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Abstract
The burden of large and rare copy number genetic variants (CNVs) as well as certain specific CNVs increase the risk of
developing schizophrenia. Several cognitive measures are purported schizophrenia endophenotypes and may represent an
intermediate point between genetics and the illness. This paper investigates the influence of CNVs on cognition. We
conducted a systematic review and meta-analysis of the literature exploring the effect of CNV burden on general
intelligence. We included ten primary studies with a total of 18,847 participants and found no evidence of association. In a
new psychosis family study, we investigated the effects of CNVs on specific cognitive abilities. We examined the burden of
large and rare CNVs (>200 kb, <1% MAF) as well as known schizophrenia-associated CNVs in patients with psychotic
disorders, their unaffected relatives and controls (N= 3428) from the Psychosis Endophenotypes International Consortium
(PEIC). The carriers of specific schizophrenia-associated CNVs showed poorer performance than non-carriers in immediate
(P= 0.0036) and delayed (P= 0.0115) verbal recall. We found suggestive evidence that carriers of schizophrenia-associated
CNVs had poorer block design performance (P= 0.0307). We do not find any association between CNV burden and
cognition. Our findings show that the known high-risk CNVs are not only associated with schizophrenia and other
neurodevelopmental disorders, but are also a contributing factor to impairment in cognitive domains such as memory and
perceptual reasoning, and act as intermediate biomarkers of disease risk.

Introduction

Copy number variants (CNVs) occur if sections of DNA
sequence become deleted or duplicated [1–3]. Although
many CNVs are benign and contribute to natural human
variation [4], larger and rarer variants are more likely to
be pathogenic and under negative selection pressure
[5, 6]. The phenotypic effects of CNVs are not fully
understood, but they influence neurodevelopment, cogni-
tive abilities and the risk of several common brain dis-
orders [6].
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Specific CNV loci are associated with increased risk of
developing schizophrenia [7–11]. A recent large CNV
meta-analysis by the Psychiatric Genomics Consortium
showed robust genome-wide significant associations for
eight loci as well as suggestive support for an additional
nine [12]. Schizophrenia-associated CNVs have incomplete
penetrance [6, 13], and are rare, hence most people with
schizophrenia are not carriers. However, schizophrenia-
associated CNVs have odds ratios ranging from 2 to 30
[12, 14] and thus constitute some of the strongest known
risk factors for the illness.

An increased burden of large and rare CNVs has also
been associated with schizophrenia [15, 16]. Studies have
shown that, compared with healthy controls, individuals
with schizophrenia carry a greater number of rare (<1%
frequency) CNVs of over 20 kilobases (kb) [12], 100 kb
[15–17], 200 kb [16, 17], 500 kb [16, 17] and 1Mb [18].
The largest study to date, by the Psychiatric Genomics
Consortium, further shows that the burden is enriched for
genes associated with synaptic function and that deletions
assert greater effect than duplications [12]. Despite strong
evidence that CNVs are risk factors for schizophrenia and
other developmental disorders, the mechanisms by which
CNVs lead to disease onset remain unclear.

Endophenotypes are biomarkers that characterise ill-
nesses and indicate genetic liability, as intermediate steps on
the pathway from genes to disease [19, 20]. Cognitive
function is one such endophenotype for schizophrenia and
extensive literature shows that individuals with schizo-
phrenia display reduced performance across a range of tests
of specific and general cognition [21, 22]. This is not simply
due to the effects of antipsychotic medication [23], and nor
is it just an epiphenomenon of the symptoms of schizo-
phrenia; cognition is impaired before illness onset [24, 25]
as well as amongst the unaffected relatives of patients with
schizophrenia [26–28]. A recent genome-wide association
study with more than 269,000 samples shows a bidirec-
tional effect with intelligence having a strong protective
effect towards schizophrenia risk, and a smaller reverse
effect, with schizophrenia predisposing to impaired cogni-
tive functioning [29].

IQ and general cognitive ability are heritable [30–33];
however despite the identification of 205 loci affecting over
1000 genes associated with intelligence [29], they only
explain ~5% of the inter-individual variability in intelli-
gence. Part of the unexplained heritability of intelligence
could be attributable to copy number variants. Many CNVs
affect genes involved in neurodevelopment [15, 34, 35],
providing a mechanism by which specific CNVs and CNV
burden could affect cognition.

There is evidence linking several specific CNVs
with schizophrenia, other neurodevelopmental disorders,
educational attainment [36, 37] and with impaired cognition

[38–41]. Furthermore, Stefansson et al. [42] showed that
healthy carriers of any of 26 neuropsychiatric CNVs col-
lectively performed at an intermediate level between healthy
non-carriers and schizophrenia patients in several cognitive
tests. This indicates that, while the risk CNVs may not have
full penetrance for disease, most carriers will exhibit some
degree of phenotypic change such as impaired cognition. A
large study on the UK Biobank further supports this effect
of neuropsychiatric CNVs impairing cognition in healthy
carriers [37].

While the detrimental effects of specific schizophrenia-
associated CNVs on cognition are well characterised, the
influence of CNV burden on cognition is less clear. Some
evidence, both in clinical samples and healthy popula-
tions, suggests that increased CNV burden is associated
with lower IQ [30, 31, 43, 44], while other studies have
failed to find this association [35, 45–47]. Until now, few
studies have reported the effects of schizophrenia-
associated CNVs or CNV burden on specific cognitive
abilities [37, 42, 48].

Firstly, we conducted a systematic review and meta-
analysis of the literature examining the relationship between
CNV burden and general cognitive ability. We then present
data from a new family study from the Psychosis Endo-
phenotypes International Consortium (PEIC) [49] investi-
gating the influence of CNVs (both burden and loci) on
cognitive endophenotypes for schizophrenia [27, 50].

Methods

Meta-analysis of published association studies of
CNVs and general IQ

We conducted a literature search using the databases
Pubmed, Medline, and PsychINFO using the following
search terms: “(CNV* OR copy number OR copy-number)
AND (IQ OR intelligence OR cogniti*)”. The time window
included any papers published before 1st April 2019. The
reference and citations lists of relevant papers were examined
to identify other relevant papers. We imposed no restriction
on participant age, geographical location, or article language.

In addition to IQ, we included papers examining other
measures of general intelligence as they are thought to be
closely linked [51]. Papers investigating both patient and
healthy populations were included. Where different papers
used the same sample of participants, only the study with
the most relevant phenotype was included. If multiple
measures of intelligence were included (for example see
references [47, 52]) the one deemed closest to the other
studies was used for the meta-analysis. Similarly, if mea-
sures for both common and rare CNV-burden were reported
[52] we included the latter for the meta-analysis.
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Titles and abstracts of all relevant papers were screened
to assess whether they met the inclusion criteria. Where
necessary, we contacted the authors to request additional
information needed to include the study in the meta-
analysis. Supplementary Table 1 shows the data extracted
from papers.

Meta-analysis of the literature

A random effects meta-analysis was conducted using
StatsDirect version 3.0 [53] to calculate an overall estimate
of the correlation between CNV burden and IQ for the
included studies. Where primary studies reported Spear-
man’s correlations or standardised coefficients they were
converted to Pearson’s correlation coefficients to ensure the
studies were as comparable as possible [54, 55]. A random
effects meta-analysis was chosen due to the variability in
methods of the included studies (including different parti-
cipant samples and inclusion criteria for CNVs). Statistical
heterogeneity was measured using Cochran’s Q statistic.

CNV analysis of the Psychosis Endophenotypes
International Consortium sample

The initial dataset (prior to quality control) included 5597
participants from the PEIC family study [49], including
people with schizophrenia, bipolar disorder with psychotic
symptoms and other forms of psychosis, their unaffected
relatives and unrelated controls. Participants were of Eur-
opean ancestry and assessments were conducted at nine
centres: Amsterdam, Edinburgh, Groningen, London,
Maastricht, Munich, Pamplona, Perth and Utrecht (see
Supplementary Table 2 for further detail). Participants were
recruited through clinical teams, voluntary organisations
and press advertisements, and contributed both genetic data
and cognitive performance measures [49]. All participants
provided written informed consent and the study was
approved by the respective ethical committees at each of the
participating centres. Details of diagnostic classifications
can be found in the Supplementary Methods.

Genotyping and quality control

DNA was obtained from blood for all participants and sent
to the Wellcome Trust Sanger Institute (Cambridge, United
Kingdom). Samples were genotyped with the Human SNP
Array 6.0 at the Affymetrix Services Laboratory (www.
affymetrix.com). We applied standard quality control pro-
cedures as described in the Supplementary Methods and in
Bramon et al. [49]. CNVs were identified using PennCNV
[56] and Affymetrix Power Tools, following the PennCNV-
Affy protocol to calculate log R ratio (LRR) and B-allele
frequency (BAF). Standard PennCNV settings were used

and data were adjusted for genomic waves [57] using
Affymetrix 6.0 GC-model file.

Individual-based quality control for the CNVs was per-
formed using statistics calculated with PennCNV: quality
control thresholds were determined based on inspection of
the frequency distributions of the BAF-drift, LRR-standard
deviation, and number of CNVs per participant, respec-
tively. Individuals with either BAF-drift of >0.01, LRR-
standard deviation of >0.5 or more than 300 CNV calls
were removed. CNV-level quality control was performed by
excluding CNVs with ten or fewer SNPs and by iteratively
merging adjacent calls together if the length between calls
was <20% of the combined length. Calls made by
PennCNV in the pseudo-autosomal regions of the X-
chromosome (10,000–2,781,479 bp and
155,701,382–156,030,895 bp, hg18) were excluded.

All CNVs included in the analysis were visually
inspected by two researchers blind to clinical data using an
in-house script to visualise BAF and LRR patterns. A
consensus decision on inclusion was made between two
researchers, both blind to clinical data, based on the com-
parison of the observed LRR and BAF of the affected
region with the expected for a CNV with the given copy
state. PennCNV frequently made CNV predictions that did
not fit with the expected allelic and/or intensity pattern of
the given copy state and thus 72% of CNV calls were
discarded.

CNV burden analysis

Only rare (<1% frequency in the sample) and large (>200
kb) CNVs were included in the CNV burden. Frequency of
CNVs were determined by identifying common CNV loci,
through independent mapping of start and stop positions of
all CNVs. CNVs whose start positions were within 300,000
bp of each other, where the stop position was also within a
300,000 bp bin were considered to be the same loci (see
Supplementary Fig. 1 for details). In addition to calculations
using total length of CNVs, we also measured burden as
numbers of genes affected, as described in Marshall et al.
[12]. We did this by annotating CNVs with RefSeq genes
(hg18), including genes where at least one base pair of an
exon overlapped with the CNV and adding up all unique
genes affected in each individual. Total burden, and dele-
tion and duplication burdens were analysed separately.

Analysis of schizophrenia-associated CNVs

We searched for carriers of 27 CNVs with good evidence of
an association with schizophrenia as described by Marshall
et al. [12], Kirov et al. [6] and Stefansson et al. [42] (see
Supplementary Table 3). For the analysis of schizophrenia-
associated CNVs we considered all samples prior to any
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sample/CNV-level quality control and performed visual
inspection of all samples with CNV calls that overlapped
with >10% of a schizophrenia-associated locus. Samples
identified with true schizophrenia-associated CNVs by
consensus of two researchers blind to clinical data, were
included in the analysis even if they failed sample/CNV-
level quality control. For 2p16 deletions, all CNV calls
overlapping the region were inspected, and participants with
validated CNVs affecting exons of the causative gene
NRXN1 [58] were identified as carriers.

Cognitive measures

Cognitive measures collected from participants included
block design [59, 60] (a test of perceptual reasoning), the
combined digit span (measuring attention and working
memory), and the Rey Auditory Verbal Learning Task
(RAVLT) immediate and delayed recall (measuring short
and long-term verbal memory, respectively). As different
versions of these tests were used across centres, partici-
pants’ raw scores were converted into percentages by
dividing each participant’s score by the maximum achiev-
able score and multiplying by 100. Supplementary Table 2
details the number of participants for each cognitive
measure.

Kinship matrix

The kinship coefficient is a probabilistic estimate that a
random gene from a subject is “identical by descent” to a
gene in the same locus from another subject. For “n” sub-
jects, these probabilities can be assembled in an n × n
“kinship matrix”, which can be used to model the covar-
iance (or “relatedness”) between individuals and the popu-
lation structure in a dataset. A kinship matrix based on a
LD-pruned set of SNPs (102,112 SNPs selected with
pruning parameters: r2= 0.2; window= 1000 kb) was
generated using LDAK [61] and added as a random effect to
the linear and logistic mixed model regressions.

Statistical analysis

Firstly, the CNV burden data were not normally distributed
showing clear zero inflation as expected. Therefore we
performed a Wilcoxon rank sum test to compare the CNV
burden of individuals with and without cognitive data
available.

Secondly, the association between the CNV measures
and clinical group was investigated. For this analysis, we
performed mixed effects logistic regressions with disease
status as outcome (either patients versus controls or rela-
tives versus controls), age, gender and study centre as fixed
effects and the kinship matrix as a random effect.

Thirdly, the relationships between known schizophrenia-
associated CNVs and quantitative cognitive measures were
examined using linear mixed models. The outcome variable
was the cognitive measure and the predictor was the partici-
pants’ carrier status of schizophrenia-associated CNVs (car-
riers versus non-carriers). Given that schizophrenia-associated
CNVs are very rare, with frequencies ranging from 0.01 to
0.3% [6, 42], only a combined analysis including several such
CNVs was feasible. The analysis for a particular cognitive
measure was only performed if data from at least ten carriers
of schizophrenia-associated CNVs with cognitive measures
were available. Finally, we also used linear mixed models to
investigate the association between cognitive measures and
CNV burden. Age, gender, clinical group (patient, relative
and control), study centre and a kinship matrix were included
as covariates in all linear mixed models. Analyses were per-
formed using R version 3.5.0 [62]. All mixed model regres-
sions including the kinship matrix as a random effect were
performed using the lme4qtl R package [63].

As is standard practice in genetic association studies, we
adjusted the significance threshold for multiple testing. We
used two different analysis approaches depending on the
whether the outcome variable was quantitative or catego-
rical. Firstly, for the linear mixed models, we tested the
correlations between all the cognitive outcomes and divided
the significance threshold (0.05) by the effective number of
traits, as per standard method [64, 65]. We investigated four
cognitive measures: digit span, block design, RAVLT
immediate, RAVLT delayed. These measures were strongly
correlated [20], particularly, the last two (0.79), which was
reflected by a calculation of the eigenvalues for the corre-
lation matrix, which identified the number of effective traits
as three. Secondly, for the mixed effects logistic regression
analyses investigating categorical clinical group as out-
comes, the number of effective traits were two, since we
performed separate logistic regressions comparing cases
versus controls and relatives versus controls. We present all
uncorrected p values throughout the paper. However, inter-
pretation of what constitute significant findings was based
exclusively on the multiple-testing adjusted p value thresh-
olds of 0.017 (0.05/3 effective traits) for cognition and of
0.025 (0.05/2 effective traits) for clinical group outcomes.
All tests performed were two sided and the R-code used is
available upon request from the corresponding author.

Results

Findings from the systematic review and meta-
analysis of the literature

The literature search returned 905 results. Screening of
titles and abstracts revealed 13 papers that were assessed
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for eligibility. See PRISMA diagram and details on the
literature search in Supplementary Fig. 2. Eleven primary
papers of similar quality were found to examine the asso-
ciation between CNV burden and intelligence
[30, 31, 35, 43–47, 66, 67] (Supplementary Tables 1 and 4).

Ten studies, with a total of 18,847 participants,
provided the required data to conduct a meta-analysis and
were included in the random effects meta-analysis
[30, 35, 43–45, 66, 67]. Forest plots for analyses of
length of deletions (N= 18,658) and length of duplications
(N= 18,580) are displayed in Fig. 1, additional forest plots
can be found in Supplementary Fig. 3.

None of the meta-analyses showed evidence for an
association between their measure of CNV burden and IQ.
The pooled correlations between IQ and length of deletions
or length of duplications were −0.04 (CI=−0.07, −0.01)
and −0.002 (CI=−0.02, 0.02) respectively. Cochran’s Q-
statistic revealed evidence for between-study heterogeneity
in the correlation between length of deletions and IQ (χ2=
21.56, P= 0.0058) and number of deletions and IQ (χ2=
33.77, P < 0.0001), number of duplications (χ2= 11.06,
P= 0.0114). There was no evidence for study heterogeneity
for the other measures.

One study included in the systematic review did not
provide data suitable for the meta-analysis. However, its
findings are consistent with the meta-analysis since Van
Scheltinga et al. [46] found no association between their
measures of CNV burden and IQ.

Results from the Psychosis Endophenotypes
International Consortium sample

The full sample consisted of 5597 participants. One thou-
sand, three hundred three participants had CNV data failing
quality control due to one or more of the following reasons:

1107 participants had more than 300 CNVs, 478 had
BAF drift of >0.01 and 400 had Log R ratio standard
deviation of >0.5.

In our study, 77% of samples passed stringent quality
control criteria for CNV calling. This call rate is comparable
to other CNV studies as exemplified by the latest Psychia-
tric Genomics Consortium CNV large mega-analysis
reporting an overall 72% call rate across 43 primary stu-
dies [12]. The challenges with CNV calling from SNP
microarrays, are well known [68], and is to a large extent
technical in origin. SNP microarrays were not originally
designed for CNV detection, and although it is possible as
demonstrated by numerus publications, CNV detection
from SNP arrays is sensitive to quality issues especially
with regards to the intensity measures captured by the
probes on the assay [68].

The 23% of samples excluded on quality control grounds
did not differ significantly from those included in the study
on key parameters including clinical group distribution and
sex. The only significant difference was in age, where the
excluded samples on average were 5 years younger (see full
details in Supplementary Table 5). Age is included as a
covariate in all analysis.

Of the 4294 participants who passed quality control,
3426 were included in the CNV burden analysis as they had
at least one cognitive measure and full information on the
included covariates. There were no significant differences in
CNV burden measures between samples with and without
cognitive data available (see Supplementary Table 6). An
additional two participants that failed the CNV burden
quality control were identified from two independent blind
visual inspections as carriers of schizophrenia-associated
CNVs, and included in that analysis (N= 3428). This
sample included 769 patients with psychotic disorders (576
with schizophrenia (74.9%), 89 with bipolar disorder

Fig. 1 Forest plots for the meta-analyses investigating length of deletions (N= 18,658) and length of duplications (N= 18,580). For
additional plots see Supplementary Fig. 3.
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(11.6%) and 104 with other psychoses (13.5%), 646 unaf-
fected relatives and 2013 healthy controls (see Table 1).

In our sample, we identified 29 participants who carried
one schizophrenia-associated CNV each (see loci in Sup-
plementary Table 3). Table 2 shows the analyses of
schizophrenia-associated CNVs and cognition, adjusted for
age, gender, clinical group, centre and genetic relatedness.
We found evidence of an association between
schizophrenia-associated CNVs and RAVLT idiate
(regression coefficient=−8.0, 95% CI=−13.3 to −2.6,
P= 0.0036) and delayed (regression coefficient=−3.3,
95% CI=−5.8, −0.7, P= 0.0115) recall. This indicates
that participants with a schizophrenia-associated CNV had a
mean RAVLT immediate recall score that was 8.0% lower

than non-carriers, as well as a mean RAVLT delayed recall
score that was 3.3% lower. We also found suggestive evi-
dence that carriers of a schizophrenia-associated CNV had
poorer scores for block design than non-carriers (mean
difference=−10.0, 95% CI=−19.2 to −0.9, P= 0.031)
but only at the uncorrected level of significance. As a
sensitivity analysis we performed the same associations
using only patients with a schizophrenia diagnosis, their
relatives and healthy controls, see Supplementary Table 7.
In that analysis the association between CNV carrier status
and RAVLT immediate recall remained significant (P=
0.004), and we observed a weaker association with
RAVLT delayed recall score at the uncorrected significance
level (P= 0.025).

Table 1 Sample description.
Characteristic CNV carrier

(N)
Non-
carrier
(N)

Total (N) CNV
carrier (%)

Clinical group

Controls 16 1997 2013 0.8%

Relatives 2 644 646 0.3%

Patients 11 758 769 1.5%

Centre

Munich 3 949 952 0.3%

Perth 6 548 554 1.1%

London 2 478 480 0.5%

Maastricht 4 395 399 1.0%

Amsterdam 4 329 333 1.2%

Utrecht 5 304 309 1.6%

Groningen 5 310 315 1.6%

Pamplona 0 44 44 0.0%

Edinburgh 0 42 42 0.0%

Sex

Males 16 1743 1759 0.9%

Females 13 1656 1669 0.8%

Characteristic CNV
carrier
(N)

CNV carrier
(mean/SD)

Non-
carrier
(N)

Non-carrier
(mean/SD)

Total (N) Total
(mean/SD)

Age 29 39.9 (15.6) 3399 43.7 (15.9) 3428 43.7 (15.9)

Cognitive performance

Block design 21 50.6 (24.9) 2726 57.4 (23.6) 2747 57.4 (42.0)

Digit span 5 60.5 (4.5) 1265 50.7 (15.1) 1270 50.7 (9.4)

RAVLT
immediate Recall

24 46.5 (16.6) 1882 54.7 (14.5) 1906 54.6 (14.9)

RAVLT
delayed recall

24 14.6 (7.8) 1865 17.7 (6.9) 1889 17.7 (6.6)

Demographic information for participants with data on schizophrenia-associated CNVs. Two participants
with schizophrenia-associated CNV were identified in the samples failing QC for CNV burden, these were
included only in the analysis of schizophrenia-associated CNVs; thus giving a sample of 3428 participants
for the analysis of schizophrenia-associated CNVs and 3426 for the analysis of CNV burden. CNV carriers
refer to individuals who were identified as carrying a known schizophrenia-associated CNV (see
Supplementary Table 3).

RAVLT Rey Auditory Verbal Learning Test, SD standard deviation.
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Our CNV burden analysis showed that the mean total
length of DNA affected by deletions and duplications was
117.8 and 219.1 kb, respectively and on average 1.8 genes per
participant were affected by these CNVs. We did not find
evidence for an increased total CNV burden measured as
length of DNA affected by CNVs, or as number of genes
affected by CNVs, in people with psychosis compared to
healthy controls. Since Marshall et al. [12] found that the
association between CNV burden and schizophrenia was more
significant when indexed as number of genes affected, we
focused our subsequent analyses on this measure. For analyses
using CNV length see Supplementary Tables 8 and 9.

We found no evidence for an association between the four
cognitive measures and any of the three CNV burden mea-
sures, see Table 2. Stratified analyses were also conducted by
group (Supplementary Table 10), which showed an association
between schizophrenia-associated CNVs and RAVLT
immediate recall (regression coefficient=−11.8, 95% CI=
−20.2 to −3.4, P= 0.006), and a weaker association with the
RAVLT delayed recall (P= 0.02) in the patient group but only

at the uncorrected level of significance. There was no other
evidence for an association between the various cognitive
measures and burden when examining the groups separately.

The mixed effects logistic regression suggests that there
was no evidence in the difference of having a
schizophrenia-associated CNV amongst patients, relatives
and controls. Similarly for CNV burden, the number of
genes affected by large CNVs did not differ between the
three clinical groups. See Supplementary Table 11 for
details of CNV comparisons between clinical groups.
Cognitive performance was impaired in patients compared
with controls for all variables examined, as expected, and
was worse in relatives than controls for block design
and digit span. See Supplementary Table 12 for adjusted
analyses.

As a follow-up analysis we examined five loci found to
protect carriers from developing schizophrenia [12, 69]. We
identified 41 carriers (22q11.21.dup (N= 1), 7q11.21.del
(N= 21), 7q11.21.dup (N= 7), 13q12.11.dup (N= 7) and
Xq28.dup (N= 5)), but found no significant association

Table 2 Associations between
schizophrenia-associated CNVs
and CNV burden with cognition.

Predictor Cognitive measure Participants
(CNV Carrier)

Regression
coefficient

95% CI Sig.

Schizophrenia-
associated CNVs

Block design 2747 (21) −10.1 −19.2, −0.9 0.031

Digit span – – – –

RAVLT
immediate Recall

1906 (24) −8.0 −13.3, −2.6 0.0036

RAVLT
delayed recall

1889 (24) −3.3 −5.8, −0.7 0.0115

Genes affected by all
CNVs (burden)

Block design 2747 −0.1 −0.3, 0.1 0.343

Digit span 1270 0.03 −0.2, 0.2 0.775

RAVLT
immediate recall

1906 −0.03 −0.2, 0.1 0.634

RAVLT
delayed recall

1889 −0.01 −0.1, 0.1 0.854

Genes affected by
deletions (burden)

Block design 2747 −0.4 −0.8, 0.01 0.056

Digit span 1270 −0.1 −0.6, 0.3 0.544

RAVLT
immediate recall

1906 −0.2 −0.5, −0.1 0.0119

RAVLT
delayed recall

1889 −0.1 −0.2, −0.01 0.0661

Genes affected by
duplications (burden)

Block design 2747 −0.001 −0.2, 0.2 0.992

Digit span 1270 0.06 −0.1, 0.3 0.564

RAVLT
immediate recall

1906 0.02 −0.1, 0.2 0.774

RAVLT
delayed recall

1889 0.03 −0.04, 0.1 0.412

Figures in bold are below the multiple testing adjusted p-value threshold of 0.017.

Associations between known schizophrenia-associated CNVs and CNV burden with cognitive performance.
For the schizophrenia-associated CNV analysis digit span was not examined as fewer than ten CNV carriers
had available data. CNV burden was measured as number of genes affected by CNVs larger than >200 kb,
with <1% frequency. All analyses are adjusted for the covariates age, sex, clinical group, centre and genetic
relatedness (kinship matrix).
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between performance in cognitive tests and carrier status, or
in number of carriers between patients, relatives or controls.

Discussion

This study aimed to investigate: (1) the influence of CNV
burden on general cognitive ability (IQ) based on a systematic
review and meta-analysis of the literature and (2) the influence
of schizophrenia-associated CNVs and CNV burden on spe-
cific cognitive skills in our family study from the PEIC.

The meta-analysis of published studies found no asso-
ciations between any CNV burden measures and overall IQ.
The PEIC sample revealed that carriers of specific
schizophrenia-associated CNVs had clear impairments in
immediate and delayed verbal recall. Verbal memory per-
formance has been found to index cortical thinning in
medial temporal and prefrontal regions in schizophrenia
[70, 71] and has been found to be a cognitive predictor of
outcome in schizophrenia and first episode psychosis
[72, 73] supporting its role as a plausible endophenotype in
psychosis. We also found suggestive evidence that carriers
of schizophrenia-associated CNVs perform worse in block
design although further investigation is needed to verify the
link between schizophrenia-associated CNVs and this and
similar measures of perceptual reasoning.

To the best of our knowledge, this is the first and only
meta-analysis investigating the associations between CNV
burden and IQ. We found ten relevant studies with a total of
18,847 participants. Evidence suggests that larger and rarer
CNVs are more likely to be pathogenic [17]. Therefore, we
hypothesised that the larger and rarer CNVs would have
greater effects on intelligence. However, the primary studies
included in our systematic review and meta-analysis did not
always follow this pattern. Indeed the four studies, out of nine,
that did find association with deletion length and intelligence
included CNVs down to 100 kb or smaller. Two of these
studies reported on fewer than 80 participants each. The two
remaining studies [52, 67] were among the largest available
and performed a rigorous quality control. They both found
evidence that all of their rare deletion burden measures (CNV
length and number of genes affected) resulted in lower IQ. We
believe that at least part of the reason why none of the meta-
analyses we performed found association between any of the
measures of CNV burden and intelligence, is due to the het-
erogeneity in the methodology and CNV criteria of the studies
conducted in this area, and it seems the field is still in need of
a more consistent and stringent way to analyse CNV burden.

Along with Gialluisi et al. [48] our study is one of the first
to report on associations between measures of large and rare
CNV burden and performance on specific cognitive tests, and
to our knowledge the first to examine this in both patients with
psychosis and their unaffected relatives. The main limitation

of our family study was the modest sample size, which limited
our power to detect very small effects. CNV detection is
known to be prone to false positive calls [74, 75], therefore a
strength is the thoroughness taken in calling CNVs, as all calls
included in our burden analysis were visually inspected by
two researchers blind to all clinical data in order to ensure their
accuracy. We discarded 72% of the CNVs predicted by
PennCNV after visual inspection, which shows the impor-
tance of such checks. In our sample, we found no evidence of
selection bias in relation to quality control or to availability of
cognitive data. Thus, the percentage of individuals passing
CNV quality control was similar between patients, relatives
and controls and comparable to that of Marshall et al. [12].
Furthermore, the CNV burden did not differ between indivi-
duals with and without cognitive data available.

Our findings suggest that CNVs have greater effects on
specific aspects of cognition rather than on general intelli-
gence. Our family study investigated the burden of large
(>200 kb), rare (<1% frequency) CNVs, which in general
are expected to have greater phenotypic effects [5, 12, 76]
than the smaller and more frequent CNVs included in many
of the studies in the meta-analysis. Furthermore, the genetic
contribution to IQ increases with age [77, 78], and in the
meta-analysis there was substantial diversity in ages and
clinical group examined across the studies. Finally, the
relationship between CNV burden and intelligence may
vary substantially with clinical status. Indeed, the majority
of studies of the meta-analysis that included patients with
neuropsychiatric conditions [30, 31, 44, 66] found asso-
ciations between at least one measure of CNV burden and
intelligence, whereas the majority of studies examining
healthy participants [35, 45, 47] did not. However, our
family study included 22.5% of participants with psychosis,
compared to 0.8% participants in the meta-analysis, and still
did not find an association with any burden measures.

Current available studies, including ours, may still be
underpowered to detect a small effect of CNV burden on
cognition. Furthermore, it is also important to consider the
crudity of the current CNV burden measures defined by size
and frequency criteria. As our understanding of the phenotypic
effects of CNV improves, more specific burden measures
targeting neurodevelopment and brain diseases will emerge.
Limited power in our PEIC family study is likely to explain
why we did not replicate the association between poorer digit-
span and schizophrenia-associated CNVs, as reported by
Kendall et al. [37] in the much larger UK Biobank study.

The RAVLT immediate recall and delayed recall, which
measures working memory and long-term memory respec-
tively, are robust endophenotypes of schizophrenia [27].
Thus, as hypothesised, we found they were impaired
amongst the carriers of known schizophrenia-associated
CNVs in the PEIC family based sample. The existing lit-
erature [37, 67, 79] as well as our data provide consistent
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evidence that the carriers of specific CNVs that increase
schizophrenia risk have cognitive impairments. It is widely
agreed that a better understanding of the genetics of psy-
chosis is essential for developing new diagnostic and ther-
apeutic interventions. Animal and cellular models will
provide essential evidence to understand the mechanisms of
the implicated genetic loci, but are only available for a few
CNVs. Studying endophenotypes in the human in vivo is
non-invasive and one of the best tools available to elucidate
the role and mechanisms of genetic variants that increase
the risk of developing neuropsychiatric disorders.
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