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A B S T R A C T

Visual processing of actions is supported by a network consisting of occipito-temporal, parietal, and premotor
regions in the human brain, known as the Action Observation Network (AON). In the present study, we in-
vestigate what aspects of visually perceived actions are represented in this network using fMRI and computa-
tional modeling. Human subjects performed an action perception task during scanning. We characterized the
different aspects of the stimuli starting from purely visual properties such as form and motion to higher-aspects
such as intention using computer vision and categorical modeling. We then linked the models of the stimuli to
the three nodes of the AON with representational similarity analysis. Our results show that different nodes of the
network represent different aspects of actions. While occipito-temporal cortex performs visual analysis of actions
by means of integrating form and motion information, parietal cortex builds on these visual representations and
transforms them into more abstract and semantic representations coding target of the action, action type and
intention. Taken together, these results shed light on the neuro-computational mechanisms that support visual
perception of actions and provide support that AON is a hierarchical system in which increasing levels of the
cortex code increasingly complex features.

1. Introduction

In our daily life, in a lecture room, at grocery shopping, in traffic, or
at work, we constantly observe other people in action. This simple skill,
action perception, is very important for survival because it allows us to
take the appropriate action based on what we see. For instance, if
somebody waves at you, you probably want to smile and wave back. On
the other hand, if somebody attempts to attack you, you probably want
to run away.

Due to its evolutionary importance, the neural systems that support
action perception have been an intense area of research in neu-
roscience. There are two lines of research that focus on different aspects
of actions. The first line of research, which we refer as visual neu-
roscience of action perception, focuses on early stages of visual pro-
cessing and how actions are processed in the early visual cortex (Giese
and Poggio, 2003; Blake and Shiffrar, 2007). Two important visual cues
in an observed action are the form and motion of the actor.

Accordingly, visual processing of actions has been studied within the
framework of two parallel pathways of the visual system (Mishkin and
Ungerleider, 1982): a dorsal pathway which primarily process motion
information, and a ventral pathway which primarily process form in-
formation. The question for action perception is how these form and
motion information are integrated together to give the percept of a
moving entity.

On the other hand, a second line of research, which we refer as
cognitive neuroscience of action perception, focuses on brain regions
that process actions beyond visual cortex. This line of research has
identified a network, commonly known as the Action Observation
Network, consisting of three core regions in posterior superior temporal
sulcus (pSTS), parietal, and premotor cortex (Rizzolatti and Craighero,
2004; Cross et al., 2008; Caspers et al., 2010; Nelissen et al., 2011). This
network is hypothesized to be a hierarchical system (Kilner et al., 2007)
in which pSTS gets the visual form and motion information from the
visual cortex and communicate them to the parietal and premotor
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cortex which process more complex aspects of actions.
The aim of the present study is to link the research in visual neu-

roscience and cognitive neuroscience of action perception with a
computational approach to improve our understanding of how actions
are processed in the human brain at a systems level. Researchers who
study the visual neuroscience of action perception have understandably
used simple stimuli (e.g. point-light displays instead of ecologically
valid action videos) to target the form and motion processing. On the
other hand, researchers who study the cognitive neuroscience of action
perception have used relatively complex action videos to target some
higher-level aspects of actions such as the actor or the goal without
controlling the low-level form and motion aspects. Therefore, it has not
yet been possible to investigate how different aspects of actions, in-
cluding form and motion as well as high-level aspects, are coded in the
human brain using complex, ecologically valid but to a certain extent
controlled action videos in a single study. The present study aims to fill
this gap in knowledge and bring rigor to the field by introducing
computational characterization of complex action stimuli and how they
link to human brain responses. Given that we have a relatively better
understanding of the visual system we focus on the Action Observation
Network but link it with the visual system.

With the advances in multivariate pattern analysis methods in
cognitive neuroscience, one approach to understand what aspects of
actions the human brain represents is to computationally model the
different aspects of the stimuli and relate these models to brain re-
sponses. This approach has been fruitful in various domains of cognitive
neuroscience such as in understanding the representations in early vi-
sual cortex and inferior-temporal cortex during object recognition
(Clarke and Tyler, 2014; Khaligh-Razavi and Kriegeskorte, 2014;
Jozwik et al., 2016, 2017). Actions are complex stimuli and could be
modeled in various different ways to understand the neural re-
presentations in different nodes of the AON. In the present study, we
take such a computational approach and model the action stimuli we
use in an action perception study. We then link the models of the sti-
muli to fMRI responses using representational similarity analysis. The
models come in two types: computer vision models that characterize
visual form and motion of the stimuli with varying degrees of com-
plexity, and categorical models that capture high-level visual and se-
mantic aspects of the stimuli. We investigate what aspects of actions are
represented in the Action Observation Network.

2. Materials and methods

2.1. Participants

27 subjects (12 females, 15 males) from the undergraduate and
graduate student community at the University of California, San Diego
participated in the study. Data of 4 subjects were not included in the
data analysis due to large head movements (3 subjects) and technical
problems in data acquisition (1 subject). The reported results included
18 subjects as all the ROIs under investigation were identified in 18 of
them (see Section 3.1). The subjects had normal or corrected-to-normal
vision and no history of neurological disorders. Informed consent was
obtained in accordance with UCSD Human Research Protections Pro-
gram. The subjects were paid $25 for 1.5 hours participation in the
study.

2.2. Stimuli

Stimuli were video clips of actions performed by 3 agents: the hu-
manoid robot Repliee Q2 in two different appearances (robotic and
human-like appearances) and by the human ‘master’ after whom
Repliee Q2 was modeled. We call these agents Robot (Agent 1), Android
(Agent 2), and Human (Agent 3), respectively (Fig. 1; also see (Saygin
et al., 2012; Urgen et al., 2013) for additional details about the stimuli).
The robot's movement kinematics was mechanical differing from

dynamics of biological motion. All the agents performed 8 different
actions. The actions included drinking from a cup, grasping an object,
handwaving, talking (for introducing herself), nudging, throwing a
piece of paper, turning to the right, wiping a table.

2.3. Procedure

Since prior knowledge can induce cognitive biases against artificial
agents (Saygin and Cicekli, 2002), each participant was given exactly
the same introduction to the study and same exposure to the stimuli.
Before starting fMRI scans, subjects were shown each video and were
told whether each agent was a human or a robot (and thus were not
uncertain about the identity of the agents during the experiment).

We recorded fMRI BOLD response as subjects watched 2 s video
clips of the three agents performing eight different body actions
(drinking from a cup, grasping an object, handwaving, talking, nud-
ging, throwing a paper, turning to right, wiping a table). Each subject
was scanned for 8 runs in one session. In each run, the experiment had a
block design in which blocks consisted of video clips of one agent type
(Human, Android, or Robot, see Fig. 1). The experiment had 18 stimuli
blocks (6 Human, 6 Android, 6 Robot) and they were presented in a
pseudo-randomized order ensuring that all order combinations were
presented (i.e. H-A-R, H-R-A, A-H-R, A-R-H, R-H-A, R-A-H). Presenta-
tion of three blocks of the agents was always followed by a rest block in
which subjects fixated a cross for a time interval varying between 8.1 s
and 13.5 s. Each block had 9 trials (8 different actions and repetition of
a randomly chosen action once) with 0.1 s inter-stimulus interval in
between the trials. Each subject was presented a different order of
blocks and of stimuli within each block. Subjects performed a 1-back
task throughout the experiment by pressing a button whenever a movie
was repeated in a block.

2.4. fMRI image acquisition and preprocessing

We scanned our subjects at the Center for fMRI at University of
California, San Diego using the 3T GE MR750 scanner (TR=2700ms,
TE=30, Flip angle=90, number of slices=35, voxel size=3mm×3
mm × 3mm, 152 volumes in each run, sequential acquisition). The
subjects viewed the stimuli presented on a projector through a mirror
mounted on the head cover in the scanner. After scanning, the fMRI
data of each subject were pre-processed with standard procedures in-
cluding motion correction, slice-time correction, normalization, and
smoothing using SPM8.2 Then, two different first-level analyses were
done using general linear model (GLM). In the first analysis, each agent
type (Human, Android, Robot) as well as the rest blocks (fixation) were
modeled as a separate condition and beta images were generated for
these conditions. This analysis was done to identify the overall activity
patterns and determine the ROIs of the AON. In the second analysis,
each trial of all stimulus types was modeled separately and beta images
corresponding to each trial were generated for each voxel. This analysis
was done to prepare the single trials for RSA. Motion parameters gen-
erated in the preprocessing stage were used as regressors in both ana-
lyses.

2.5. Identification of Region of Interests (ROIs)

We identified the three ROIs of the AON, pSTS, inferior parietal
lobe, and ventral premotor cortex by contrasting the overall activation
patterns for all stimulus conditions compared to fixation ( <p 0.001
uncorrected) using the first first-level analysis for each subject (de-
scribed in Section 2.4 above). Then, we chose the central voxel of the
activation in pSTS, inferior parietal, and ventral premotor cortex for
each subject that was normalized to common template, and extracted a

2 http://www.fil.ion.ucl.ac.uk/spm/software/spm8/.
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sphere ROI with 4mm radius that covers the activation pattern in each
subject. The radius of the sphere was determined by examining the
activation of single subjects in each ROI. Although the activation in
some ROIs were more extensive in some subjects, we stayed con-
servative and determined the smallest ROI size that can be identified in
common in all subjects, which was 4mm.

2.6. Data analysis: Representational similarity analysis (RSA)

In order to investigate and dissociate the representational content of
the core nodes of the AON, namely pSTS, parietal, and premotor nodes,
we used representational similarity analysis and linked the brain re-
sponses to that of two sets of models. The first model set includes
computer vision models that have been successfully used in action re-
cognition research. We hypothesized that pSTS, the region of AON that
is lowest in the hierarchy and closest to the visual areas lower in the
hierarchy (such as MT) would have significant and better correlations
with computer vision models than the inferior parietal and ventral
premotor nodes. We were further interested to find out which computer
vision models would best represent pSTS since this would allow us to
have insights about the computations pSTS carries out during action
perception. The second model set includes attribute-based categorical
models that model visual or semantic aspects of the action videos. We
hypothesized that the parietal node would have significant and better
correlations with attribute-based categorical models as compared to
pSTS and premotor nodes since it lies higher in the cortical hierarchy in
the AON and it would be an area where visual information about ac-
tions is transformed into a more semantic representation.

The RDM of each brain ROI were linked to the RDM of each model
by taking their Kendall tau correlation distance ( −1 Kendall tau) (Nili
et al., 2014) excluding the diagonals (Ritchie et al., 2017). This gives us
a correlation coefficient which indicates how strong the brain and
model patterns are, and a p-value which indicates the statistical sig-
nificance of the correlation, which we used in the evaluation of multiple
models for a given ROI. We corrected for multiple comparisons using
FDR (Benjamini and Hochberg, 1995) for the number of models and
ROIs (we first considered <p 0.05 for the models, and then also cor-
rected for the 3 ROIs resulting in = <p0.05/3 0.016). In addition to the
statistical significance of the model-brain correlations, we also com-
puted the upper and lower bounds of noise ceiling for model-brain

correlations as implemented in RSA toolbox (Nili et al., 2014) for the
model evaluations. Any model that exceeded the lower bound of the
noise ceiling and that had significant correlation with the brain was
considered to be a candidate model for that ROI's representation.

2.6.1. Brain RDMs: pSTS, parietal, and premotor nodes
We calculated representational dissimilarity matrices (RDMs) in

pSTS, parietal, and premotor nodes for each subject by taking the
correlation distance between all pairs for stimuli using the beta images
derived in the first-level analysis in SPM8, which resulted in a ×24 24
matrix. We computed the grand average similarity matrix by taking the
average of all subjects for each ROI. All the steps in RSA were per-
formed with custom scripts in MATLAB.3

2.6.2. Computer vision models
We constructed the ×N N RDMs for the video stimuli using several

computer vision models (Herath et al., 2017) that have been success-
fully used in action recognition (N corresponds to 24 samples of our
video stimuli). Particularly, each video was represented as a feature
vector output from one of these models, and pair-wise dissimilarities
were computed by taking the Spearman correlation for each pair of
video representations to construct the computer vision model RDMs.

We examined five models of computer vision on video stimuli. The
motivation for including these particular models was to be able to
model two basic visual features of action stimuli, namely form and
motion, and their combination with varying levels of complexity. The
first three models, including gabor, optical flow and trajectory models,
utilized video descriptors with simple design principles to emphasize
the importance of these features for low-level visual understanding
(Gabor modeling form, optical flow modeling motion, and trajectory
model modeling low-level form and motion). Remaining two models,
namely space-time interest points and dense trajectory models, were
selected from the action recognition literature as robust video de-
scriptors with bag-of-features (BoF) representation (Fei-Fei and Perona,
2005). Particularly, both models capture the local information of ap-
pearance and the local information of motion, and represent a higher-
level model as compared to trajectory model (KLT below). Below, we

Fig. 1. Still frames from the 24 videos in the study. There were 3 agents (one mechanical robot (Agent 1), one human-like robot (Agent 2), and one human (Agent 3))
and 8 actions (drink, grasp, handwave, talk, nudge, throw, turn, wipe). The authors who took the photograph identified themselves and the purpose of the pho-
tograph to the people being photographed in the figure, and the individuals agreed to have their photograph taken and published. The face of the human agent is
blurred here for publication purposes, it was visible in the experiment.

3 http://www.mathworks.com/products/matlab/.
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provide the details of the computer vision models and how the video
stimuli were represented as descriptors of these models (see Fig. 2 for
the computer vision models). For all the models, the videos of the sti-
muli were extracted with frames (∼ 58 grayscale frames) of size ×96 96
as inputs.

Gabor model The Gabor video model is the representation of video
stimulus using gabor filter activations. First, a bank of 2D-gabor filters
was constructed to capture the variations in different orientations,
scales and frequencies (Olshausen et al., 1996), where our bank con-
sisted of 144 spatial 2D-Gabor filters in 8 orientations, 9 scales and 2
frequencies. Next, each frame of every video stimulus was filtered using
filters of the gabor bank and the activation frames were downsampled
to half resolution by skipping two pixels. The Gabor descriptor of the
video was the stacked activations of all frames.

Optic Flow model The Optical Flow model is the representation of
motion pattern on frames of video stimuli. Optical flow based models
are less variant to appearance with strong motion clues. Inspiring from
Efros et al. (2003), optical flow vectors were used to compute spatial
motion descriptors. First, optical flow vectors were extracted between
pixels of two consecutive frames. Then, spatial motion descriptors for
frame pairs were encoded in three channels =F F F F( , , )x y m including x-
motion, y-motion and magnitude. These descriptors were down-sam-
pled to half resolution by skipping two pixels and normalized by mean
frame subtraction. Finally, the Optical Flow descriptor of the video was
the stacked spatial descriptors with x-motion, y-motion and magnitude
channels.

Kanade-Lucas-Tomasi Trajectory model The Kanade-Lucas-
Tomasi Trajectory (KLT) model is the representation of video stimuli to
analyze the long-term motion pattern using trajectories. A long-term
trajectory is the motion track of a local interest point in consecutive
frames of the video and it models the movement kinematics of that
point more precisely than the noisy optical flow vectors. Given a video

stimulus, first 25 video clips each lasting 7 consecutive frames were
extracted by sampling the middle frame at every 2 frames. Next, tra-
jectories of local interest points sampled with a rate of 1000 were
computed on each clip using Birchfield's implementation (Birchfield,
1998) of the KLT feature tracker (Shi and Tomasi, 1994). Then, each
trajectory was represented in two channels including x-motion and y-
motion. For a global representation of a clip, representations of tra-
jectories were pooled by using a pyramid of spatial grid structure.
Having a ×m m spatial grid fitted as a layout on the middle (fourth)
frame of the video clip, a single normalized trajectory feature was
computed at each spatial bin location by averaging velocity values of all
trajectories passing from a bin (this is a ×2 6-dimensional feature
vector for trajectories lasting 7 frames). Finally, the KLT descriptor of
the video was the stacked features over a spatial pyramid in five scales,

∈m (1, 2, 4, 8, 16) and over all video clips.
Space-time Interest Points model Space-time Interest Points

(STIPs) descriptor (Laptev, 2005) was introduced as a spatial-temporal
feature on interest points extracted by 3D-Harris detector and it mea-
sures the variations on detected points in space and time domains with
good performances for action recognition (Laptev et al., 2008). Ex-
tracting local space-time points in multiple-scales, two descriptors
based on histogram representation were computed in the neighborhood
of each point. The neighborhood was defined as a space-time volume V
divided into a grid, m m m, ,x y t . For each grid location, a histogram of
oriented gradients (HoG) (Dalal and Triggs, 2005) and a histogram of
optical flow vectors (HoF) were computed to capture the local ap-
pearance and the local motion feature, respectively. Then, the nor-
malized HoG histograms per bin were combined as the STIP-hog de-
scriptor while the HoF histograms were combined as the STIP-hof
descriptor. We used the software with default setting.4

Our action models were the classical BoF representations using
STIPs descriptors on spatial-temporal interest points. For learning a

Fig. 2. Selected models of computer vision to represent video stimuli. (a) Gabor Model, (b) Optical Flow model, (c) Kanade-Lucas-Tomasi (KLT) Trajectory model, (d)
Space-time Interest Points (STIPs) model with STIP-hog and STIP-hof, and (e) Dense Trajectory (DT) model with DT-trj, DT-hog, DT-hof and DT-mbh.
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visual vocabulary of STIPs descriptors, we used HMDB (Kuehne et al.,
2011) as training video dataset, since it consists of 51 human actions
including upper body ones with object interactions. The original dataset
consists of 7000 video clips, but we selected a random subset of 10 clips
per action category for computing the vocabulary. First, the video clips
of the HMDB subset were resized into frames of size ×96 96 following
our feature extraction setup. Then, 2000 cluster centers were computed
as visual words over extracted STIPs descriptors using the k-means
method. Similarly, STIPs descriptors were extracted from our stimuli set
and each descriptor was assigned to a word of the visual vocabulary.
Finally, ℓ2 normalized histograms were computed for each video sti-
mulus as the BoF representation. As action models, two BoF re-
presentations were obtained from both the STIP-hog and the STIP-hof
descriptors.

Dense Trajectory model Dense Trajectory (DT) descriptor was first
introduced as a video representation based on long-term trajectories
sampled densely (Wang et al., 2011) and it still has comparable per-
formance with features based on Convolutional Neural Network (CNN)
for action recognition on complex video datasets (Tran et al., 2015).

For the DT descriptors, first trajectories were extracted as tracks of
dense optical flow fields in multiple scales. To avoid the problem of
trajectory drifting, the length of trajectories was fixed as lasting L
frames. Next, four trajectory-aligned descriptors for each trajectory
were computed to capture local information within a space-time vo-
lume V defined by ×M M pixels and L frames. To capture the structure
of the finer details, the volume V was divided into a grid, m m m, ,x y t .
Similar to STIPs descriptors, the HoG and the HoF descriptors were
extracted for each bin locations to capture local appearance and motion
along the trajectory, respectively. Moreover, two motion-based de-
scriptors, namely trajectory (Trj) descriptor and a motion boundary
histogram (MBH) descriptor (Dalal et al., 2006) were computed. Trj
descriptor was the motion pattern of the trajectory with L frames. De-
scriptor was the vector of normalized displacement values along the
trajectory points. Similar to HoF, MBH descriptor was based on the
optical flow vectors but on the derivatives of motion to suppress the
fields with constant motion. Having flow vectors, the derivatives of x-
motion and y-motion components were taken individually. The or-
ientation information was aggregated into histograms as in the HoF
descriptors for each motion channel. The MBH descriptor was the
concatenated normalized histograms. To extract dense trajectory de-
scriptors, we used the software with the default setting,5 where =L 15,

=M 32, = =m m 2x y , and =m 3t .
Similar to STIPs action models, we developed models of BoF re-

presentations for each descriptor type of the DT model, namely DT-trj,
DT-hog, DT-hof and DT-mbh descriptors. Using the same subset of HMDB
dataset (Kuehne et al., 2011), we computed 2000 visual words for the
corresponding type of DT descriptor and we extracted ℓ2 normalized
BoF histograms as the computer vision models of the video stimuli.

2.6.3. Attribute-based categorical models
For a high level representation of the video stimuli, we constructed

the RDMs using attribute-based categorical models by modeling the
action videos as attributes in a given category. There were 6 categorical
models, and each categorical model included two or more attributes.
The list of categorical models included: Agent (with attributes Robot,
Android, Human), Movement (with attributes Biological,
Nonbiological), Appearance (with attributes Biological,
Nonbiological), Intention (with attributes Manipulative,
Communicative, and Self-movement), Target (with attributes Human,
Object), and Action (with attributes Drink, Grasp, Handwave, Talk,
Nudge, Throw, Turn, Wipe). Although there may be other attribute-
based models, we constructed these ones as they allowed us to easily

model the high-level and semantic aspects of the video stimuli in an
objective manner.

While modeling our video stimuli, each video was represented as a
binary vector, and each component of the vector represented the
membership of the video for the corresponding attribute. Thus, each
video was labeled with 1 if it featured the attribute in a given catego-
rical model and 0 otherwise (see Fig. 3 for the ground truth attribute
labeling of the video stimuli). For each categorical model, a ×N N
RDM was constructed in which pair-wise dissimilarities between video
representations were computed using the hamming distance.

2.6.4. Convolutional Neural Network (CNN) model
Mainly due to the advances of deep learning models in computer

vision, the quality of recognition even had dramatic progress. More
specifically, the deep models by Convolutional Neural Network (CNN)
models had been shown to be more robust than the hand-crafted
shallow models (e.g., HoG, HoF). More recent studies have demon-
strated that deep representations were also possible for video inter-
pretation (Karpathy et al., 2014; Tran et al., 2015; Carreira and
Zisserman, 2017). Following these studies, we used CNN model as deep
feature representations of the video stimuli.

We focused on the deep learning features using 3D Convolutional
Neural Network model (C3D) (Tran et al., 2015), since it models ap-
pearance and motion simultaneously using × ×3 3 3 convolutional
kernel in contrary to the 2D neural network models developed for
image domain. C3D was a deep model consisting of 8 convolutional, 5
max-pooling, and 2 fully connected layers. The pre-trained C3D model
(using tensorflow implementation6) on the Sport-1M dataset (Karpathy
et al., 2014) was used to extract deep activations on our video stimuli.
We selected 5 pooling layers, 2 fully connected layers and the final
softmax layer as our intermediate layers of video representation (see
Fig. 4 for the network structure of the C3D model and sample frames
with deep activation features). While the lower layers of the neural
model can be thought as corresponding to the representation of low-
level visual features, the higher layers can be though as high-level
features (Zeiler and Fergus, 2014). For each layer of representation, a

×N N RDM was constructed in which pair-wise dissimilarities between
video representations were computed using the Spearman correlation.

3. Results

3.1. ROIs involved in action observation

Consistent with prior studies of action observation (Caspers et al.,
2010), the visual action stimuli in the main experiment resulted in
activation in the early visual cortex (EVC), extending to dorsal and
ventral visual streams, and core nodes of the AON: pSTS, inferior par-
ietal lobe, and ventral premotor cortex, which were identified by run-
ning the GLM and contrasting all the video stimuli with the fixation in
the main experiment ( <p 0.001 uncorrected) (see Fig. 5 and Table 1).
Then, we extracted a 4mm sphere ROI that covered the activation
pattern in pSTS, inferior parietal, and ventral premotor cortex. Some
subjects did not show activations in some ROIs of the AON with the
common threshold we used for all subjects. More specifically, one
subject's occipito-temporal activation was restricted with the MT cluster
and did not extend to pSTS. In 4 subjects, although premotor level of
the AON was activated, only the dorsal premotor part was active. To
select a more homogeneous set of voxels and be consistent with the
literature, we restricted our analysis with the subjects who had ventral
premotor activation. We identified all three ROIs of AON (pSTS, inferior
parietal, ventral premotor) in 18 subjects so the rest of the analysis
included these subjects. The coordinates of the central voxels are pro-
vided in Table 2 for the ROIs that form the core nodes of the AON.

4 https://www.di.ens.fr/laptev/actions/.
5 http://thoth.inrialpes.fr/software. 6 https://github.com/hx173149/C3D-tensorflow.

B.A. Urgen, et al. Neuropsychologia 127 (2019) 35–47

39

https://www.di.ens.fr/laptev/actions/
http://thoth.inrialpes.fr/software
https://github.com/hx173149/C3D-tensorflow


Please note that we defined the ROIs at the individual subject level for
each level of the AON rather than using a common set of voxels across
subjects. The primary motivation of doing this analysis was to over-
come the disadvantage of the group-level defined ROIs. The dis-
advantage of this approach is that there may be voxels in the set of

common voxels defined at the group level, which are not active at the
individual subject level. That is, there may be variation between the
group level activation and individual subject activation. Hence, the
voxels that seem to be active at the group level but are not active at the
individual subject level may introduce noise in the RSA. We indeed
examined our data this way and saw that there were voxels that were
found active at the group level but were not active in some subjects. We
aimed to overcome this issue by defining the ROIs at the individual
subject level. This approach is rather conservative so we ended up
having ROIs that are defined with 4mm radius sphere rather than
larger ROIs that could be defined at the group level. On average, sub-
jects were 96% accurate in the behavioral task.

3.2. RSA: brain RDMs

The structure of the RDMs throughout the paper for the brain ROIs
and models was shown in Fig. 6a. The brain RDMs for pSTS, parietal,
and premotor nodes were shown in Fig. 6b-d. Each RDM shows the
grand average of 18 subjects, and the two hemisphere representations
were averaged for each ROI.

Fig. 3. Attribute-based categorical models as high level representation of video
stimuli. Each video stimulus was represented in attributes of 6 categorical
models including Agent, Movement, Appearance, Intention, Target, and Action.

Fig. 4. 3D convolutional neural network model to represent video stimuli. (a) Structure of the 3D Convolutional Neural Network (C3D) model including con-
volutional, max-pooling, and fully connected layers, and (b) Sample activations from pool1, pool2 and pool3 intermediate layers on handwave video stimulus.

Fig. 5. Activation map for the observation of all actions compared to the
fixation period at the group level ( <p 0.001 uncorrected, cluster size=5).
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3.3. RSA: computer vision models and brain relation

We linked the RDM of the computer vision models (see Fig. 7) with
that of the core nodes of the AON, pSTS, inferior parietal lobe, and
ventral premotor cortex (see Fig. 6) via Kendall tau correlation (cor-
rected for multiple comparisons with FDR, <p 0.016 as explained in
Section 2.6). The correlation results are shown in Fig. 8.

pSTS was significantly correlated with three computer vision

models (see Fig. 8a): STIP-hof ( =Kendalltau 0.028, =p 0.0024), DT-trj
( =Kendalltau 0.022, =p 0.011), and DT-mbh ( =Kendalltau 0.027,

=p 0.008). Each of these three correlations exceeded the lower bound
of the noise ceiling for pSTS, which was estimated as − 0.0074, sug-
gesting that these three are candidate models that explain pSTS re-
presentation of observed actions. The correlation of pSTS with the other
computer vision models was not significant (Gabor:

=Kendalltau 0.0008, =p 0.96; Optic Flow: =Kendalltau 0.015,
=p 0.18; KLT: =Kendalltau 0.013, =p 0.17; STIP-hog:

= −Kendalltau 0.007, =p 0.37; DT-hog: = −Kendalltau 0.007, =p 0.68;
DT-hof: =Kendalltau 0.012, =p 0.19). We further examined whether
the three candidate models (STIP-hof, DT-trj, and DT-mbh) were sig-
nificantly different from each other to find out whether one of these
models was a better model than the others for pSTS. We employed pair-
wise t-tests between the three model correlations with pSTS (corrected
for multiple comparisons <p 0.016). The correlations of these models
with pSTS were not significantly different from each other (STIP-hof vs.
DT-trj: =p 0.59; STIP-hof vs. DT-mbh: =p 0.86; DT-trj vs. DT-mbh:

=p 0.49).
The parietal node was significantly correlated with only one com-

puter vision model (see Fig. 8b): DT-hog ( = −Kendalltau 0.026,
=p 0.011). However, this correlation did not exceed the lower bound of

the noise ceiling for the parietal node, which was estimated as 0.0052.
The correlation of the parietal node with the rest of the computer vision

models was insignificant (Gabor: = −Kendalltau 0.002, =p 0.49; Optic
Flow: =Kendalltau 0.004, =p 0.49; KLT: =Kendalltau 0.003, =p 0.49;
STIP-hog: = −Kendalltau 0.02, =p 0.054; STIP-hof: =Kendalltau 0.005,

=p 0.49; DT-trj: =Kendalltau 0.005, =p 0.49; DT-hof:
= −Kendalltau 0.009 =p 0.49; DT-mbh: = −Kendalltau 0.006, =p 0.73).

This suggests that none of the computer vision models is a candidate
model to explain the parietal cortex representation of observed actions.

Ventral premotor cortex was not significantly correlated with any of

Table 1
MNI coordinates of the peak voxels of the brain regions involved in visual
processing of actions based on the all actions – fixation contrast ( <p 0.001
uncorrected, cluster size=5) in the whole brain GLM analysis (see Fig. 5).

MNI coordinates

x y z Anatomical Name Brodmann Area

−34 −92 0 Middle occipital gyrus (left) BA 17
− 26 − 92 − 10 Inferior occipital gyrus (left) BA 18
− 48 − 80 − 2 Middle occipital gyrus (left) BA 19

48 −74 −2 Inferior temporal gyrus (right) BA 19
40 − 84 − 8 Inferior occipital gyrus (right) BA 19
22 − 94 − 6 Sub-gyral (right) BA 18
42 2 56 Middle frontal gyrus (right) BA 6
50 34 34 Middle frontal gyrus (right) BA 9
46 10 30 Inferior frontal gyrus (right) BA 9

−34 −58 50 Superior parietal lobule (left) BA 39
38 −56 52 Inferior parietal lobule (right) BA 40
32 − 68 28 Sub-gyral (right) BA 39

−44 0 56 Middle frontal gyrus (left) BA 6
− 42 − 2 38 Middle frontal gyrus ((left))
− 60 6 32 Inferior frontal gyrus(left) BA 6
−6 12 50 Medial frontal gyrus (left) BA 6
28 −6 −22 Amygdala (right)

−12 26 60 Superior frontal gyrus (left) BA 6
8 −22 68 Medial frontal gyrus (right) BA 6

38 −26 58 Precentral gyrus (right) BA 4

Table 2
Average MNI coordinates of the central voxels of the extracted ROIs in the core Action Observation Network. The values in parenthesis indicate the standard
deviation.

CORE NODES OF ACTION OBSERVATION NETWORK

Left Right

x y z Sphere Size (radius in mm) Anatomical Name x y z Sphere Size (radius in mm) Anatomical Name

pSTS − 50 − 53 7 4 Superior 53 −46 8 4 Superior
(5 9 4) Temporal Gyrus (5 7 4) Temporal Gyrus

Parietal − 31 − 55 47 4 Inferior 35 −54 49 4 Superior
(4 5 7) Parietal Lobule (6 5 6) Parietal Lobule

Premotor − 44 7 28 4 Inferior 46 9 27 4 Inferior
(4 7 5) Frontal Gyrus (5 9 4) Frontal Gyrus

Fig. 6. RDMs for the three nodes of the AON. (a) The structure of the RDMs in (b-d), (b) RDM for the pSTS, (c) RDM for the parietal node, (d) RDM for the premotor
node of the AON.
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the computer vision models (see Fig. 8c): (Gabor: =Kendalltau 0.002,
=p 0.92; Optic Flow: =Kendalltau 0.006, =p 0.80; KLT:

=Kendalltau 0.01, =p 0.80; STIP-hog: = −Kendalltau 0.01, =p 0.11;
STIP-hof: =Kendalltau 0.006, =p 0.79; DT-trj: =Kendalltau 0.02,

=p 0.33; DT-hog: = −Kendalltau 0.01, =p 0.33; DT-hof:
=Kendalltau 0.008, =p 0.80; DT-mbh: =Kendalltau 0.008, =p 0.80).

This suggests that none of the computer vision models was a candidate
model to explain the ventral premotor cortex representation of ob-
served actions.

3.4. RSA: attribute-based categorical models and brain relation

We linked the RDMs of the categorical models (see Fig. 9) with that
of the core nodes of the AON, pSTS, inferior parietal, and ventral pre-
motor cortex (see Fig. 6) via Kendall tau correlation (corrected for
multiple comparisons with FDR, <p 0.016 as explained in Section 2.6).

The correlation results are shown in Fig. 10.
pSTS was significantly correlated with three categorical models (see

Fig. 10a): Agent ( = −Kendalltau 0.028, =p 0.0005), Appearance
( = −Kendalltau 0.036, =p 0.0004), and Action ( =Kendalltau 0.023,

=p 0.003). However, only the correlation with the Action categorical
model exceeded the lower bound of the noise ceiling estimated for pSTS
(− 0.0074) ruling out the Agent and Appearance categorical models as
candidate models for pSTS representation of observed actions. The
correlation of pSTS with the rest of the categorical models was not
significant (Target: =Kendalltau 0.007, =p 0.24; Movement:

= −Kendalltau 0.003, =p 0.38; Intention: =Kendalltau 0.009, =p 0.24).
The parietal node of the AON significantly correlated with all of the

categorical models (see Fig. 10b) (Target: =Kendalltau 0.021,
=p 0.004; Agent: = −Kendalltau 0.035, =p 0.000001; Appearance:

= −Kendalltau 0.014, =p 0.0003; Intention: =Kendalltau 0.02,
=p 0.0022; Action: =Kendalltau 0.029, =p 0.00017) except the

Fig. 7. RDMs for the computer vision models. (a) Gabor, (b) Optical Flow, (c) KLT, (d) STIP-hog, (e) STIP-hof, (f) DT-hog, (g) DT-hof, (h) DT-mbh, (i) DT-trj.
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Movement model ( = −Kendalltau 0.019, =p 0.03). However, among
these models, the correlation with only Target, Intention, and Action
models exceeded the lower bound of the noise ceiling estimated for the
parietal node (0.0052), suggesting that these three are the candidate
models to explain the parietal representation of observed actions. In
order to find out whether one of these models was a better model than
the other, we employed pair-wise t-tests between the three model cor-
relations with the parietal node (corrected for multiple comparisons,

<p 0.016). The models correlations with the parietal node did not
significantly differ from each other (Target-Intention: =p 0.90; Target-
Action: =p 0.41; Intention-Action: =p 0.55).

To further investigate whether a combination of one or more of
these models better correlated with the parietal node, we defined 4 new
categorical models by combining the binary representation of the ear-
lier categorical models and constructing their RDMs: Target-Intention,
Target-Action, Intention-Action, and Target-Intention-Action. We then
correlated the RDM of each model with that of the parietal node. We
found that all of these models significantly correlated with the parietal
node (see Fig. 11) (Target-Intention: =Kendalltau 0.021, =p 0.004;
Target-Action: =Kendalltau 0.023, =p 0.0009; Intention-Action:

=Kendalltau 0.024, =p 0.0008; Target-Intention-Action: =Kendalltau
0.024, =p 0.0009) but they did not significantly differ from each other

Fig. 8. The correlations between the computer vision models and the three core nodes of the AON. (a) Correlations with the pSTS, (b) Correlations with the parietal
node, (c) Correlations with the premotor node. Asterisk (*) indicates significant correlations ( <p 0.05 corrected with FDR). The red dotted line in each panel
indicates the estimated lower bound of the noise ceiling for each region. Any model that has a significant correlation with a given region and that exceeds the lower
bound of the noise ceiling is considered to be a candidate model representation of the respective ROI.

Fig. 9. RDMs for the categorical models. (a) Agent, (b) Movement, (c) Appearance, (d) Intention, (e) Target, (f) Action.
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( > =p 0.05/6 0.008, corrected for the 6 comparisons at =p 0.05).
However, all these correlations exceeded the lower bound of the noise
ceiling estimated for the parietal node, suggesting that these models are
candidate models to explain the parietal cortex representation of the
observed actions.

The ventral premotor cortex was significantly correlated with only
the Agent model (see Fig. 10c) ( = −Kendalltau 0.035, =p 0.0000025)
and Appearance model ( = −Kendalltau 0.035, =p 0.00012). However,
the correlation with these models did not exceed the lower bound of the
noise ceiling estimated for the ventral premotor cortex (0.0092). The
correlation of the ventral premotor cortex with the rest of the catego-
rical models was not significant (Target: = −Kendalltau 0.003, =p 0.98;
Movement: = −Kendalltau 0.01, =p 0.09; Intention:

= −Kendalltau 0.00001, =p 0.71; Action: =Kendalltau 0.015, =p 0.05),
suggesting that none of the categorical models is a candidate model to
explain the ventral premotor cortex representation of the observed
actions.

3.5. RSA: CNN model and brain relation

We linked the RDM of the selected layers of the CNN model for
action recognition (see Fig. 12a) with that of the core nodes of the AON,
pSTS, inferior parietal lobe, and ventral premotor cortex (see Fig. 6) via
Kendall tau correlation (corrected for multiple comparisons with FDR,

<p 0.016 as explained in Section 2.6). The correlation results are
shown in Fig. 12b.

pSTS was significantly negatively correlated with all layers of the
CNN except Pool2 ( = −Kendalltau 0.01, =p 0.07) and f7
( = −Kendalltau 0.013, =p 0.18) (Pool1: = −Kendalltau 0.019,

=p 0.006; Pool3: = −Kendalltau 0.017, =p 0.009; Pool4:
= −Kendalltau 0.02, =p 0.005; Pool5: = −Kendalltau 0.028, =p 0.0004;

f6: = −Kendalltau 0.027, =p 0.0004; Softmax: = −Kendalltau 0.029,
=p 0.0004). However, none of the layer correlations exceeded the noise

ceiling estimated for pSTS (− 0.0074), suggesting that none of the layers
of the CNN is a good model for the pSTS representation of observed
actions.

The parietal node was significantly negatively correlated with all
layers of the CNN except f7 ( = −Kendalltau 0.009, =p 0.22) (Pool1:

= −Kendalltau 0.021, =p 0.00001; Pool2: = −Kendalltau 0.019,
=p 0.00006; Pool3: = −Kendalltau 0.02, =p 0.00004; Pool4:

= −Kendalltau 0.019, =p 0.00008; Pool5: = −Kendalltau 0.019,
=p 0.00006; f6: = −Kendalltau 0.01, =p 0.0008; Softmax:

= −Kendalltau 0.01, =p 0.012). However, none of the layer correlations
exceeded the noise ceiling estimated for the parietal node (0.0052),
suggesting that none of the layers of the CNN is a good model for the
parietal node representation of observed actions.

The ventral premotor node was significantly negatively correlated
with all layers of the CNN (Pool1: = −Kendalltau 0.03, =p 0.00001;
Pool2: = −Kendalltau 0.024, =p 0.00006; Pool3: = −Kendalltau 0.027,

=p 0.00006; Pool4: = −Kendalltau 0.025, =p 0.0002; Pool5:
= −Kendalltau 0.031, =p 0.00005; f6: = −Kendalltau 0.018, =p 0.0008;

f7: = −Kendalltau 0.021, =p 0.003; Softmax: = −Kendalltau 0.027,
=p 0.0004). However, none of the layer correlations exceeded the noise

ceiling estimated for the premotor node (0.0092), suggesting that none
of the layers of the CNN is a good model for the premotor node re-
presentation of observed actions.

So, overall we found that layers of C3D, a particular CNN im-
plementation for action recognition are not plausible models for the
representation of the AON.

4. Discussion

In the present study, we investigated what aspects of visually pro-
cessed actions are represented in the human Action Observation

Fig. 10. The correlations between the categorical models and the three core nodes of the AON. (a) Correlations with the pSTS, (b) Correlations with the parietal node,
(c) Correlations with the premotor node. Asterisk (*) indicates significant correlations ( <p 0.05 corrected with FDR). The red dotted line in each panel indicates the
estimated lower bound of the noise ceiling for each region. Any model that has a significant correlation with a given region and that exceeds the lower bound of the
noise ceiling is considered to be a candidate model representation of the respective ROI.

Fig. 11. The correlations between the basic categorical models that sig-
nificantly correlate with the parietal node of the AON, and their combinations.
Asterisk (*) indicates significant correlations ( <p 0.05 corrected with FDR).
The red dotted line indicates the estimated lower bound of the noise ceiling.
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Network. To this end, we combined computer vision models with ca-
tegorical models of the action stimuli, and linked them to brain re-
sponses using representational similarity analysis. Computer vision
models characterized the visual form and motion information in the
action stimuli with varying degrees of complexity, whereas categorical
models defined the high-level visual and semantic aspects of actions.
Our results show that different aspects of actions are represented in
distinct nodes of the Action Observation Network revealing their re-
presentational differences.

4.1. pSTS

pSTS is the most suitable candidate region that could link the Action
Observation Network to the early visual cortex, given its anatomical
proximity to the early visual areas that process form and motion in-
formation. Thus, we hypothesized that pSTS would correlate well with
computer vision models that characterize the form and motion aspects
of actions rather than the categorical models that characterize the
higher-aspects of actions. We found evidence that this is indeed the
case.

We were further interested in identifying what kind of a vision
model can best represent the pSTS responses. Among the computer
vision models, pSTS correlated well only with models that characterize
form and motion aspects at a high-degree of complexity (STIP and DT
models) compared with the ones that have lower-complexity (KLT) or
characterize only form (Gabor) or only motion information (Optical
Flow). A closer look at the specific implementation of those well-cor-
related models suggest that pSTS does form processing by means of
identifying the local interest points (e.g. body parts) in the observed
action followed by motion processing within those interest points by
means of tracking their trajectories. These results are consistent with
the proposals that pSTS is the node where form and motion information
are integrated during perception of body movements (Vaina et al.,
2001; Giese and Poggio, 2003; Thompson and Baccus, 2012; Tan et al.,
2013; Theusner et al., 2014).

Once we established that pSTS correlated well with the computer
vision models, we further investigated whether it would correlate well
with a deep neural network trained for action recognition (C3D) given
their increasing application in neuroscience, and if so whether its cor-
relation would be better than that of the parietal and premotor cortex.
We found no evidence that pSTS performs similar to a deep neural
network since the correlations with neither layer exceeded the lower
bound of the noise ceiling. Furthermore, pSTS did not differ from par-
ietal and premotor cortex in terms of the correlations with the neural
network layers. We also tested two other deep neural networks, one
image-based (VGG19 (Simonyan and Zisserman, 2014)) and one video-
based (I3D (Carreira and Zisserman, 2017)), and they behaved similarly
to C3D (therefore we did not report their results here).

Among the categorical models, Action model that defines the action
type was the only one that represent the pSTS response patterns. These
results are consistent with and extends recent empirical evidence that
action type can be decoded from the occipito-temporal node of the
Action Observation Network (Tucciarelli et al., 2015; Hafri et al.,
2017). Furthermore, they indicate that the most complex computer
vision models that correlated well with pSTS (STIP and DT as indicated
above) may actually code the action type by means of integrating form
and motion at a high-level.

Taken together, our results suggest that a deep neural network
cannot account for the representations of pSTS as the visual node of the
Action Observation Network. Rather, hand-crafted visual features such
as STIP and DT that characterize the integration of form and motion
information better represent pSTS response patterns. However, it is
possible that lower regions in the action-relevant visual hierarchy (e.g.
EBA) behave similar to a deep neural network, which can be tested in
future studies.

4.2. Parietal node

Our results show that parietal node of the Action Observation
Network correlated well with categorical models and not with

Fig. 12. RDMs for the 3D convolutional neural network (C3D) model and the correlations between network layers and the nodes of the AON. (a) The RDMs of the
layers of the deep neural network (b) The correlation of the layers of the C3D with the three nodes of the AON. Asterisk (*) indicates significant correlations ( <p 0.05
corrected with FDR). The dotted lines indicate the estimated lower bound of the noise ceiling for each region.
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computer vision models that define form and motion aspects of the
action stimuli. More importantly, among the categorical models the
ones that are based on purely visual properties such as movement ki-
nematics, appearance, or type of the agent were found to be not good
models for parietal cortex. Instead, the models that define either some
high-level aspects such as the target or type of the action or more ab-
stract and semantic aspects such as the intention of the action were
found to be good models.

The results for the Target model suggest that parietal cortex is not
only sensitive to the physical interaction of an effector (e.g. hand) with
an object, as has been shown earlier for simple manipulative actions
(Fleischer et al., 2013; Fabbri et al., 2016), but codes for any interaction
between the effector and the target, regardless of it being an object or a
biological agent (human) who is not in physical contact with the ef-
fector. These results are consistent with and extends recent evidence
that shows that parietal cortex generalizes across the object category
the hand is interacting with Wurm and Lingnau (2015).

On the other hand, the results for the Action type and Intention
models show evidence that parietal cortex is functionally organized to
code for different actions both at the exemplar level (individual actions)
and abstract class level (grouping of actions based on their intentions
such as manipulative or communicative). These results are consistent
with a number of fMRI studies that show that (1) parietal cortex hosts
separate anatomical regions for different action classes in action ob-
servation (Abdollahi et al., 2013; Ferri et al., 2015; Corbo and Orban,
2017), (2) abstract aspects of actions, and even intentions can be de-
coded from parietal cortex (Gallivan et al., 2011; Wurm and Lingnau,
2015; Hafri et al., 2017; Chen et al., 2017). Furthermore, they also
indicate that parietal cortex has an intention-based functional organi-
zation for observed actions as for planned actions (Anderson and
Buneo, 2002).

Taken together, our results suggest that parietal level of the Action
Observation Network builds on the visual representations of the pSTS
and codes high-level visual and abstract aspects of actions. In this way,
it possibly contributes to the construction of the meaning of actions
consistent with neuropsychological literature, which reports deficits in
action comprehension skills as opposed to action perception skills in
patients with parietal damage (Binder et al., 2017).

4.3. Premotor node

One of the well-known properties of the Action Observation
Network is that its premotor node has an effector-specific functional
organization (Fujii et al., 2008; Jastorff et al., 2010; Di Dio et al., 2013;
Fabbri et al., 2016). However, given its visual responsiveness to actions,
we investigated whether it also codes visual or higher-level aspects of
actions beyond effector information. We did not find evidence of coding
neither the purely visual aspects such as form and motion nor the high-
level visual or abstract aspects including movement kinematics, ap-
pearance, agent, target, action, or intention. These results seem to be
not consistent with the results of some studies (Johnson-Frey et al.,
2003; Gallivan et al., 2011) who found that premotor cortex was sen-
sitive to the goal or intentions of the actions. This discrepancy may be
due to the differences between the action stimuli used in the two studies
(they used only manipulative actions whereas we had a more variety
including communicative actions) and the corresponding areas in pre-
motor cortex. Nevertheless, our results clearly distinguish premotor
cortex from the occipito-temporal and parietal levels, which correlated
well with computer vision models and categorical models, respectively.
Furthermore, they call for search for other types of models for premotor
cortex in future research. One such model is an effector model, which
could not be tested in the current study since the action stimuli did not
vary in terms of effectors. Another possibility is a more complex model
inspired from motor control which codes some basic motor primitives.

4.4. Conclusion

In sum, the present study shows that different aspects of actions are
represented in distinct nodes of the Action Observation Network.
Importantly, it provides strong evidence that Action Observation
Network is a hierarchical system in which increasing levels of the cortex
code increasingly complex aspects of actions, as proposed by theoretical
accounts (Kilner et al., 2007) and empirical findings (Grafton and
Hamilton, 2007). While occipito-temporal level (pSTS) performs the
visual analysis of actions by integrating form and motion information
passed through the visual cortex, parietal cortex as the next level of the
hierarchy transforms the visual information into a more abstract and
semantic information. This information is possibly transformed into a
motor code in premotor cortex to realize how the action is physically
performed.
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