for each region, and stochastic ef-

fects were not modeled. Once the parameters were estimated

for each model at the individual subject level, random-effects

analysis Bayesian Model Selection (BMS) was used to deter-

mine the winningmodel (i.e., themodel that best explains the

data) at the group level. This method determines a probability

for each model, known as the exceedance probability, by

pooling the evidence from all subjects. This is the probability

that indicates that a model is more likely than any other

model tested in themodel space. Once thewinningmodel was

determined, each of the intrinsic connection strengths and

modulatory connection effects were compared with 0 with

one-sample t-tests (p < .0001) to identify the significant

connections.

The intrinsic connections indicate the strength of the

connectivity between two ROIs. The modulatory connection

https://doi.org/10.1016/j.cortex.2020.03.014
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Fig. 4 e Whole brain SPM analysis with the contrast All Agents (Human, Android, Robot) e Fixation (p < .001, cluster

threshold k ¼ 5 voxels) at the group level. The contrast revealed activation in early visual areas extending dorsally to lateral

occipital cortex (LOC), and ventrally to inferior temporal cortex, pSTS, parietal cortex, and premotor cortex dorsally and

ventrally in both hemispheres. See the coordinates in Table 1.

Table 1 e MNI Coordinates of the peak voxels of the brain regions involved in visual processing of actions based on the All
Agents-Fixation contrast in the whole brain GLM analysis (Fig. 3).

MNI coordinates

x y z Anatomical Name Brodmann Area

¡34 ¡92 0 Middle occipital gyrus (left) BA 17

�26 �92 �10 Inferior occipital gyrus (left) BA 18

�48 �80 �2 Middle occipital gyrus (left) BA 19

48 ¡74 ¡2 Inferior temporal gyrus (right) BA 19

40 �84 �8 Inferior occipital gyrus (right) BA 19

22 �94 �6 Sub-gyral (right) BA 18

42 2 56 Middle frontal gyrus (right) BA 6

50 34 34 Middle frontal gyrus (right) BA 9

46 10 30 Inferior frontal gyrus (right) BA 9

¡34 ¡58 50 Superior parietal lobule (left) BA 39

38 ¡56 52 Inferior parietal lobule (right) BA 40

32 �68 28 Sub-gyral (right) BA 39

¡44 0 56 Middle frontal gyrus (left) BA 6

�42 �2 38 Middle frontal gyrus (left)

�60 6 32 Inferior frontal gyrus (left) BA 6

¡6 12 50 Medial frontal gyrus (left) BA 6

28 ¡6 ¡22 Amygdala (right)

¡12 26 60 Superior frontal gyrus (left) BA 6

8 ¡22 68 Medial frontal gyrus (right) BA 6

38 ¡26 58 Precentral gyrus (right) BA 4

The bold coordinates mean the "Local maxima of the cluster".

c o r t e x 1 2 8 ( 2 0 2 0 ) 1 3 2e1 4 2 137
strengths on the other hand indicate the change in the

effective connectivity value of a connection due to an exper-

imental manipulation. All connections other than the self-

connections within an ROI are in Hz. Self-connections

(among all intrinsic connections) within an ROI are log scale

parameters. This is why it is possible to get negative values,

and these values mean weaker connections. The relationship

between Hz and log scale is as follows:

C_Hz ¼ C - ((exp (C)/2) þ C), where C_Hz is the value in Hz,

and C is the log scale parameter.
3. Results

3.1. Brain regions that are involved in visual processing
of actions

In order to identify the brain regions that were involved in

visual processing of actions, we ran the contrast between the

observation of actions of all agents (Human, Android, Robot)

and the fixation condition. This contrast revealed the

https://doi.org/10.1016/j.cortex.2020.03.014
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activation in early visual cortex extending dorsally to lateral

occipital cortex (LOC) and ventrally to the inferior temporal

cortex, as well as the core areas for AON, namely pSTS, pari-

etal regions in the anterior part of the intra-parietal sulcus

(AIP) and inferior and superior parts of the parietal lobe, and

dorsal and ventral parts of the premotor cortex, all bilaterally

(p < .001, cluster level 5) (Fig. 4; Table 1 for the coordinates of

all activations).

In order to deal with the expansion of model space with

increasing number of ROIs and constrain the model space

used in the effective connectivity analysis, we extracted ROIs

from pSTS, inferior parietal, and ventral premotor cortex in

each subject, and excluded the areas in early visual areas. The

coordinates of the central voxels of the ROIs averaged over

subjects are displayed in Table 2. On average, subjects were 96

percent accurate in the behavioral task.

3.2. Effective connectivity with DCM and model selection
with BMS

The three DCMs included the three ROIs: pSTS, the inferior

parietal node, and the premotor node (ventral premotor cor-

tex). The intrinsic connections included the reciprocal con-

nections between pSTS and the parietal node, and the parietal

node and the ventral premotor cortex. The input into the

system was considered to enter from pSTS. Observation of all

actions was considered to modulate all intrinsic connections

(defined by the Action condition, see Section 2.4), and the

Mismatch condition (along with the Match condition) was

considered to modulate either the pSTS-parietal connection

(Model 1), premotor-parietal connection (Model 2), or both of

these connections (Model 3). We chose to model the right and

the left hemispheres separately, in the hope of replicating our

inferences about the best model architecture e model pa-

rameters or effective connectivity changes. In what follows,

we report parallel results for the right and left hemisphere.

BMS analysis on the three DCMs showed that Model 2 was

the winning (optimal) model in both hemispheres, whose

probability was .50 in the left and .55 in the right (Fig. 5). The

next bestmodel on the left wasModel 1 whose probability was

.27, and followed by the least likely model, Model 3, whose

probability was .23. On the right hemisphere, the winning

model, Model 2, was followed by Model 3, whose probability

was, .23 and the least likely model, Model 1’s probability was

.21.

The intrinsic connection strengths between the ROIs in the

winning model, Model 2, are listed in Table 3. All connection

strengthswere found to be significant (greater than 0 by a one-

sample t-test, p < .0001) confirming the anatomical connec-

tivity of each pair of regions. In addition, the connection

directed from pSTS to the parietal node was estimated to be

stronger than the other three connections (parietal to pSTS,

parietal to premotor, premotor to parietal) both in the left and

the right hemisphere. Note that self-connections within an

ROI (e.g., pSTS to pSTS) are log scale parameters whereas the

other parameters are in Hz. This is why it is possible to get

negative values in the case of self-connections (e.g., pSTS to

pSTS connection is �.4960 in Table 3). Negative values mean

weak connections and positive values mean strong

connections.

https://doi.org/10.1016/j.cortex.2020.03.014
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Fig. 5 e The exceedance probability of each model in the model space. Image on the left shows the results of the model

testing in the left hemisphere, and the one on the right shows the results of the right hemisphere. In both hemispheres,

Model 2 has the highest probability.

Table 3 e The parameters of the intrinsic connectivity that begins with the endogenous activity of actions in the winning
model (Model 2) in both hemispheres. The values in the table indicate the mean connection strength across all subjects.

FROM

TO Left hemisphere Right hemisphere

pSTS Parietal Premotor pSTS Parietal Premotor

pSTS �.4960 .0414 e �.4964 .0342 e

Parietal .1976 �.4993 .0070 .2168 �.4994 .0071

Premotor e .0483 �.5000 e .0461 �.5000

Table 4 e The parameters of the modulatory activity of actions in the winning model (Model 2) in both hemispheres. The
values in the table indicate the mean connection strength across all subjects.

FROM

TO Left hemisphere Right hemisphere

pSTS Parietal Premotor pSTS Parietal Premotor

pSTS e .0105 e e .0077 e

Parietal .0796 e .0005 .0850 e .0005

Premotor e .0132 e e .0121 e
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On the other hand, in the winning model Model 2, the

modulatory effects of Actions on all four connections were

found to be significant (greater than 0 as inferred by post-hoc

(confirmatory) classical one sample t-tests, p < .0001). The

strength of themodulatory effects of Actions is shown in Table

4 and displayed on the right hemisphere in Fig. 6 together with

input strength. The connection between pSTS and the parietal

node was modulated most strongly. The modulatory effect of

the Mismatch condition on the premotor-parietal connection

was .00026 on the left hemisphere, and .00032 on the right.

Thismeans that the change in the effective connectivity value

of the premotor-parietal connection due to the experimental

manipulation (i.e., mismatch) is .00026 on the left, and .00032

on the right. Although this seems to be a small change, it was a

statistically significant change (p < .0001). On the other hand,

the modulatory effect of the Match condition on the same
connection (premotor-to-parietal) was less than that of the

Mismatch condition: it was .00024 on the left hemisphere, and

.00019 on the right, but the differences were not significant

(Left: t (17) ¼ .13, P ¼ .89; Right: t (17) ¼ .64, P ¼ .53). The input

strengthwas�.0059 on the left hemisphere, and�.0057 on the

right hemisphere.
4. Discussion

The brain regions that are involved in visual processing of

actions are relatively well established in cognitive neurosci-

ence (Caspers et al., 2010; Saygin, 2012). However, how the

information flows between these regions is less understood.

In the present study, we aimed to estimate the effective con-

nectivity patterns between the core nodes of the Action

https://doi.org/10.1016/j.cortex.2020.03.014
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Fig. 6 e Modulatory connection strengths in the winning

model, Model 2 across subjects (only right hemisphere is

shown for display purposes). The mean values for action

modulations for both hemispheres are also listed in Table

4. Modulations by actions are shown by the blue dotted

lines. Modulation by the mismatch condition is shown by

the red dotted line, and the match condition is shown with

the red dashed line. All connection strengths were

significantly different from 0 (as inferred by post-hoc

(confirmatory) classical one-sample t-tests, P < .0001).
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Observation Network and how these connections were

modulated by prediction violations during action perception.

Our study was primarily motivated by the findings of Saygin

et al. (2012), who reported that the parietal node of the AON

showed differential activity during observation of actions

which were performed by an agent who possessed a

mismatch between appearance and motion (a biological

appearance butmechanicalmotion) compared to other agents

who possessed a match between appearance and motion

(biological appearance and motion or mechanical appearance

and motion). Within the predictive coding account of action

perception (Kilner et al., 2007a; 2007b), one question that has

been of interest to us was whether that differential activity in

parietal cortex was a top-down effect from premotor cortex or

a bottom-up effect from pSTS. The current study addressed

this question using fMRI and DCM.

We constructed three models to test our hypothesis. First

of all, informed bywell-known anatomy in the primate brain,

in all these models, we created reciprocal intrinsic connec-

tions between pSTS and the inferior parietal node, and the

inferior parietal node and the ventral premotor node. The

input into the system was considered to enter from pSTS,

which was a reasonable assumption given the involvement

of pSTS in visual analysis of form and motion information in

observed actions (Urgen et al., 2019; Vangeneugden et al.,

2011, 2009). In addition, in all these models, we assumed

that observation of actions modulated all intrinsic connec-

tions. We then constructed three specific models that cor-

responded to our hypotheses: A first model in which the

connection from pSTS to parietal cortex was modulated, a
second model in which the connection from the premotor

cortex to the parietal cortex was modulated, and a third

model in which both connections were modulated by the

mismatch condition (the agent that exhibited a mismatch

between appearance and motion). Our results show that the

most likely model that best explains the data is a model in

which the connection from the premotor cortex to the pari-

etal cortex was modulated, which indicates a top-down

influence.

Confirmatory classical tests of the parameter estimates of

the optimal model confirmed that all the intrinsic connections

were greater than zero, reflecting the well-known anatomy

between these regions (Luppino, et al., 1999; Seltzer & Pandya,

1994; Rushworth et al., 2006). The strongest intrinsic connec-

tivity was between the pSTS and the inferior parietal node. On

the other hand, all of the intrinsic connectionsweremodulated

significantly by the observation of actions, which is consistent

with an earlier DCM study of action observation (Sasaki et al.,

2012). These results suggest that action-related information is

processed via both forward and backward connections in the

AON. On the other hand, the mismatch between appearance

and motion of an observed agent during action perception was

likely mediated primarily via a backward connection from the

premotor to the parietal node of the AON.

These results provide support for the predictive pro-

cessing account of action perception (Kilner et al., 2007a;

2007b), which proposes that there are reciprocal connec-

tions between the three levels of the AON, and prediction

error signals depend upon top-down predictions. Our data

shows that actions are not only processed by a network that

has forward and backward connections consistent with

previous work (Cardellicchio et al., 2018; Gardner et al., 2015;

Maffei et al., 2015; Sasaki et al., 2012; Sokolov et al., 2018) but

also provides evidence that in the case of prediction viola-

tions (e.g., when a moving agent exhibits a mismatch be-

tween appearance and motion), the premotor node of the

AON has an influence on the inferior parietal node e the

lower node in the hierarchy. The nature of this signal is a

matter of debate: in the context of the most well known

predictive coding theory (Friston, 2010), it may be a prediction

signal whereas in an alternative predictive processing the-

ory of cortical function (Heeger, 2017), it may be a prediction

error signal. Nevertheless, these results are consistent with

previous studies that show the causal role of premotor cor-

tex in action observation (Avenanti et al., 2018; Schippers &

Keysers, 2011).

In our interpretation above, we noted that an increase in

the backward connectivity from the premotor node to the

parietal node could be interpreted in terms of an increased

sensitivity to descending afferents. This speaks to an alter-

native way of modeling attentional set in paradigms such as

ours; namely, by trying to explain differential responses in

terms of the excitability or self-connectivity of each region. In

other words, we could have explored a larger model space in

which both between and within-region connections were

allowed to change during the mismatch conditions. Although

we will pursue this in future work, this would not allow us to

disambiguate between our primary hypotheses; namely,

whether the activations in the parietal node can be attributed

to backward or forward connections.

https://doi.org/10.1016/j.cortex.2020.03.014
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We note again that the sort of mismatch induced by our

paradigm rests upon the assumption that there is some pre-

potent set of predictions about the visual consequences of

movement that are violated when watching a robot move.

We base this upon the simple fact that humans are, a priori,

predisposed to generating predictions about the movement

of conspecifics e and similar looking agents such as hu-

manoid robots, as evidenced by our previous work (Urgen

et al., 2018).

The comparison of the modulatory effect of the Mismatch

condition on the premotor-parietal connection in the win-

ning model, with that of the Match condition showed no

significant differences at the group level (although the

Mismatch condition resulted in a numerically greater mod-

ulation than the Match condition). However, this does not

necessarily disqualify our conclusion that the influence on

the inferior parietal node is through feedback connections

from ventral premotor during perception of actions that

violate people’s predictions. There could still be directed

connectivity from premotor cortex to parietal cortex when

there is no prediction violation. Indeed, this is why we

included the Action condition as a modulatory effect in all of

the reciprocal connections, and we found that all the con-

nections were modulated significantly by this condition. So,

we would like to emphasize that our primary question was

not whether the match and mismatch conditions differen-

tially modulated the connection strengths but rather which

connection was modulated significantly in the case of pre-

diction violations. The finding that the match and mismatch

conditions did not differ significantly does not necessarily

conflict with this result.

Finally, some caveats must be noted. BMS is a Bayesian

approach, which assigns a probability to each model tested in

the model space and constrained by the experimental design.

Future studies should test the generality of this model during

action observation under different task demands. For

instance, the mismatch between the two visual cues,

appearance and motion is a particular case where predictions

are violated during action perception. Novel prediction para-

digms in which there are mismatches between different vi-

sual cues, multi-sensory cues, or even cognitive cues (e.g., as

in Costantini et al., 2005; Koelewijn, van Schie, Bekkering,

Oostenveld, & Jensen, 2008; Stapel, Hunnius, van Elk, &

Bekkering, 2010) should be tested in future studies of action

observation with effective connectivity techniques.
5. Preregistration

No part of the study procedureswas pre-registered prior to the

research being conducted. No part of the study analyses was

pre-registered prior to the research being conducted.
6. Sample size

We report how we determined our sample size, all data ex-

clusions, all inclusion/exclusion criteria, whether inclusion/

exclusion criteria were established prior to data analysis, all

manipulations, and all measures in the study (page 6e7).
Open practices

The study in this article earned an Open Data badge for

transparent practices. Materials and data for the study are

available at https://osf.io/kmgpw/?view_

only¼7d860e6536f4431fa4e75e27fe776904.
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