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1. Introduction

Magnetic particle imaging (MPI) is a rapidly developing imaging modality that images the spatial distribution 
of superparamagnetic iron oxide (SPIO) nanoparticles (Gleich and Weizenecker 2005, Weizenecker et al 2007, 
Goodwill et al 2012b, Saritas et al 2013, Bauer et al 2015). Based on its resolution, sensitivity, and contrast 
capabilities, MPI promises a wide range of imaging applications such as angiography (Weizenecker et al 2009, 
Haegele et al 2012, Salamon et al 2016, Rahmer et al 2017, Vaalma et al 2017, Bakenecker et al 2018), multi-color 
imaging (Hensley et al 2015, Stehning et al 2016, Utkur et al 2017, Muslu et al 2018, Möddel et al 2018, Zhong et al 
2018), stem cell tracking (Zheng et al 2016, Them et al 2016), and functional imaging (Mason et al 2017).

There are two main methods for reconstructing an MPI image: system function reconstruction (SFR) and 
x-space reconstruction. SFR requires a lengthy calibration measurement that records the response from a point-
source SPIO sample at all pre-determined pixel locations in the field-of-view (FOV) for a given MPI system and 
imaging parameters (Rahmer et al 2009, Knopp et al 2010a, 2010b, Rahmer et al 2012). The reconstruction pro-
cedure implicitly removes the system and nanoparticle non-idealities to achieve a high-resolution image of the 
SPIO distribution. X-space reconstruction, on the other hand, models MPI as a linear and shift-invariant (LSI) 
system that yields an MPI image blurred by a point spread function (PSF) (Goodwill and Conolly 2010, 2011, Lu 
et al 2013a). The image is reconstructed by assigning the speed-compensated signal to the instantaneous position 
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Abstract
Magnetic particle imaging (MPI) is a fast emerging biomedical imaging modality that exploits 
the nonlinear response of superparamagnetic iron oxide (SPIO) nanoparticles to image their 
spatial distribution. Previously, various scanning trajectories were analyzed for the system 
function reconstruction (SFR) approach, providing important insight regarding their image 
quality performances. While Cartesian trajectories remain the most popular choice for x-space-
based reconstruction, recent work suggests that non-Cartesian trajectories such as the Lissajous 
trajectory may prove beneficial for improving image quality. In this work, we propose a generalized 
reconstruction scheme for x-space MPI that can be used in conjunction with any scanning 
trajectory. The proposed technique automatically tunes the reconstruction parameters from the 
scanning trajectory, and does not induce any additional blurring. To demonstrate the proposed 
technique, we utilize five different trajectories with varying density levels. Comparison to alternative 
reconstruction methods show significant improvement in image quality achieved by the proposed 
technique. Among the tested trajectories, the Lissajous and bidirectional Cartesian trajectories prove 
more favorable for x-space MPI, and the resolution of the images from these two trajectories can 
further be improved via deblurring. The proposed fully automated gridding reconstruction can be 
utilized with these trajectories to improve the image quality in x-space MPI.
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of the field free point (FFP). While a calibration scan can completely be omitted with this approach, the blurring 
effects of the PSF can optionally be deconvolved using a PSF obtained via imaging a point-source SPIO sample. 
With the LSI assumption, measuring the PSF is a significantly shorter calibration process when compared to the 
calibration measurement needed for SFR.

For both reconstruction methods, various trajectories can be utilized for scanning the FOV. By far the most 
popular trajectory used with SFR-based MPI is the Lissajous trajectory (Weizenecker et al 2007, Gleich et al 2008, 
Knopp et al 2008, Weizenecker et al 2009, Knopp et al 2010a, Buzug et al 2012), whereas linear trajectories that 
raster the FOV approximately line-by-line are most commonly utilized in conjunction with x-space reconstruc-
tion (Goodwill et al 2012a). Previously, the performance of different trajectories were evaluated for SFR-based 
MPI, and compared with the Lissajous trajectory in terms of density, speed, and image quality using a simulation 
framework (Knopp et al 2008). In addition, a simulation study proposed utilizing a radial Lissajous trajectory 
with SFR, demonstrating improved image quality over the conventional Lissajous trajectory for scanning with 
overlapping patches (Szwargulski et al 2015). A recent study experimentally compared the Lissajous trajectory 
and the bidirectional Cartesian trajectory, demonstrating similar results in terms of image quality and sensitivity 
(Werner et al 2017). For x-space reconstruction, on the other hand, one study suggested that the Lissajous trajec-
tory might improve the overall image resolution within a similar scan time as the linear trajectories (Konkle et al 
2013). For linear trajectories, it was recently shown that image quality can be improved by scanning the FOV in 
two orthogonal directions, which helps eliminate the anisotropic blur caused by the PSF (Werner et al 2017, Lu 
et al 2018). In theory, the same principle should be applicable to other trajectories that feature orthogonal scan-
ning directions, such as the Lissajous trajectory. However, previous studies did not address reconstruction from 
non-Cartesian trajectory to a Cartesian grid for x-space MPI. Furthermore, an in-depth analysis of trajectories 
for x-space MPI is currently lacking.

In this work, we present a generalized reconstruction approach for both Cartesian and non-Cartesian tra-
jectories for x-space MPI. The proposed technique is inspired by the gridding algorithms in magnetic resonance 
imaging (MRI), but includes fundamental modifications to adapt to the reconstruction problems in MPI. Impor-
tantly, the proposed technique automatically tunes the two critical reconstruction parameters, kernel width and 
image size, from the given scanning trajectory. In addition, it does not induce any additional blurring on the MPI 
image. Here, we demonstrate the proposed technique with simulation results for various  non-Cartesian trajec-
tories, including comparison with alternative reconstruction techniques. In addition to proposing a practical 
reconstruction model, we analyze the performance of the technique on five different non-Cartesian trajectories 
to infer about their suitability for x-space MPI. We also analyze the effects of trajectory density and sampling 
density on image resolution, and compare the performances of additional deblurring techniques to improve the 
resolution of the gridded x-space MPI images. The proposed method is a trajectory-independent and parameter-
free reconstruction scheme, and the results of this work provide insight on the suitability of the non-Cartesian 
trajectories for x-space MPI.

2. Theory

In 3D x-space MPI theory, the images are produced on an internal reference frame formed by two vectors that 
are collinear and transverse to the field free point (FFP) velocity vector (Goodwill and Conolly 2011), as shown 
in figure 1(a). Then, the instantaneous MPI image can be decomposed into a convolution of the nanoparticle 
distribution with collinear and transverse PSFs, which are rotated with respect to the FFP velocity vector.

Among the two components of the PSF shown in figure 1(a), the collinear component is narrower and better 
behaved. Hence, this component has the capability to provide a higher resolution and higher quality MPI image 
(Goodwill and Conolly 2011), as shown in figure 1(c). One method to capture only the collinear component is to 
align the axis of the receive coil with the FFP velocity vector. This method is straightforward when the drive field 
is in one direction only, e.g. a drive field in the z-direction together with a single-channel receive coil sensitive 
along that direction. For multi-dimensional drive fields, a more practical approach is to use multiple receive coils 
and combine their signals to form a virtual receive coil aligned with the instantaneous FFP velocity vector (Bente 
et al 2015). In the following subsections, we briefly describe the process of extracting only the collinear image 
component, followed by a detailed explanation of the proposed gridding algorithm. The derivations assume 
ideal magnetic fields and measurements, and instantaneous alignment of the nanoparticle magnetization with 
the applied field. The proposed technique builds on the mathematical basis and fundamental steps of the original 
x-space reconstruction (i.e. speed compensation and assigning the data to instantaneous FFP position) (Good-
will and Conolly 2010, 2011), while extending it to more complicated multi-dimensional trajectories.

Phys. Med. Biol. 64 (2019) 165018 (18pp)
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2.1. Extraction of collinear image component
Assuming a 2D FFP trajectory in x–y  plane (e.g. 2D Lissajous) together with two receive coils aligned in the 
physical x- and y -directions, the signals induced on the receive coils can be expressed as (Goodwill and Conolly 
2011):

sx(t) = B1,xm
‖ẋs(t)‖

Hsat
{IMG‖ (xs(t), θ(t)) cos(θ(t))− IMG⊥ (xs(t), θ(t)) sin(θ(t))} (1a)

sy(t) = B1,ym
‖ẋs(t)‖

Hsat
{IMG‖ (xs(t), θ(t)) sin(θ(t)) + IMG⊥ (xs(t), θ(t)) cos(θ(t))} (1b)

where,

IMG‖ (xs(t), θ(t)) = ρ(x) ∗ h‖ (x, θ(t))|x=xs(t) (2a)

IMG⊥ (xs(t), θ(t)) = ρ(x) ∗ h⊥ (x, θ(t))|x=xs(t) . (2b)

Here, B1,x and B1,y  are the sensitivities of the two receive coils, m is the magnetic moment of the nanoparticle, 
Hsat is the field required for saturation, ρ(x) is the nanoparticle distribution in space, xs(t) is the FFP position 
vector, ẋs(t) is the FFP velocity vector, and θ(t) is the angle of the FFP velocity vector with respect to the x-axis. 
In addition, h‖ (x, θ(t)) and h⊥ (x, θ(t)) are the collinear and transverse PSFs, rotated by angle θ to align with 
the direction of the FFP velocity vector at time t, as demonstrated in figure 1(a). Next, IMG‖ (xs(t), θ(t)) and 
IMG⊥ (xs(t), θ(t)) are the collinear and transverse images as a function of FFP position at time t, as shown in 
figures 1(c) and (d). These images correspond to the nanoparticle distribution convolved with the collinear and 
transverse PSFs at time t, respectively. As seen in this figure, the collinear image displays significantly better image 
quality and resolution than the transverse image. Furthermore, the collinear image has better resolution along 
the direction of the FFP velocity vector when compared to the orthogonal direction.

Our first goal is to extract only the collinear image component from the signals sx(t) and sy (t). For this pur-
pose, the signal for a virtual receive coil aligned with the FFP velocity vector can be computed as (Bente et al 
2015):

sv(t) =
sx(t)

B1,x
cos(θ(t)) +

sy(t)

B1,y
sin(θ(t)) (3a)

= m
‖ẋs(t)‖

Hsat
IMG‖ (xs(t), θ(t)) . (3b)

In x-space MPI reconstruction, a fundamental step in image reconstruction is to compensate the received 
signal by the FFP speed (Goodwill and Conolly 2010, 2011). For the virtual coil, the resulting image as a function 
of time can then be expressed as:

Figure 1. The collinear and transverse image components for x-space MPI. (a) The collinear and transverse PSFs for x-space MPI, 
rotated at an angle θ to align with the instantaneous velocity vector. Here, the FFP is following a Lissajous trajectory in x–y  plane 
(displayed in zoomed format). (b) The nanoparticle distribution in space. (c) The collinear image and (d) the transverse image, i.e. 
the convolutions of the nanoparticle distribution with the collinear and transverse PSFs at angle θ, respectively. The red dot denotes 
the instantaneous position of the FFP.

Phys. Med. Biol. 64 (2019) 165018 (18pp)
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IMGv (xs(t)) =
sv(t)

‖ẋs(t)‖
= αIMG‖ (xs(t), θ(t)) . (4)

Here, α = m/Hsat is a constant. As seen in this expression, the image from the virtual coil captures only the 
desired collinear component of the MPI image. In the proposed reconstruction described below, we grid only 
this component to achieve a higher quality x-space MPI image.

2.2. Gridding for x-space MPI
In the literature, gridding algorithms were originally proposed for the reconstruction of MRI images that utilize 
non-Cartesian k-space trajectories, such as radial or spiral trajectories (O’Sullivan 1985, Schomberg and Timmer 
1995). These non-Cartesian trajectories provide several advantages such as motion robustness (Glover and Pauly 
1992, Liao et al 1997), and fast data acquisition and efficient coverage of k-space (Macovski 1985, Norton 1987). 
In MRI gridding reconstruction, data points lying on a non-Cartesian k-space trajectory are first convolved with 
a kernel, and the outcome of the convolution operation is sampled and accumulated onto a Cartesian k-space 
grid. After density compensation of the scanning trajectory, an MRI image is produced using inverse Fourier 
transform, followed by apodization correction in image domain (Jackson et al 1991, Beatty et al 2005).

As opposed to MRI gridding algorithms that operate in k-space, the reconstruction in x-space MPI is per-
formed directly in image domain. Here, we propose the following gridding algorithm for x-space image recon-
struction in MPI:

ˆIMG(x) =
ˆIMGinit(x)

d̂s(x)
=

((IMG(x)s(x)) ∗ c(x)) ·X
(

x
∆x

)

(s(x) ∗ c(x)) ·X
(

x
∆x

) (5)

where,

s(x) =
Ns∑

i=1

δ (x − xi) (6a)

IMG(xi) = IMGv (xs(ti)) , for i = 1, . . . , Ns. (6b)

Here, s(x) is a non-Cartesian sampling function composed of impulses placed at sampled FFP locations, 
xi = xs(ti). IMG(x) denotes the entire image that we wish to reconstruct with values only known at sampled FFP 

locations, where they are equal to IMGv (xs(t)). In addition, c(x) is the gridding kernel in x-space, X
(

x
∆x

)
 is a 

2D Comb function used for re-sampling onto the Cartesian grid, ∆x  is the spatial distance between neighboring 
Cartesian grid points (i.e. the resolution of the grid, assumed to be the same for x- and y -directions), and Ns is the 
total number of acquired samples.

As visualized in figure 2(a), the steps of the proposed gridding algorithm can be explained as follows. First, 
the MPI signal is obtained by scanning the FOV with an FFP trajectory, followed by the virtual coil alignment 
step, as described in (1)–(3). The collinear component of the MPI image, IMGv (xs(t)), is then captured as a 
function of FFP position as given in (4), which forms the sampled data, IMG(x)s(x). Then, each data point on 
the  non-Cartesian trajectory is convolved with the gridding kernel, c(x), and re-sampled onto the Cartesian grid 

using the 2D Comb function, X
(

x
∆x

)
. This initial gridded image, ˆIMGinit(x), is over-amplified at locations 

where the trajectory is dense (see figure 2(b)). As shown in figure 2(c), an estimate of the trajectory density, ̂ds , can 
be computed by gridding ones (i.e. using IMG(x) = 1). Dividing the initial gridded image by the density provides 

the density compensated image, ˆIMG(x), which is the final reconstructed x-space MPI image (see figure 2(d)).

Figure 2. The proposed gridding algorithm. (a) Each data point on the FFP trajectory is convolved with the gridding kernel and 
re-sampled onto a Cartesian grid. (b) The initial gridded image is over-amplified at locations where the trajectory is dense. (c) 
The estimated density of the FFP trajectory. (d) The final gridded image is obtained via dividing the initial gridded image by the 
estimated density. A Lissajous trajectory was used in this example.

Phys. Med. Biol. 64 (2019) 165018 (18pp)
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For the gridding kernel, we use a Kaiser–Bessel window, which is a popular choice in MRI gridding algo-
rithms (Beatty et al 2005). This kernel can be expressed as:

c(x) = I0


β

√
1 −

(
2 ‖x‖
wk∆x

)2

 (7)

where,

∆x =
xFOV

N
. (8)

Here, I0(·) is the zero-order modified Bessel function of the first kind, xFOV  is the extent of the FOV (assumed to 
be identical in x- and y -directions to simplify the notations), N is the reconstructed image size (i.e. corresponding 
to an N × N  image for the case of 2D imaging), wk is the full kernel width in grid units, and β denotes the shape 
parameter of the Kaiser–Bessel kernel. In MRI, β is chosen as a function of wk to carefully place the zero crossings 
of the inverse 2DFT of the gridding kernel at the edge of the stopband. In MPI, since c(x) operates directly in 
image domain, we do not have this concern. The choice of β for the proposed algorithm is explained in the 
following subsection.

2.3. Automated tuning of gridding parameters
There are fundamental differences between MRI gridding algorithms and the proposed x-space MPI gridding 
algorithm. First, while MRI gridding algorithms can leave certain k-space locations unfilled, the gridding in 
x-space MPI must spread the acquired data to all pixels on the Cartesian image grid. Secondly, the resolution 
of an MRI image is directly dictated by the extent of the acquired k-space, which in turn determines the image 
size. In contrast, there is no strict information that determines the image size or grid resolution in x-space MPI. 
Therefore, the kernel width (wk) and image size (N) parameters require careful tuning to achieve high-quality 
x-space MPI images via the proposed technique. Here, these important parameters are computed automatically 
from the FFP trajectory, without manual intervention.

For computing the image size, we utilize a plane-partitioning method called Voronoi diagram. Voronoi dia-
grams have been utilized extensively for determining the sampling density of scanning trajectories in MRI and 
computed tomography (CT) (Rasche et al 1999). In MPI also, Voronoi diagrams were utilized to determine the 
areas associated with the node points of the Lissajous trajectory, to be used as weights in SFR for reconstructing 
an image at these nodes (Kaethner et al 2016). In the proposed method, we utilize Voronoi diagram for a different 
purpose: for determining an optimal image size directly from the trajectory data points.

Figure 3 illustrates the computation of N and wk for the case of a Lissajous trajectory. In figure 3(b), the 
Voronoi diagram divides the FOV into sub-regions by bisecting the connections between each data point and its 
closest neighbors, which are determined using Delaunay triangulation (Rasche et al 1999). Following bisection, 
each data point is associated with a sub-region, called the Voronoi partition. For each data point on the scanning 
trajectory, we compute the area associated with its partition. To prevent infinitely large partitions for data points 
near the periphery of the trajectory, the trajectory is first surrounded by external dummy data points. Depending 
on the bounded shape of the scanning trajectory, these dummy data points traverse a rectangle or a circle that 
surrounds the trajectory. After the computation of the areas for all Voronoi partitions, the dummy points are 
excluded from consideration.

Using the Voronoi partitions, first we determine the image size as follows:

N =

[
1

Ns

Ns∑
i=1

xFOV

dV ,i

]
=

[
1

Ns

Ns∑
i=1

xFOV√
AV ,i

]
. (9)

Here, [·] denotes the rounding operation and AV ,i  is the area of the Voronoi partition corresponding to the ith 
data point. Here, we propose that the Voronoi partition for each data point dictates the effective pixel size around 

that point. Approximating each Voronoi partition as a square region, dV ,i =
√

AV ,i  yields the effective edge size 
for the ith Voronoi partition. We consider this edge size to be the local pixel size associated with the ith data 
point. Next, a corresponding image size is computed via dividing FOV by this edge size. Finally, the mean over 
all data points is computed to reach the final image size, N. The corresponding pixel size for the Cartesian grid, 
∆x , can then be computed using (8). Following the aforementioned steps, N × N  Cartesian grid points can be 
positioned in space, as shown in figure 3.

Next, we tune the kernel width, wk. To do this, we reason that the kernel should be sufficiently wide to ensure 
that no grid points are left unfilled after gridding, but not overly wide to induce unnecessary image blurring. 
First, for each grid point in the image, the distance to the nearest data point is calculated as follows:

Phys. Med. Biol. 64 (2019) 165018 (18pp)



6

A A Ozaslan et al

∆n = min
i∈1:Ns

‖xn − xi‖
∆x

. (10)

Here, xi is the location of the ith data point, xn is the location of the nth grid point, and ∆n is the distance in grid 
units between the nth grid point and the nearest data point. This operation is performed for each grid point, as 
shown in figure 3(d). Next, the kernel width is chosen as a multiple of the maximum ∆n, i.e.

wk = γ ·max
n∈Ω2

∆n. (11)

Here, Ω2 denotes the image grid and γ  is a constant to ensure that wk is sufficiently large to spread not just one 
but multiple data points to each grid point. Our analysis on γ  revealed that values between 5–6 yield artifact-free 
images while preserving the resolution of the gridded images. Hence, in the rest of this work, we utilize γ = 6 (see 
the appendix for a detailed explanation of this choice).

Finally, we choose the shape parameter, β, for the Kaiser–Bessel window given in (7). This parameter is cho-
sen to ensure that: (1) the full kernel width, wk, tightly covers the full shape of the Kaiser–Bessel window, and (2) 
the full width at half maximum (FWHM) of the kernel, FWHMk, is equal to half the kernel width, i.e.:

FWHMk ≈
wk

2
∆x. (12)

Both of these criteria are satisfied for β = 6, which provides an efficient representation of the gridding kernel as 
shown in figure 4.

2.4. Deblurring of reconstructed images
The resulting images from the gridding algorithm are blurred by the collinear and transverse PSFs. Here, to 
improve the resolution of the reconstructed images, an optional post-processing step can be performed following 
the gridding reconstruction. Two candidate methods for deblurring the images are the equalization filter (Lu et al 
2015, Lu 2015) and Wiener deconvolution.

The equalization filter is a k-space filter inspired by the ramp filter in computed tomography (CT), which is 
used to eliminate the background haze due to overemphasis of the low-frequency data resulting from projec-
tions. In x-space MPI, a similar overemphasis of low spatial frequencies occurs due to the wide ‘normal envelope’ 
component of the PSFs. The equalization filter was originally proposed for multichannel acquisitions where two 
separate images are acquired using a single-channel drive field that is 90◦ rotated during the second acquisition. 
These two images are then averaged, resulting in an isotropic blur with the following effective PSF:

hiso(x) = h‖(x, 0◦) + h‖ (x, 90◦) . (13)

It was previously shown that this PSF can also be expressed as ET(x) + 2EN(x) (Lu et al 2013b, 2018), where 
ET(x) and EN(x) are the tangential and the normal envelopes of the PSFs as defined in Goodwill and Conolly 
(2011). The equalization filter aims to eliminate image haze by decomposing the effective PSF into its tangential 
and normal components, and extracting the narrower tangential component only. This filter is applied to the 
reconstructed MPI images in k-space (i.e. multiplied with the Fourier transform of the image, followed by inverse 
Fourier transformation). For multichannel acquisition, this filter is formulated as (Lu 2015):

Figure 3. The proposed steps for tuning the kernel width and grid size directly from the FFP trajectory. (a) An example Lissajous 
trajectory with a frequency ratio of 17/16. The subsequent subfigures zoom in on the region marked with the black box. (b) A 
Voronoi diagram is used to calculate the areas associated with each data point on the FFP trajectory. The grid size, N, is computed 
using the effective edge sizes from all partitions. (c) N × N  Cartesian grid points are placed on the FOV. (d) For each grid point, the 
distance to the nearest data point, ∆n, is computed. The optimal kernel width is chosen as a multiple of the maximum ∆n.

Phys. Med. Biol. 64 (2019) 165018 (18pp)
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Φeq(k) =
F (ET(x))

F (ET(x) + 2EN(x))
 (14)

where F  is the Fourier transform operator. It should be noted that equalization does not aim to fully deconvolve 
the effects of the imaging PSF. Instead, as seen in (14), the goal is to improve the effective PSF from ET(x) + 2EN(x) 
to ET(x). In contrast to standard deconvolution filters, this filter does not cause division by zero problems at high 
spatial frequencies where the SNR is typically low.

The equalization filter can potentially be suitable for the Lissajous and bidirectional Cartesian trajectories, as 
they are composed of two approximately orthogonal scanning directions. For these trajectories, the overall PSF 
of the imaging system can be heuristically approximated as hiso(x) (Goodwill 2010). Following a similar idea, this 
PSF can also be utilized for Wiener deconvolution. The corresponding Wiener deconvolution filter in k-space 
can then be formulated as follows:

Gw(k) =
Hiso

∗(k)

| Hiso(k) |2 + NSR
. (15)

Here, Hiso(k) is the Fourier transform of hiso(x), * denotes the conjugation operation, and NSR is the noise-
power-to-signal-power ratio, added to the denominator to avoid excessive noise amplification.

3. Materials and methods

3.1. Trajectories
In this work, the proposed gridding algorithm is applied to five non-Cartesian trajectories, as illustrated in 
figure 5: Lissajous, bidirectional Cartesian, radial Lissajous, spiral, and radial trajectories. The mathematical 
expressions for the trajectories are given in table 1. The choice of trajectories was guided by an earlier trajectory 
analysis work on SFR-based MPI (Knopp et al 2008, Szwargulski et al 2015), with the addition of the radial 
Lissajous trajectory. Considering hardware feasibility of the bidirectional Cartesian trajectory, a modification 
was performed over the theoretical version presented in table 1: the abrupt switch that occurs at multiples of half-
period time points were smoothed to reach a more realistic trajectory in terms of hardware constraints, as shown 
in figure 5. To the best of our knowledge, among the tested trajectories, only the Lissajous trajectory has been 
utilized in existing MPI hardware. The bidirectional Cartesian trajectory was only utilized as two orthogonal 

linear acquisitions (Werner et al 2017, Lu et al 2018), and not as shown in figure 5.
The important parameters in table 1 are the fundamental drive field frequency, f 0, and the trajectory density 

parameter, NP. The parameter NP determines the frequency ratio between the two orthogonal drive channels. For 
all five trajectories listed, larger NP values result in a denser FFP trajectory.

3.2. Simulations
The simulations were performed on a custom MPI toolbox developed in MATLAB (Mathworks, Natick, MA). The 
performance of the proposed gridding algorithm was tested on three separate imaging phantoms: a vasculature 
phantom, a resolution phantom, and a Derenzo phantom. An FFP scanner with selection field gradients of 

Figure 4. The shape of the Kaiser–Bessel window depends on the shape parameter β. When β = 6 (purple line), the Kaiser–Bessel 
window tightly covers the full kernel width and its FWHM is approximately equal to wk/2 in grid units.

Phys. Med. Biol. 64 (2019) 165018 (18pp)
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(3, 3,−6) T/m/µ0 in the (x, y, z) directions and a drive field amplitude of 30 mT in both x- and y -directions were 
assumed, corresponding to a FOV of 2 × 2 cm2 in the x–y  plane. A realistic nanoparticle diameter of 25 nm was 
assumed (Ferguson et al 2015, Kaul et al 2017). The MPI signal for a single cycle of each trajectory was generated 
for a fundamental drive field frequency of f 0  =  25 kHz with 2.5 MS s−1 sampling rate. For the Lissajous and 
bidirectional Cartesian trajectories, φ = 0 was used (see table 1). Before the reconstruction, the signal was filtered 
using a high pass filter with a cut-off frequency of 1.8 × f0 to completely remove the fundamental harmonic.

3.3. Alternative reconstructions
The proposed technique was compared with two different x-space-based reconstruction methods to interpolate 
the given non-Cartesian data onto the Cartesian grid: scattered interpolation and scattered interpolation with 
trajectory partitioning (Alacaoglu et al 2016). In general, scattered interpolation first triangulates the given data 
using Delaunay triangulation. The vertices of the triangle enclosing each query point (i.e. the grid points) are lifted 
to obtain the weights corresponding to the data points. Using natural-neighbor interpolation, lifted triangles are 
then interpolated to obtain the optimal image intensity for the grid point enclosed by the triangle (Amidror 2002).

Using the aforementioned scattered interpolation, two alternative reconstruction techniques were imple-
mented:

(i)  Scattered interpolation: The data points and the FFP trajectory are directly fed to the interpolation 
algorithm.

(ii)  Scattered interpolation with partitioning: The trajectory is partitioned into two non-overlapping segments 
with nearly orthogonal directions. Next, an image for each partition is reconstructed using scattered 
interpolation, and the resulting images are averaged to obtain the final MPI image (Alacaoglu et al 2016). 
The two segments are at approximately 45◦ and 135◦ scanning angles for the Lissajous trajectory, and 0◦ and 
90◦ scanning angles for the bidirectional Cartesian trajectory. Note that this method cannot be applied to the 
other tested trajectories, as they cannot be partitioned into a few different angles.

Figure 5. The non-Cartesian FFP Trajectories used in this work, all shown here for NP  =  16 and identical TR.

Table 1. The mathematical expressions for the non-Cartesian FFP trajectories used in this work. The 2D drive fields and frequency ratios 
to generate the corresponding trajectories are given. f 0 is the fundamental drive field frequency, NP is the trajectory density parameter, and 
TR = NP/f0 is one period of the trajectory. A and B correspond to the drive field amplitudes in x- and y -directions, respectively.

Trajectories Mathematical expression Frequency ratio

Lissajous Hx(t) = A sin (2πf0t) f0 =
NP

NP−1 f1

Hy(t) = B sin (2πf1t + φ)

Bidirectional Cartesian
Hx(t) =

{
A sin (2πf0t) , t < TR

2

B sin (2πf1t + φ) , t � TR
2

f0 =
NP
2 f1

Hy(t) =

{
A sin (2πf1t + φ) , t < TR

2

B sin (2πf0t) , t � TR
2

Spiral Hx(t) = A sin (2πf1t) · cos (2πf0t) f0 = NPf1

Hy(t) = B sin (2πf1t) · sin (2πf0t)

Radial Lissajous Hx(t) = A sin (2πf0t) · sin (2πf1t) f0 =
NP

NP−1 f1

Hy(t) = B sin (2πf1t) · cos (2πf0t)

Radial Hx(t) = A sin (2πf0t) · sin (2πf1t) f0 = NPf1

Hy(t) = B sin (2πf1t) · cos (2πf0t)
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These comparison techniques used a fixed grid size of 512 × 512, independent of the trajectory type and density 
level.

3.4. Image quality analysis
The proposed technique was further analyzed for the Lissajous and the bidirectional Cartesian trajectories at 
twenty different trajectory density levels between 10 and 200. Note that the density of the data points for an 
already acquired data can also be artificially altered by upsampling/downsampling the time-domain signal. To 
test the potential effects of such alterations, the sampled signal for a Lissajous trajectory was spline interpolated/
decimated using 9 different sampling factors ranging between 0.25 and 4. This step was performed after the 
filtering of the fundamental harmonic.

To quantify the effects on image resolution, the FWHM resolution metric was utilized. As dictated by imaging 
theory (Prince and Links 2006), the effective FWHM resolution of the reconstructed MPI image, FWHMm, can 
be approximated as:

FWHMm =
√

FWHM2
s + FWHM2

k . (16)

Here, FWHMs is the native resolution of the MPI system, mainly governed by the selection field gradients 
and nanoparticle properties, and FWHMk is the FWHM of the gridding kernel as given in (12). The above 
equation suggests that the effective resolution of the MPI image worsens with increasing kernel width, and the 
level of resolution loss depends on the relative magnitude of the kernel width with respect to the native resolution. 
As explained in section 2.4, the PSF for the Lissajous and bidirectional Cartesian trajectories can be approximated 
as the isotropic PSF, hiso(x). As there is no closed form expression for the FWHM of hiso(x), it can be computed 
numerically from a central cross-section of hiso(x). Accordingly, for the parameters used in this work, FWHMs is 
approximately equal to 2.06 mm.

Next, to quantify the effects of trajectory density and sampling factor on overall image quality, the peak sig-
nal-to-noise ratio (PSNR) metric was utilized:

PSNR = 10 log10

(
max2(ρ)

MSE

)
. (17)

Here, ρ(x) is the numeric phantom (i.e. the nanoparticle distribution) used in the simulations and MSE is the 
mean square error between the phantom and the reconstructed image. Here, higher values of PSNR indicate 
improved image quality.

3.5. Deblurring and noise robustness
To show potential improvements in the gridded images, both the equalization filter (Lu et al 2015) and Wiener 
deconvolution methods were implemented for the Lissajous and the bidirectional Cartesian trajectories. As 
explained in section 2.4, the equalization filter aims to improve the effective PSF from hiso(x) to ET(x). For the 
parameters used in this work, this corresponds to an improvement of the effective FWHM from 2.06 mm to 
1.47 mm, where the latter is the approximate FWHM of ET(x) as given in Goodwill and Conolly (2011). For 
Wiener deconvolution, NSR = 1 × 10−5 was utilized.

Prior to performing deblurring via equalization or deconvolution, the reconstructed MPI image was first 
extended in all four directions by replicating the edges, and the resulting image was gradually faded to zero in the 
extended regions (Yorulmaz et al 2018). After deblurring, the central part of the image was extracted to capture 
the original FOV. These edge-tapering steps were necessary for avoiding deblurring-induced artifacts at the edges 
of the FOV.

Noise robustness of the proposed gridding technique and the subsequent deblurring methods were tested at 
four different signal-to-noise ratio (SNR) levels (50, 20, 10, and 5) using the Lissajous trajectory. White Gaussian 
noise was added to the simulated signal after the filtering of the fundamental harmonic. Here, SNR was defined as 
the ratio of the peak signal (after filtering) and the standard deviation of the additive white Gaussian noise.

4. Results

4.1. Reconstruction results and trajectory evaluation
Reconstruction results for the proposed algorithm and the comparison techniques can be seen in figures 6 and 
7 for NP  =  50. Figure 6 shows the Lissajous and bidirectional Cartesian trajectories, together with the resulting 
MPI images. The isotropically blurred image, IMGiso, obtained via convolving the phantom with hiso(x) in (14), is 
also displayed for visual comparison. Note that IMGiso is the MPI image that would be obtained with the standard 
x-space reconstruction using two orthogonal linear trajectories (Lu et al 2018). As seen in figure 6, directly 
performing scattered interpolation yields images with abruptly changing pixel intensities. These severe artifacts 
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stem from the fact that the nearby data points on a trajectory can be inconsistent when their scanning directions 
are different, as the x-space images corresponding to those data points are blurred by distinct PSFs. When data 
are first partitioned into two non-overlapping segments, the severe artifacts seen in direct scattered interpolation 
are avoided. However, a closer inspection of these images reveals horizontal and vertical stripe artifacts, which 
are caused by inconsistencies between the images reconstructed from the two separate partitions. The proposed 
gridding algorithm, on the other hand, does not suffer from any of the aforementioned artifacts and reconstructs 
the x-space MPI image by automatically determining the reconstruction parameters from the MPI data. The 

Figure 6. Reconstruction results for the Lissajous and bidirectional Cartesian trajectories. (a) The phantom and the isotropically 
blurred image, obtained via convolution with hiso(x) in (14). (b) Scattered interpolation causes severe artifacts due to the different 
scanning directions of nearby data points. While partitioning the data before applying scattered interpolation removes these 
artifacts, horizontal and vertical stripe artifacts can still be observed. The proposed method does not suffer from any of the 
aforementioned artifacts, and reconstructs the image by automatically tuning the reconstruction parameters from the scanning 
trajectory. The results closely match IMGiso for both trajectories. For these simulations, the FOV was 2 × 2 cm2 and NP  =  50. For 
each trajectory, the images from all three methods were displayed with identical windowing.

Figure 7. Reconstruction results for the trajectories that cannot be partitioned. Images from scattered interpolation have artifacts 
in the central regions of the images where the trajectories are very dense. Ring-shaped artifacts are observed for the spiral and radial 
Lissajous trajectories, and streak artifacts are seen for the radial trajectory. The proposed gridding algorithm successfully removes all 
of these artifacts. However, trajectory-induced smearing results in noticeably blurred MPI images. For these simulations, the FOV 
was 2 × 2 cm2 and NP  =  50. For each trajectory, the images from both methods were displayed with identical windowing.
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resulting images closely match IMGiso for both trajectories. As a trade-off, when compared to the results of 
scattered interpolation with partitioning, the proposed method induced a slight blurring on the reconstructed 
images. While this blurring is caused by the interpolation kernel used in gridding, it can be circumvented by 
appropriate choice of trajectory density and/or sampling factor, as shown in later analyses.

Figure 7 shows the reconstructed MPI images for the trajectories that cannot be partitioned, i.e. the spiral, 
radial Lissajous, and radial trajectories. These trajectories scan the FOV in varying directions, and unlike the 
Lissajous or bidirectional Cartesian trajectories, they do not feature any main scanning directions. Therefore, 
the only comparison technique considered here was the direct scattered interpolation method. For the scattered 
interpolation, the image artifacts occur mostly in the central regions of the images where the trajectories are very 
dense. Ring-shaped artifacts can be observed for the spiral and radial Lissajous trajectories, whereas the radial 
trajectory suffers from streak artifacts extending radially from the center of the image. Again, these artifacts stem 
from inconsistencies among nearby data points. The proposed gridding algorithm successfully removes all of 
these artifacts. However, the resulting images display noticeable blurring when compared to the results from the 
Lissajous or bidirectional Cartesian trajectories for the same NP. Note that the exact same blurring is also present 
in scattered interpolation results, indicating that it is not caused by the gridding interpolation. It rather reflects a 
trajectory-induced smearing of the MPI image.

Considering their superior performance, only the Lissajous and bidirectional Cartesian trajectories were 
considered for subsequent analyses.

4.2. Effects of trajectory density
To observe the effects of the trajectory density, NP, on the quality of the reconstructed images, the signal 
acquisition process was simulated for four different NP values: 18, 30, 50, and 98. The resulting images are shown 
in figure 8(a). For the Lissajous trajectory, the vasculature structure can be distinguished even at low density 
values. For the bidirectional Cartesian trajectory, however, the resolution at very low densities is visibly degraded. 
Note that the bidirectional Cartesian trajectory is inherently much sparser than the Lissajous trajectory, because 
the effective trajectory density is reduced by a factor of two to keep the repetition times identical among all 
trajectories (see the 1/2 factor in table 1 for the frequency ratio of the bidirectional Cartesian trajectory) (Knopp 
et al 2008). For both trajectories, as the density of the trajectory is increased, the resolution of the gridded MPI 
image improves. This effect is quantified in figures 8(b) and (c), where the automatically computed values for the 
image size (N) and the effective gridding kernel width (i.e. FWHMk in (12)) are plotted as functions of NP, for 
both the Lissajous and the bidirectional Cartesian trajectories. As expected, N increases with increasing NP, as the 
local pixel size dictated by the Voronoi partitions of the data points gets smaller. Furthermore, with increasing 
NP, the minimum distance between each grid point and the nearest data point is reduced. This in turn lowers 
FWHMk to ensure adequate spread of data points onto nearby grids.

The values for FWHMm computed using (16) are also plotted in figure 8(c). For both trajectories, FWHMm 
converges to 2.27 mm for increasing NP values. Hence, we deduce that when FWHMk is sufficiently smaller than 
FWHMs, the gridding algorithm does not induce any significant blur on the reconstructed images. This criterion 
is satisfied for NP  >  50 for the Lissajous trajectory and for NP  >  90 for the bidirectional Cartesian trajectory.

Image quality was also quantified using the PSNR metric, as shown in figure 8(d). For both trajectories, image 
quality sharply increases until NP reaches 40. Then, PSNR gradually converges to 12.9 dB for the Lissajous trajec-
tory. For the bidirectional Cartesian trajectory, PSNR displays a slowly increasing trend and reaches to 13.4 dB at 
NP  =  200. The bidirectional Cartesian trajectory performs slightly better than the Lissajous trajectory because 
of its blurring pattern that yields lower image haze in the background. Note that the PSNR value for IMGiso in 
figure 6(a) is 12.4 dB. Hence, the quality of the images from the proposed gridded algorithm can exceed those 
obtained with linear trajectories via standard x-space reconstruction.

4.3. Effects of sampling factor
In MPI, the density of the data points not only depend on the path of the trajectory, but also on the sampling rate 
of the signal. Even for a fixed sampling rate, one can artificially alter the density of the data points by upsampling/
downsampling the signal. Figure 9(a) shows the FWHM of the gridding kernel as a function of both the trajectory 
density and the sampling factor, for an initial sampling rate of 2.5 MS s−1. Accordingly, for a fixed trajectory 
density, one can reduce the effective kernel width by upsampling the MPI signal. Figure 9(b) shows the effects 
of this procedure on the overall resolution of the gridded MPI image. For NP values greater than approximately 
40, upsampling can be utilized to achieve an overall resolution of 2.11 mm, which closely matches the native 
resolution. In most cases, a sampling factor of 2 is sufficient to avoid any blurring of the MPI image. A similar 
trend is seen in the PSNR values shown in figure 9(c), where PSNR converges to 13.0 dB with a sampling factor of 
2 and NP  >  50. These results are visually demonstrated in figure 9(d), where gridded MPI images at four different 
sampling factors are displayed for NP  =  98. Here, a sampling factor of 2 provides noticeable improvements in 
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image resolution, and suffices to avoid gridding-induced blurring. A sampling factor of 4 does not provide any 
additional benefits on the image quality.

4.4. Deblurring and noise robustness
The resolution of the x-space reconstructed images can be improved via a post-processing step, following 
gridding. Figure 10 illustrates the resolution improvement achieved by applying either an equalization filter 
or Wiener deconvolution on the gridded images. A 2 × 2 cm2 phantom, shown in figure 10(a), was utilized to 
highlight the changes in resolution. Both the Lissajous and bidirectional Cartesian trajectories utilized NP  =  98. 
The signal was generated with an initial sampling rate of 2.5 MS s−1 and upsampled with a sampling factor of 2. 
As seen in figure 10(b), the equalization filter significantly improves the resolution of the image. Using (14), for 
the parameters used in this work, this filter aims to improve the effective FWHM from 2.06 mm to 1.47 mm. The 
deconvolved images in figure 10(b) show greater improvement in resolution, at the expense of potential noise 
amplification, as analyzed in detail below. In comparing trajectories, both the equalization and deconvolution 
techniques gave slightly improved results for the Lissajous trajectories, which is to be expected given the lower 
effective density of the bidirectional Cartesian trajectory.

Figure 11 gives the results for the noise robustness analyses for both the gridding reconstruction and the 
deblurring techniques. Again, the Lissajous trajectory with NP  =  98 was used, and data acquisition was per-
formed at 2.5 MS s−1 with a sampling factor of 2. For these analyses, we utilized the Derenzo phantom shown 
in figure 11(a) with five resolution levels: 3.9 mm, 3.2 mm, 2.5 mm, 2.0 mm, and 1.4 mm. In the noise free case 
in figure 11(b), the disks that are at 2.5 mm or higher separation are visually resolved in the gridded image. After 
the equalization filter, the resolution improves visibly and the disks at 2.0 mm separation can also be resolved 
visually. While Wiener deconvolution further improves the resolution, the disks at 1.4 mm remain unresolved. 
As seen in figure 11(b), the gridding reconstruction shows robustness against noise down to SNR levels of 10. At 
high SNR levels, Wiener deconvolution yields improved image quality and higher resolution when compared 

Figure 8. The effects of trajectory density, NP, on the reconstructed MPI images. (a) The results of the gridding algorithm for the 
Lissajous and bidirectional Cartesian trajectories for NP  =  18, 30, 50, and 98. As NP is increased, the resolution of the gridded MPI 
image improves for both trajectories. (b) The image size (N) that is automatically tuned using the MPI trajectory monotonically 
increases with increasing NP. (c) The FWHM of the gridding kernel decreases and then converges to a constant value as NP increases. 
The overall image resolution (FWHMm) also improves and converges to the native resolution of the MPI system (FWHMs) with 
increasing NP. (d) The overall image quality improves and rapidly converges to a constant PSNR value for both trajectories as NP 
increases.
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to the equalization filter. At SNR levels around 20 and lower, however, the equalization filter displays improved 
robustness against artifacts and noise amplification when compared to Wiener deconvolution. The noise ampli-
fication in the deconvolved image is clearly visible at SNR  =  5, where the background noise competes with image 
intensity. Note that these results are displayed for a single cycle of the Lissajous trajectory, with a scan time of 
merely 3.92 ms. Significant improvements in image quality can easily be achieved by increasing the SNR via aver-
aging over multiple cycles.

5. Discussion

The proposed gridding algorithm successfully reconstructs MPI images for non-Cartesian trajectories, while 
automatically computing the reconstruction parameters from the FFP trajectory. Among the tested trajectories, 
the Lissajous and bidirectional Cartesian trajectories resulted in higher image quality, whereas spiral, radial, and 

Figure 9. Effects of upsampling/downsampling the MPI signal. (a) The FWHM of the gridding kernel quickly decreases and (b) 
the overall image resolution converges to the native system resolution for increasing trajectory density and sampling factor. (c) 
The overall image quality also improves with increasing trajectory density and sampling factor, where PSNR converges to 13.0 dB. 
(d) The gridded MPI images at NP  =  98 for different sampling factors. A sampling factor of 2 suffices to avoid gridding-induced 
blurring. For these simulations, the initial sampling rate was 2.5 MS s−1 and the Lissajous trajectory was utilized. 

Figure 10. Postprocessing results for the proposed gridding algorithm. (a) The phantom and (b) the results of the gridding 
algorithm followed by either an equalization filter or Wiener deconvolution. The gridded images can be significantly improved in 
terms of resolution using either of these two postprocessing techniques. Equalization does not aim to fully deconvolve the effects of 
the imaging PSF. For these simulations, FOV  =  2 × 2 cm2 and NP  =  98, with 2.5 MS s−1 sampling rate and a sampling factor of 2.
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radial Lissajous trajectories yielded excessive blurring. The advantage of the Lissajous and bidirectional Cartesian 
trajectories is that they are composed of two nearly orthogonal scanning directions. In contrast, spiral, radial, 
and radial Lissajous trajectories incorporate scanning directions that result in smearing of the MPI image. Note 
that this result is consistent with earlier work that looked at trajectory analysis for SFR, where the Lissajous and 
Cartesian trajectories resulted in improved resolution when compared to other trajectories (Knopp et al 2008). 
Hence, we deduce that the Lissajous and Cartesian trajectories are generally favorable for MPI.

The results demonstrate that the gridded images can be improved via a simple upsampling of the already 
acquired MPI signal. This simple operation increases the effective trajectory density and helps the proposed 
method to achieve the native resolution of the MPI system. It should also be noted that directly sampling the 
signal at 5 MS s−1 yields visually identical results to sampling at 2.5 MS s−1 followed by upsampling by a factor of 
2 (results not shown). Therefore, considering the fact that the MPI signal quickly fades at higher harmonics, the 
signal can be sampled at a relatively low rate followed by upsampling, without compromising image quality. In 
addition, deblurring techniques also help improve the resolution of the reconstructed images. The equalization 
filter removes the background haze, without noise amplification. Deconvolution, on the other hand, improves 
the resolution at the expense of significant degradation in SNR. Therefore, especially at realistic SNR levels one 
may expect to see for in vivo imaging, the equalization filter shows a better promise.

The proposed method provides a reconstruction with reduced memory and computational requirements 
for the trajectories normally utilized with SFR. In SFR, the system matrix contains the calibration data and is of 
size (Nf × Nc × 2)× (N × N), where (N × N) denotes the imaging FOV matrix, Nf  is the number of frequency 
components, Nc is the number of receive coils, and real and imaginary components of the spectrum are stored 
in separate rows. For a typical scenario with N  =  40, Nf = 10 000, Nc  =  2, approximately 512 MB of memory is 

Figure 11. Noise robustness results for the proposed gridding algorithm and the postprocessing techniques. (a) A Derenzo phantom 
with five resolution levels: 3.9 mm, 3.2 mm, 2.5 mm, 2.0 mm, and 1.4 mm. (b) The gridding algorithm preserves image quality down 
to SNR levels of 10. Wiener deconvolution yields higher image resolution at high SNR levels, whereas the equalization filter displays 
improved robustness against artifacts and noise amplification at lower SNR levels. For these simulations, FOV  =  2 × 2 cm2 and 
NP  =  98, with 2.5 MS s−1 sampling rate and a sampling factor of 2.
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needed for the system matrix alone. Meanwhile, the actual imaging data in both the SFR and x-space approaches 
(including the proposed method) form a vector of length (Ns × Nc × 2), where Ns is the number of samples 
collected in one period of the trajectory (assuming that repeated periods are first averaged). For Ns = 10 000, 
approximately 32 MB of memory is needed for the imaging data. Thus, the memory requirement of the x-space 
approach is substantially smaller than that of the SFR approach (∼32 MB versus  ∼544 MB for the given param-
eters). In terms of computational efficiency, previous studies suggest that algebraic reconstruction technique 
(ART), which is currently the most popular reconstruction method in SFR, is expected to be of complexity 

O(Nf × Nc × Niter × N2), where Niter is the number of iterations (Knopp et al 2010a, Li et al 2015). While there 
have been several efforts to reduce the computational complexity of the SFR approach, the N2 dependence still 
remains (Knopp and Hofmann 2016, Schmiester et al 2017, Kluth and Jin 2019). For the proposed gridding 
algorithm, on the other hand, the two main steps are the Voronoi partitioning and the gridding operations. Com-
mon algorithms for Voronoi partitioning are of complexity O(Ns log(Ns)) (Leach 1992, Edelsbrunner and Shah 
1996). In the gridding stage, the samples on the trajectory are distributed to their nearest grid points. Assuming 
that Ng � Ns samples will be distributed on average to each grid point, this bears a complexity of O(Ng × N2) 
(O’Sullivan 1985). Hence, the proposed gridding method is advantageous in terms of memory storage, with 
comparable computational efficiency.

With the abovementioned advantages, the proposed gridding technique is especially promising for real-time 
imaging applications that require the usage of a rapid scanning trajectory with a rapid image reconstruction 
method. Trajectories such as the Lissajous trajectory can achieve higher frame rates when compared to line-by-
line scanning. In contrast to SFR approaches, the proposed gridding algorithm does not require any calibra-
tion scans, and hence can potentially handle arbitrary changes in FOV, trajectory density, nanoparticle type, or 
nanoparticle environment. These features may especially be valuable for real-time imaging applications where 
one may need to change the size and/or the position of the FOV on the fly (e.g. during interventional imaging), 
or where the nanoparticle response may change over time (e.g. due to internalization into a cell environment 
(Zheng et al 2015, Them et al 2016). For optional deblurring of the reconstructed image, one may need to per-
form a calibration scan to determine the PSF from a point source phantom. Nevertheless, this procedure takes 
significantly less time when compared to the calibration of the system matrix. In addition, this technique can 
enable x-space reconstruction of Lissajous data obtained from existing commercial MPI scanners, which may 
then facilitate the usage of other x-space-based techniques on those systems (e.g. relaxation-based color MPI 
(Muslu et al 2018)).

The results in this work assumed that nanoparticle magnetization instantaneously aligns with the applied 
magnetic field. Nanoparticle relaxation can smear the MPI signal, and hence the image, along the scanning direc-
tion. For example, the two dominant directions for the Lissajous trajectory may yield images that are smeared 
differently. For those cases, one solution can be to perform a low-level correction for relaxation by compensating 
for relaxation induced signal delays (Croft et al 2012). Alternatively, the effective time constant for relaxation can 
be estimated from the MPI signal (Utkur et al 2017, Muslu et al 2018), and the underlying adiabatic MPI signal 
can be recovered via deconvolution (Bente et al 2015). A potential problem that may remain is the position-
dependent response of the nanoparticles, which may especially afflict the Lissajous trajectory with its fast field 
rotation. For such cases, it may be favorable to utilize isotropic nanoparticles with small hydrodynamic diam-
eters, as suggested in Graeser et al (2015). Alternatively, a class of nanoparticles with reduced relaxation effects 
despite their larger sizes may also be utilized, such as UW33 in Croft et al (2016).

The non-ideality of the magnetic fields may also affect the quality of the reconstructed images. For standard 
x-space reconstruction, we have previously shown that selection fields with non-homogeneous gradients result 
in geometric warping of the reconstructed images (Yagiz et al 2019). These effects are relatively benign and can 
be successfully corrected using image unwarping techniques, following a measurement and/or computation of 
the displacement map. Similarly, we expect the proposed gridding algorithm to yield images with easily reversible 
warping in the presence of selection field non-ideality, making it extendable to 3D imaging. Experimental valida-
tion of the proposed technique and its extension to 3D remain as important future work.

6. Conclusion

In this work, we proposed a generalized, trajectory-independent, and parameter-free reconstruction algorithm 
for x-space MPI. The proposed gridding algorithm automatically tunes gridding kernel width and image size 
parameters based on the scanning trajectory, without causing any additional blurring of the MPI image. The 
results demonstrate that the Lissajous and bidirectional Cartesian trajectories are favorable for x-space MPI, 
as they feature two orthogonal scanning directions that result in an approximately isotropic PSF. The proposed 
method is especially promising for real-time imaging applications that require rapid scanning trajectories 
together with a rapid image reconstruction method.
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Appendix

This appendix explains the choice of γ , the multiplicative parameter in (11) that controls the kernel width. This 
parameter was determined based on two factors: quantitative image quality assessment via the PSNR metric 
and visual inspection. The results of the PSNR assessment are given in figure A1(a) for the Lissajous trajectory at 
Np   =  98 with a sampling factor of 1. The phantom used in this assessment is displayed in figure A1(b) together 
with the results of the gridding algorithm at various γ  values. The PSNR assessment implies that higher γ  values 
result in reduced image quality, with γ = 3 yielding the highest PSNR. However, the corresponding image visibly 
suffers from vertical stripe artifacts (shown by red arrows), which are remnants of the scanning trajectory. As γ  
increases, the intensity of this artifact weakens and finally disappears for γ  greater than 5–6. On the other hand, 
a higher γ  value directly corresponds to a higher FWHMk, causing an increased blurring in the reconstructed 
image. The PSNR metric successfully captures this reduction in resolution for higher γ  values, but fails to detect 
the artifacts seen at lower γ  values. To prevent such artifacts while preserving the resolution of the reconstructed 
images, we choose γ = 6, which is the smallest integer-valued γ  that yields artifact-free images.

ORCID iDs

A A Ozaslan  https://orcid.org/0000-0003-4067-2904
A Alacaoglu  https://orcid.org/0000-0002-2911-7048
O B Demirel  https://orcid.org/0000-0003-4726-0590
T Çukur  https://orcid.org/0000-0002-2296-851X
E U Saritas  https://orcid.org/0000-0001-8551-1077

References

Alacaoglu A, Ozaslan A A and Saritas E U 2016 Nonlinear scanning in x-space MPI Int. Workshop on Magnetic Particle Imaging (Book of 
Abstracts) (Lübeck) p 74

Amidror I 2002 Scattered data interpolation methods for electronic imaging systems: a survey J. Electron. Imaging 11 157–77
Bakenecker A C, Ahlborg M, Debbeler C, Kaethner C, Buzug T M and Lüdtke-Buzug K 2018 Magnetic particle imaging in vascular medicine 

Innovative Surg. Sci. 3 179–92
Bauer L M, Situ S F, Griswold M A and Samia A C S 2015 Magnetic particle imaging tracers: state-of-the-art and future directions J. Phys. 

Chem. Lett. 6 2509–17

Figure A1. The effect of γ  on image quality. (a) PSNR analysis indicates that highest image quality is achieved at γ = 3, with 
higher γ  values causing a reduction in image quality. (b) The phantom and the results of the gridding algorithm for various γ  
values. Vertical stripe artifacts not captured by the PSNR metric are clearly visible in the reconstructed image for γ = 3 (red arrow). 
These artifacts diminish at higher γ  values, however, the image resolution also worsens simultaneously. Here, the choice of γ = 6 
corresponds to the smallest integer-valued γ  that yields artifact-free images.

Phys. Med. Biol. 64 (2019) 165018 (18pp)

https://orcid.org/0000-0003-4067-2904
https://orcid.org/0000-0003-4067-2904
https://orcid.org/0000-0002-2911-7048
https://orcid.org/0000-0002-2911-7048
https://orcid.org/0000-0003-4726-0590
https://orcid.org/0000-0003-4726-0590
https://orcid.org/0000-0002-2296-851X
https://orcid.org/0000-0002-2296-851X
https://orcid.org/0000-0001-8551-1077
https://orcid.org/0000-0001-8551-1077
https://doi.org/10.1117/1.1455013
https://doi.org/10.1117/1.1455013
https://doi.org/10.1117/1.1455013
https://doi.org/10.1515/iss-2018-2026
https://doi.org/10.1515/iss-2018-2026
https://doi.org/10.1515/iss-2018-2026
https://doi.org/10.1021/acs.jpclett.5b00610
https://doi.org/10.1021/acs.jpclett.5b00610
https://doi.org/10.1021/acs.jpclett.5b00610


17

A A Ozaslan et al

Beatty P J, Nishimura D G and Pauly J M 2005 Rapid gridding reconstruction with a minimal oversampling ratio IEEE Trans. Med. Imaging 
24 799–808

Bente K, Weber M, Graeser M, Sattel T F, Erbe M and Buzug T M 2015 Electronic field free line rotation and relaxation deconvolution in 
magnetic particle imaging IEEE Trans. Med. Imaging 34 644–51

Buzug T M et al 2012 Magnetic particle imaging: introduction to imaging and hardware realization Z. Med. Phys. 22 323–34
Croft L R, Goodwill P W and Conolly S M 2012 Relaxation in x-space magnetic particle imaging IEEE Trans. Med. Imaging 31 2335–42
Croft L R, Goodwill P W, Konkle J, Arami H, Price D A, Li A X, Saritas E U and Conolly S M 2016 Low drive field amplitude for improved 

image resolution in magnetic particle imaging Med. Phys. 43 424–35
Edelsbrunner H and Shah N R 1996 Incremental topological flipping works for regular triangulations Algorithmica 15 223–41
Ferguson R M et al 2015 Magnetic particle imaging with tailored iron oxide nanoparticle tracers IEEE Trans. Med. Imaging 34 1077–84
Gleich B and Weizenecker J 2005 Tomographic imaging using the nonlinear response of magnetic particles Nature 435 1214–7
Gleich B, Weizenecker J and Borgert J 2008 Experimental results on fast 2D-encoded magnetic particle imaging Phys. Med. Biol. 53 N81–4
Glover G H and Pauly J M 1992 Projection reconstruction techniques for reduction of motion effects in MRI Magn. Reson. Med. 28 275–89
Goodwill P 2010 Narrowband and x-space magnetic particle imaging PhD Thesis (Berkeley, CA: UC Berkeley)
Goodwill P W and Conolly S M 2010 The x-space formulation of the magnetic particle imaging process: 1D signal, resolution, bandwidth, 

SNR, SAR, and magnetostimulation IEEE Trans. Med. Imaging 29 1851–9
Goodwill P W and Conolly S M 2011 Multidimensional x-space magnetic particle imaging IEEE Trans. Med. Imaging 30 1581–90
Goodwill P W, Lu K, Zheng B and Conolly S M 2012a An x-space magnetic particle imaging scanner Rev. Sci. Instrum. 83 033708
Goodwill P W, Saritas E U, Croft L R, Kim T N, Krishnan K M, Schaffer D V and Conolly S M 2012b X-space MPI: magnetic nanoparticles for 

safe medical imaging Adv. Mater. 24 3870–7
Graeser M, Bente K, Neumann A and Buzug T 2015 Trajectory dependent particle response for anisotropic mono domain particles in 

magnetic particle imaging J. Phys. D: Appl. Phys. 49 045007
Haegele J, Rahmer J, Gleich B, Bontus C, Borgert J, Wojtczyk H, Buzug T M, Barkhausen J and Vogt F M 2012 Visualization of instruments 

for cardiovascular intervention using MPI Magnetic Particle Imaging Springer Proc. in Physics vol 140 (Berlin: Springer) pp 211–5
Hensley D, Goodwill P, Croft L and Conolly S 2015 Preliminary experimental x-space color MPI 5th Int. Workshop on Magnetic Particle 

Imaging (Istanbul, Turkey, 26–28 March 2015) (IEEE) p 1
Jackson J I, Meyer C H, Nishimura D G and Macovski A 1991 Selection of a convolution function for Fourier inversion using gridding IEEE 

Trans. Med. Imaging 10 473–8
Kaethner C, Erb W, Ahlborg M, Szwargulski P, Knopp T and Buzug T M 2016 Non-equispaced system matrix acquisition for magnetic 

particle imaging based on Lissajous node points IEEE Trans. Med. Imaging 35 2476–85
Kaul M et al 2017 In vitro and in vivo comparison of a tailored magnetic particle imaging blood pool tracer with Resovist Phys. Med. Biol.  

62 3454–69 
Kluth T and Jin B 2019 Enhanced reconstruction in magnetic particle imaging by whitening and randomized SVD approximation Phys. 

Med. Biol. 64 125026
Knopp T and Hofmann M 2016 Online reconstruction of 3D magnetic particle imaging data Phys. Med. Biol. 61 N257
Knopp T, Biederer S, Sattel T, Weizenecker J, Gleich B, Borgert J and Buzug T 2008 Trajectory analysis for magnetic particle imaging Phys. 

Med. Biol. 54 385
Knopp T, Rahmer J, Sattel T, Biederer S, Weizenecker J, Gleich B, Borgert J and Buzug T 2010a Weighted iterative reconstruction for magnetic 

particle imaging Phys. Med. Biol. 55 1577
Knopp T, Sattel T F, Biederer S, Rahmer J, Weizenecker J, Gleich B, Borgert J and Buzug T M 2010b Model-based reconstruction for magnetic 

particle imaging IEEE Trans. Med. Imaging 29 12–8
Konkle J J, Goodwill P W, Saritas E U, Zheng B, Lu K and Conolly S M 2013 Twenty-fold acceleration of 3D projection reconstruction MPI 

Biomed. Tech./Biomed. Eng. 58 565–76
Leach G 1992 Improving worst-case optimal Delaunay triangulation algorithms 4th Canadian Conf. on Computational Geometry p 15
Li S, Chan C, Stockmann J P, Tagare H, Adluru G, Tam L K, Galiana G, Constable R T, Kozerke S and Peters D C 2015 Algebraic 

reconstruction technique for parallel imaging reconstruction of undersampled radial data: application to cardiac cine Magn. Reson. 
Med. 73 1643–53

Liao J R, Pauly J M, Brosnan T J and Pelc N J 1997 Reduction of motion artifacts in cine MRI using variable-density spiral trajectories Magn. 
Reson. Med. 37 569–75

Lu K 2015 Linearity, shift-invariance and resolution improvement for quantitative magnetic particle imaging PhD Thesis (Berkeley, CA:  
UC Berkeley)

Lu K, Goodwill P W, Saritas E U, Zheng B and Conolly S M 2013a Linearity and shift invariance for quantitative magnetic particle imaging 
IEEE Trans. Med. Imaging 32 1565–75

Lu K, Goodwill P, Zheng B and Conolly S 2015 Reshaping the 2D MPI PSF to be isotropic and sharp using vector acquisition and 
equalization 5th Int. Workshop on Magnetic Particle Imaging (Istanbul, Turkey, 26–28 March 2015) (IEEE) p 1

Lu K, Goodwill P, Zheng B and Conolly S 2018 Multi-channel acquisition for isotropic resolution in magnetic particle imaging IEEE Trans. 
Med. Imaging 37 1989–98

Lu K, Zheng B, Konkle J, Saritas E, Goodwill P and Conolly S 2013b Towards multidimensional x-space magnetic particle imaging for 
improved resolution Int. Workshop on Magnetic Particle Imaging (Berkeley, CA: 23–24 March 2013) (IEEE) p 1

Macovski A 1985 Volumetric NMR imaging with time-varying gradients Magn. Reson. Med. 2 29–40
Mason E E, Cooley C Z, Cauley S F, Griswold M A, Conolly S M and Wald L L 2017 Design analysis of an MPI human functional brain 

scanner Int. J. Magn. Part. Imaging 3 1703008 
Möddel M, Meins C, Dieckhoff J and Knopp T 2018 Viscosity quantification using multi-contrast magnetic particle imaging New J. Phys. 

20 083001
Muslu Y, Utkur M, Demirel O B and Saritas E U 2018 Calibration-free relaxation-based multi-color magnetic particle imaging IEEE Trans. 

Med. Imaging 37 1920–31
Norton S J 1987 Fast magnetic resonance imaging with simultaneously oscillating and rotating fiell gradients IEEE Trans. Med. Imaging 

6 21–31
O’Sullivan J D 1985 A fast sinc function gridding algorithm for Fourier inversion in computer tomography IEEE Trans. Med. Imaging 

4 200–7
Prince J L and Links J M 2006 Medical Imaging Signals and Systems (Upper Saddle River, NJ: Pearson Prentice Hall)
Rahmer J, Weizenecker J, Gleich B and Borgert J 2009 Signal encoding in magnetic particle imaging: properties of the system function BMC 

Med. Imaging 9 4 

Phys. Med. Biol. 64 (2019) 165018 (18pp)

https://doi.org/10.1109/TMI.2005.848376
https://doi.org/10.1109/TMI.2005.848376
https://doi.org/10.1109/TMI.2005.848376
https://doi.org/10.1109/TMI.2014.2364891
https://doi.org/10.1109/TMI.2014.2364891
https://doi.org/10.1109/TMI.2014.2364891
https://doi.org/10.1016/j.zemedi.2012.07.004
https://doi.org/10.1016/j.zemedi.2012.07.004
https://doi.org/10.1016/j.zemedi.2012.07.004
https://doi.org/10.1109/TMI.2012.2217979
https://doi.org/10.1109/TMI.2012.2217979
https://doi.org/10.1109/TMI.2012.2217979
https://doi.org/10.1118/1.4938097
https://doi.org/10.1118/1.4938097
https://doi.org/10.1118/1.4938097
https://doi.org/10.1007/BF01975867
https://doi.org/10.1007/BF01975867
https://doi.org/10.1007/BF01975867
https://doi.org/10.1109/TMI.2014.2375065
https://doi.org/10.1109/TMI.2014.2375065
https://doi.org/10.1109/TMI.2014.2375065
https://doi.org/10.1038/nature03808
https://doi.org/10.1038/nature03808
https://doi.org/10.1038/nature03808
https://doi.org/10.1088/0031-9155/53/6/N01
https://doi.org/10.1088/0031-9155/53/6/N01
https://doi.org/10.1088/0031-9155/53/6/N01
https://doi.org/10.1002/mrm.1910280209
https://doi.org/10.1002/mrm.1910280209
https://doi.org/10.1002/mrm.1910280209
https://doi.org/10.1109/TMI.2010.2052284
https://doi.org/10.1109/TMI.2010.2052284
https://doi.org/10.1109/TMI.2010.2052284
https://doi.org/10.1109/TMI.2011.2125982
https://doi.org/10.1109/TMI.2011.2125982
https://doi.org/10.1109/TMI.2011.2125982
https://doi.org/10.1063/1.3694534
https://doi.org/10.1063/1.3694534
https://doi.org/10.1002/adma.201200221
https://doi.org/10.1002/adma.201200221
https://doi.org/10.1002/adma.201200221
https://doi.org/10.1088/0022-3727/49/4/045007
https://doi.org/10.1088/0022-3727/49/4/045007
https://doi.org/10.1007/978-3-642-24133-8
https://doi.org/10.1007/978-3-642-24133-8
https://doi.org/10.1109/IWMPI.2015.7106993
https://doi.org/10.1109/42.97598
https://doi.org/10.1109/42.97598
https://doi.org/10.1109/42.97598
https://doi.org/10.1109/TMI.2016.2580458
https://doi.org/10.1109/TMI.2016.2580458
https://doi.org/10.1109/TMI.2016.2580458
https://doi.org/10.1088/1361-6560/aa5780
https://doi.org/10.1088/1361-6560/aa5780
https://doi.org/10.1088/1361-6560/aa5780
https://doi.org/10.1088/1361-6560/ab1a4f
https://doi.org/10.1088/1361-6560/ab1a4f
https://doi.org/10.1088/0031-9155/61/11/N257
https://doi.org/10.1088/0031-9155/61/11/N257
https://doi.org/10.1088/0031-9155/54/2/014
https://doi.org/10.1088/0031-9155/54/2/014
https://doi.org/10.1088/0031-9155/55/6/003
https://doi.org/10.1088/0031-9155/55/6/003
https://doi.org/10.1109/TMI.2009.2021612
https://doi.org/10.1109/TMI.2009.2021612
https://doi.org/10.1109/TMI.2009.2021612
https://doi.org/10.1515/bmt-2012-0062
https://doi.org/10.1515/bmt-2012-0062
https://doi.org/10.1515/bmt-2012-0062
https://doi.org/10.1002/mrm.25265
https://doi.org/10.1002/mrm.25265
https://doi.org/10.1002/mrm.25265
https://doi.org/10.1002/mrm.1910370416
https://doi.org/10.1002/mrm.1910370416
https://doi.org/10.1002/mrm.1910370416
https://doi.org/10.1109/TMI.2013.2257177
https://doi.org/10.1109/TMI.2013.2257177
https://doi.org/10.1109/TMI.2013.2257177
https://doi.org/10.1109/IWMPI.2015.7106994
https://doi.org/10.1109/TMI.2017.2787500
https://doi.org/10.1109/TMI.2017.2787500
https://doi.org/10.1109/TMI.2017.2787500
https://doi.org/10.1109/IWMPI.2013.6528389
https://doi.org/10.1002/mrm.1910020105
https://doi.org/10.1002/mrm.1910020105
https://doi.org/10.1002/mrm.1910020105
https://doi.org/10.18416/ijmpi.2017.1703008
https://doi.org/10.18416/ijmpi.2017.1703008
https://doi.org/10.1088/1367-2630/aad44b
https://doi.org/10.1088/1367-2630/aad44b
https://doi.org/10.1109/TMI.2018.2818261
https://doi.org/10.1109/TMI.2018.2818261
https://doi.org/10.1109/TMI.2018.2818261
https://doi.org/10.1109/TMI.1987.4307794
https://doi.org/10.1109/TMI.1987.4307794
https://doi.org/10.1109/TMI.1987.4307794
https://doi.org/10.1109/TMI.1985.4307723
https://doi.org/10.1109/TMI.1985.4307723
https://doi.org/10.1109/TMI.1985.4307723
https://doi.org/10.1186/1471-2342-9-4
https://doi.org/10.1186/1471-2342-9-4


18

A A Ozaslan et al

Rahmer J, Weizenecker J, Gleich B and Borgert J 2012 Analysis of a 3D system function measured for magnetic particle imaging IEEE Trans. 
Med. Imaging 31 1289–99

Rahmer J, Wirtz D, Bontus C, Borgert J and Gleich B 2017 Interactive magnetic catheter steering with 3D real-time feedback using multi-
color magnetic particle imaging IEEE Trans. Med. Imaging 36 1449–56

Rasche V, Proksa R, Sinkus R, Börnert P and Eggers H 1999 Resampling of data between arbitrary grids using convolution interpolation 
IEEE Trans. Med. Imaging 18 385–92

Salamon J et al 2016 Magnetic particle / magnetic resonance imaging: in vitro MPI-guided real time catheter tracking and 4D angioplasty 
using a road map and blood pool tracer approach PLoS One 11 e0156899 

Saritas E U, Goodwill P W, Croft L R, Konkle J J, Lu K, Zheng B and Conolly S M 2013 Magnetic particle imaging (MPI) for NMR and MRI 
researchers J. Magn. Reson. 229 116–26

Schmiester L, Möddel M, Erb W and Knopp T 2017 Direct image reconstruction of Lissajous-type magnetic particle imaging data using 
Chebyshev-based matrix compression IEEE Trans. Comput. Imaging 3 671–81

Schomberg H and Timmer J 1995 The gridding method for image reconstruction by Fourier transformation IEEE Trans. Med. Imaging 
14 596–607

Stehning C, Gleich B and Rahmer J 2016 Simultaneous magnetic particle imaging (MPI) and temperature mapping using multi-color MPI 
Int. J. Magn. Part. Imaging 2 1612001 

Szwargulski P, Kaethner C, Ahlborg M and Buzug T 2015 A radial Lissajous trajectory for magnetic particle imaging 5th Int. Workshop on 
Magnetic Particle Imaging (Istanbul, Turkey, 26–28 March 2015) (IEEE) p 1

Them K, Salamon J, Szwargulski P, Sequeira S, Kaul M G, Lange C, Ittrich H and Knopp T 2016 Increasing the sensitivity for stem cell 
monitoring in system-function based magnetic particle imaging Phys. Med. Biol. 61 3279–90

Utkur M, Muslu Y and Saritas E U 2017 Relaxation-based viscosity mapping for magnetic particle imaging Phys. Med. Biol. 62 3422
Vaalma S, Rahmer J, Panagiotopoulos N, Duschka R L, Borgert J, Barkhausen J, Vogt F M and Haegele J 2017 Magnetic particle imaging 

(MPI): experimental quantification of vascular stenosis using stationary stenosis phantoms PLoS One 12 e0168902 
Weizenecker J, Borgert J and Gleich B 2007 A simulation study on the resolution and sensitivity of magnetic particle imaging Phys. Med. Biol. 

52 6363–74
Weizenecker J, Gleich B, Rahmer J, Dahnke H and Borgert J 2009 Three-dimensional real-time in vivo magnetic particle imaging Phys. Med. 

Biol. 54 L1 
Werner F, Gdaniec N and Knopp T 2017 First experimental comparison between the Cartesian and the Lissajous trajectory for magnetic 

particle imaging Phys. Med. Biol. 62 3407
Yagiz E, Utkur M, Eren O C and Saritas E U 2019 Selection-field-induced warping in x-space MPI Int. Workshop on Magnetic Particle Imaging 

(New York, 17–19 March 2019) (Book of Abstracts) p 74
Yorulmaz O, Demirel O B, Çukur T, Saritas E U and Çetin A E 2018 A blind deconvolution technique based on projection onto convex sets 

for magnetic particle imaging (arXiv:1705.07506 [physics.med-ph]) 
Zheng B, Vazin T, Goodwill P W, Conway A, Verma A, Saritas E U, Schaffer D and Conolly S M 2015 Magnetic particle imaging tracks the 

long-term fate of in vivo neural cell implants with high image contrast Sci. Rep. 5 14055
Zheng B, Von See M P, Yu E, Gunel B, Lu K, Vazin T, Schaffer D V, Goodwill P W and Conolly S M 2016 Quantitative magnetic particle 

imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo Theranostics 6 291–301
Zhong J, Schilling M and Ludwig F 2018 Magnetic nanoparticle temperature imaging with a scanning magnetic particle spectrometer Meas. 

Sci. Technol. 29 115903

Phys. Med. Biol. 64 (2019) 165018 (18pp)

https://doi.org/10.1109/TMI.2012.2188639
https://doi.org/10.1109/TMI.2012.2188639
https://doi.org/10.1109/TMI.2012.2188639
https://doi.org/10.1109/TMI.2017.2679099
https://doi.org/10.1109/TMI.2017.2679099
https://doi.org/10.1109/TMI.2017.2679099
https://doi.org/10.1109/42.774166
https://doi.org/10.1109/42.774166
https://doi.org/10.1109/42.774166
https://doi.org/10.1371/journal.pone.0156899
https://doi.org/10.1371/journal.pone.0156899
https://doi.org/10.1016/j.jmr.2012.11.029
https://doi.org/10.1016/j.jmr.2012.11.029
https://doi.org/10.1016/j.jmr.2012.11.029
https://doi.org/10.1109/TCI.2017.2706058
https://doi.org/10.1109/TCI.2017.2706058
https://doi.org/10.1109/TCI.2017.2706058
https://doi.org/10.1109/42.414625
https://doi.org/10.1109/42.414625
https://doi.org/10.1109/42.414625
https://doi.org/10.18416/ijmpi.2016.1612001
https://doi.org/10.18416/ijmpi.2016.1612001
https://doi.org/10.1109/IWMPI.2015.7107044
https://doi.org/10.1088/0031-9155/61/9/3279
https://doi.org/10.1088/0031-9155/61/9/3279
https://doi.org/10.1088/0031-9155/61/9/3279
https://doi.org/10.1088/1361-6560/62/9/3422
https://doi.org/10.1088/1361-6560/62/9/3422
https://doi.org/10.1371/journal.pone.0168902
https://doi.org/10.1371/journal.pone.0168902
https://doi.org/10.1088/0031-9155/52/21/001
https://doi.org/10.1088/0031-9155/52/21/001
https://doi.org/10.1088/0031-9155/52/21/001
https://doi.org/10.1088/0031-9155/54/5/L01
https://doi.org/10.1088/0031-9155/54/5/L01
https://doi.org/10.1088/1361-6560/aa6177
https://doi.org/10.1088/1361-6560/aa6177
https://arxiv.org/abs/1705.07506
https://doi.org/10.1038/srep14055
https://doi.org/10.1038/srep14055
https://doi.org/10.7150/thno.13728
https://doi.org/10.7150/thno.13728
https://doi.org/10.7150/thno.13728
https://doi.org/10.1088/1361-6501/aae3bd
https://doi.org/10.1088/1361-6501/aae3bd

	Fully automated gridding reconstruction for non-Cartesian x-space magnetic particle imaging
	Abstract
	1. Introduction
	2. Theory
	2.1. Extraction of collinear image component
	2.2. Gridding for x-space MPI
	2.3. Automated tuning of gridding parameters
	2.4. Deblurring of reconstructed images

	3. Materials and methods
	3.1. Trajectories
	3.2. Simulations
	3.3. Alternative reconstructions
	3.4. Image quality analysis
	3.5. Deblurring and noise robustness

	4. Results
	4.1. Reconstruction results and trajectory evaluation
	4.2. Effects of trajectory density
	4.3. Effects of sampling factor
	4.4. Deblurring and noise robustness

	5. Discussion
	6. Conclusion
	Acknowledgments
	Appendix
	ORCID iDs
	References


