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Abstract—The compressed sensing (CS) framework leverages
the sparsity of MR images to reconstruct from undersampled
acquisitions. CS reconstructions involve one or more regulariza-
tion parameters that weigh sparsity in transform domains against
fidelity to acquired data. While parameter selection is critical for
reconstruction quality, the optimal parameters are subject and
dataset specific. Thus, commonly practiced heuristic parameter
selection generalizes poorly to independent datasets. Recent
studies have proposed to tune parameters by estimating the
risk of removing significant image coefficients. Line searches are
performed across the parameter space to identify the parameter
value that minimizes this risk. Although effective, these line
searches yield prolonged reconstruction times. Here, we propose
a new self-tuning CS method that uses computationally efficient
projections onto epigraph sets of the /; and total-variation norms
to simultaneously achieve parameter selection and regularization.
In vivo demonstrations are provided for balanced steady-state
free precession, time-of-flight, and T1-weighted imaging. The
proposed method achieves an order of magnitude improvement
in computational efficiency over line-search methods while main-
taining near-optimal parameter selection.

Index Terms—Compressed sensing (CS), magnetic resonance
imaging (MRI), projection onto epigraph sets, self-tuning, pa-
rameter selection, multi-coil, multi-acquisition.

I. INTRODUCTION

HE compressed sensing (CS) framework was recently

proposed for accelerated MRI, where compressibility of
MR images are employed to reconstruct from undersampled
acquisitions [1]-[4]. To do this, CS reconstructions are typ-
ically cast as regularized optimization problems that weigh
data consistency against sparsity in some transform domain
(e.g., wavelet domain, total variation (TV)) [1]. The weighing
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between data consistency and sparsity is governed by regu-
larization parameters. High parameter values overemphasize
sparsity at the expense of introducing inconsistency to acquired
data samples, potentially leading to feature losses. Meanwhile,
low parameter values render the reconstructions ineffective
in suppressing residual aliasing and noise in undersampled
acquisitions. Since the optimal regularization parameters are
subject and dataset specific, time-consuming and potentially
erroneous heuristic selection is performed in many studies,
limiting the clinical utility of CS-MRI.

Several unsupervised methods have been proposed to ad-
dress parameter selection in CS-MRI. Empirical methods
including the L-curve criterion (LCC) follow the notion that
the optimal parameter should be selected to attain a favor-
able trade-off between data consistency and regularization
objectives [5]-[7]. Assuming this trade-off is characterized
by an L-shaped curve, LCC selects the parameter on the
point of maximum curvature [8]. LCC has been successfully
demonstrated for parameter selection in several applications
including parallel imaging [9], [10], quantitative susceptibility
mapping [11], and diffusion spectrum imaging [12]. However,
curvature assessment is computationally inefficient and typi-
cally sensitive to numerical perturbation and nonlinearities in
the reconstruction problem [13]-[15].

Alternatively, parameters can be selected based on analytical
estimates of the reconstruction error to optimize the regular-
ization parameters. These methods include generalized cross-
validation (GCV) [16], and methods based on Stein’s unbiased
risk estimator (SURE) [8], [17]. In GCV, an analytical mea-
sure for reconstruction error is estimated that asymptotically
converges to the true error [16]. The GCV measure is derived
as a function of the sampling pattern, regularization function,
and regularization parameter. Parameter estimation via mini-
mization of the GCV measure has been used in a variety of
applications such as functional MRI [18], perfusion imaging
[19], and dynamic MRI [20]. However, the GCV measure can
be expensive to compute and yields biased estimates of the
true error with limited number of data samples [21].

A recent approach instead uses the SURE criterion to
estimate the expected value of the mean-square error (MSE)
of the reconstruction. Given a specific parameter value and
an estimate of the noise variance, Stein’s lemma [17] is
used to compute online estimates of MSE. Subsequently, a
line search over potential parameter values is performed for
selecting the optimal parameter at each iteration. SURE-based
parameter selection has produced promising results in several
sparse recovery applications including CS-MRI [22]-[27].
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Fig. 1. Flowchart of the PESCaT reconstruction. PESCaT employs an alternating projections onto sets approach with three subprojections: data-consistent
calibration projection, sparsity projection, and TV projection. The calibration projection linearly synthesizes unacquired k-space samples via a tensor
interpolating kernel. The sparsity projection jointly projects wavelet coefficients of the multi-coil, multi-acquisition images onto the epigraph set of the
£1-norm function. The TV projection projects image coefficients onto the epigraph set of the TV-norm function. These projections are performed iteratively
until convergence. Lastly, reconstructed images are combined across multiple coils and/or acquisitions.

Unfortunately, parameter searches that need to be performed
in each iteration cause substantial computational burden.

Here we introduce a computationally efficient self-tuning
reconstruction method, named PESCaT (Projection onto Epi-
graph Sets for reconstruction by Calibration over Tensors),
that can handle both single-acquisition and multi-acquisition
datasets. To jointly reconstruct undersampled acquisitions,
PESCaT performs tensor-based interpolation across acquired
data, complemented by sparsity regularization of wavelet
coefficients and TV regularization of image coefficients.

Since wavelet coefficients show varying sparsity across
subbands and decomposition levels, PESCaT uses different
{1 regularization parameters for each subband and level.
Similarly, multi-coil multi-acquisition image coefficients may
show varying spatial gradients, so different TV regularization
parameters are used for each coil and acquisition. Parameters
are efficiently tuned via simple geometric projections onto the
boundary of the convex epigraph sets for the ¢;- and TV-norm
functions. This formulation transforms the selection of many
different regularization parameters for multiple subbands, lev-
els, coils, and acquisitions into the selection of two scaling
factors for the ¢;-norm and TV-norm epigraphs. These factors
can be reliably tuned on training data, yielding consistent per-
formance across sequences, acceleration factors, and subjects.
Comprehensive demonstrations on simulated brain phantoms,
and in vivo balanced steady-state free-precession (bSSFP), T1-
weighted, and angiographic acquisitions indicate that PESCaT
enables nearly an order of magnitude improvement in compu-
tational efficiency compared to SURE-based methods, without
compromising reconstruction quality.

II. THEORY

Our main aim is to introduce a fast joint reconstruction
method that automatically selects the free parameters for
regularization terms based on ¢;- and TV-norms. We consider
the application of this self-tuning reconstruction to single-
coil multi-acquisition, multi-coil single-acquisition, and multi-

coil multi-acquisition MRI datasets. In the following sections,
we introduce the regularized reconstruction problem, and its
solution via projection onto epigraph sets for unsupervised
parameter selection.

A. Reconstruction by calibration over tensors

Compressive sensing (CS) techniques proposed for static
MRI acquisitions typically leverage encoding information pro-
vided either by multiple coils [2], [28], [29] or by multiple
acquisitions [30]-[32] to enable recovery of unacquired data
samples. Yet, simultaneous use of information across coils and
acquisitions can benefit phase-cycled bSSFP [33], [34], multi-
contrast [35]-[37] or parametric imaging [38]-[40]. Here we
consider a joint reconstruction framework for multi-coil, multi-
acquisition datasets, based on a recent method that we have
proposed named ReCaT (Reconstruction by Calibration over
Tensors) [33]. ReCaT rests on the following spatial encoding

model for the signal measured in acquisition n € [1,..., N]
and coil d € [1,...,D]:
Sna(r) = Pu(r)Ca(r)So(r), 1

where r is the spatial location, P, is the acquisition spatial
profile, Cy is the coil sensitivity profile, and Sy is the signal
devoid of coil sensitivity and acquisition profile modulations.
ReCaT seeks to linearly synthesize missing k-space samples
from neighboring acquired samples across all coils and acqui-
sitions. A tensor interpolation kernel is used for this purpose:

N D
Tna = tijnalke) ® zi(ky), 2)

i=1 j=1

where 2,4 is the k-space data from n'" acquisition and d*"
coil, k, is the k-space location, and ® is the convolution
operation. Here tij,nd(kr) accounts for the contribution of
samples from acquisition ¢ and coil j to z,4. Equation (2)
can be compactly expressed as:

z="Tx. 3)
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Fig. 2. The projection onto epigraph sets (PES) approach illustrated in R3.
(a) PES for ¢;-regularization. An input vector w (e.g., vector of wavelet
coefficients of image m) is projected onto the epigraph set of the £1-norm
function (epz[/) This projection results in the output [w*2z*]T, thereby

inherently calculanng the pl‘OJCCthIl of w onto the ¢1-ball in R? (w*). The
size of the ¢1-ball (¢) depicted in green color depends on z*. (b) PES for
TV regularization. Unlike PES-¢1, PES-TV has no closed-form solution, and
is instead implemented via an iterative epigraphical splitting procedure. At
the t" iteration, the input vector m(2¢=1) is projected onto the supporting
hyperplane (orange line), resulting in m(2+1) This intermediate vector is
then projected on the level set to compute m(2:+2). Through successive
iterations the output gradually converges to the desired projection point on
the epigraph set [m*z*]7, thereby inherently calculating the projection of m
onto the TV-ball in R? (m*). The size of the TV-ball depends on z*.
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Fig. 3. Reconstructions of phase-cycled bSSFP acquisitions of the simulated
brain phantom. Simulations assumed a=45°, TR/TE=5/2.5 ms, a fieldmap
of 0 £ 62 Hz (meantstd), N = 6 phase-cycles and R = 6. (a) PESCaT,
ReCaTgsyrg, ReCaTsygpe with early stop, and the fully-sampled reference
images are shown. White boxes display zoomed-in portions of the images.
(b) Mean-squared error between the reconstructed and reference images are
shown. PESCaT yields visibly reduced errors compared to both ReCaTsyrg
and ReCaTsygg with early stop.

B. PESCaT

In the previous study where we proposed ReCaT, a basic
implementation was considered that did not include any reg-

ularization terms to enforce sparsity [33]. Here we introduce
an improved version, PESCaT, that incorporates sparsity and
TV penalties:

D
T,f?{ ZH T-1) xndHQ
7 N D
+ZZM, ZZI|‘P13{F1{W}}I|1
l]-vl le =1d=1
+ ZZ)\TV,nd‘|]:_1{LL'nd}||TV}7 (4)
n=1d=1

where ¥;, is the wavelet operator for subband s and level
I, T is the identity operator, and F~! is the inverse Fourier
operator. A separate {;-regularization parameter, As, s, iS
prescribed for each subband and level of the wavelet coeffi-
cients. Sparsity regularization is performed on the three high-
pass subbands while the low-pass subband is kept intact to
avoid over-smoothing. Meanwhile, a separate TV regulariza-
tion parameter, Ary,,q, iS used for each acquisition and coil.
Because wavelet coefficients are aggregated across the coil and
acquisition dimensions, A, ;s varies across wavelet levels and
subbands but it is fixed across coils or acquisitions.

In this study, we implemented PESCaT in a constrained
optimization formulation equivalent to the Lagrangian formu-
lation in (4):

] =

D
ZH (T-1) CEnd||2
d=

min
Fnd n=1d=1
N D
subject to Z Z |1 { F Hana} }|, < €tris
n=1d=1
5=1,2,3 )
I=1,...,L;
|7 {xnd}HTV < €TVnd
n=1...,N
d=1,...,D

where ¢, ;; are the constraints on the sparsity of the re-
construction, and ery,,q are the constraints on the TV of
the reconstruction. The optimization problem in (5) was
solved via an alternating projections onto sets algorithm. As
outlined in Fig. 1, this algorithm involves three consecutive
projections, namely data-consistent calibration, sparsity, and
TV projections. The calibration projection linearly synthesized
unacquired k-space samples via the tensor interpolating kernel.
To perform this projection while enforcing strict consistency
to acquired data, an iterative least-squares algorithm was em-
ployed [28]. The sparsity projection jointly projected wavelet
coefficients of images onto the epigraph set of the ¢;-norm
function. The TV projection projected image coefficients onto
the epigraph set of the TV-norm function. These projections
were performed iteratively until convergence. At each itera-
tion, MSE between the reconstructed image in the current
iterate and the previous iterate was first measured, and the
percentage change in MSE across consecutive iterations was
then calculated. Convergence was taken to be the iteration
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Fig. 4. Reconstructions of in vivo bSSFP acquisitions of the brain at R=6. Brute-force, PESCaT, ReCaTsyre, ReCaTsyre with early stop, and reference
images are shown in two representative subjects. White boxes display zoomed-in portions of the images. PESCaT achieves significantly improved image
quality compared to ReCaTsyrg with early stop that was matched PESCaT in terms of the total reconstruction time. Furthermore, PESCaT yields similar
image quality to ReCaTsygg and brute-force methods, while also maintaining greater computational efficiency.

at which the percentage change in MSE fell below 20%.
Lastly, reconstructed images were combined across multiple
coils and/or acquisitions. Note that because PESCaT is struc-
tured modularly regarding the calibration, sparsity, and TV
projections, it is trivial to implement variants that only employ
sparsity or TV regularization.

C. Parameter tuning by projection onto epigraph sets

Careful tuning of constraint parameters in (5) is critical for
a successful reconstruction. Selecting too tight constraints can
lead to loss of important image features, whereas selecting
too loose constraints will yield substantial residual noise and
aliasing. When only a few parameters are to be tuned, an
exhaustive search over a relevant range of values followed
by visual inspection is typically exercised. However, even in
a modest dataset with D = 4 coils and N = 4 acquisitions,
and assuming L = 4 wavelet decomposition levels there are
28 distinct parameters involved in (5). Thus, the exhaustive
search approach is impractical.

In this study, we perform self-tuning of the constraint
parameters in (5) via projections onto epigraph sets of the
respective regularization terms. Let &/ € R* be a closed convex
set, ® : R*¥ — R be a convex function (e.g., /;-norm and TV-
norm functions), and & € R” be an input vector (e.g., wavelet
coefficients for ¢;-norm or image coefficients for TV-norm).
The proximal operator of ®2 is:

proxe: (i) = arg mi{{l |G — ul|3 4+ @2 (u), (6)
ue

where u is the auxiliary variable. We prefer to use ®2 here
since it allows us to express the solution as a simple geometric
projection. Specifically, the problem in (6) can be stated in
vector form by mapping onto RF+1:

(A
0 D (u)
Here we propose to implement the proximal operator in (6)

by 1dent1fy1ng the closest vector [u* ®(u*)]” € R¥! to

[1} O] . This solution can be shown to be equivalent to the

2
min
uel

(7

2

orthogonal projection of the vector [11 0] T onto the epigraph
set of ® (epigp) defined as:

epio = {[u Z]T sz > ®(u)l, ®)

where z denotes an upper bound for the function ®(u). The
projection onto epig is the closest solution to 4 that lies on
the boundary of the epigraph set. Since the epigraph set of
a convex function is also convex, this projection will yield
the global optimum solution. Note that projections onto the
epigraph set will yield the solution of the proximal operator
only if the search space of the proximal operator is a convex
set U € RF [41]. In practice, a family of solutions can be
obtained by introducing a scaling parameter to alter the size
of the epigraph set:

12 > Po®(u)}. &)

Here, 53 serves to control the allowed degree of deviation
of u* from . Note that both z* and u* are computed via
an orthogonal projection of the input onto epif. Since the
scales of z* and u* vary proportionately to the scale of @, B¢
can be described in absolute terms. B¢ > 1 scales down the
epigraph set, resulting in a solution v* that deviates further
from 4. Meanwhile, 0 < B¢ < 1 scales up epig, resulting in
a solution u* that is closer to @, where u* = @ as B¢ — 0. To
obtain more conservative solutions, here we used 0 < B¢ < 1
for both sparsity and TV projections. The resulting projection
point determines both the size of the ®-ball in R* (i.e. ¢;-
ball or TV-ball, see Fig. 2) and the actual projection onto the
ball. Hence, the proximal operator in (6) enables assessing the
optimal constraint parameters in (5) using the input vector @
as explained below.

1) Self-tuning sparsity projection: The sparsity projections
were implemented using projections onto the epigraph set of
the ¢1-norm function, applied on wavelet coefficients. The
image coefficients m,,g = F~1{x,q} are obtained by inverse
Fourier transformation of k-space data, x4, for acquisition n
and coil d. The wavelet coefficients for m, are then given
by wisna = ¥is{m,q} at subband s and level [, and wy,

epier = {[u Z]T
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Fig. 5. Reconstructions of in vivo T1-weighted acquisitions of the brain at R=4. Brute-force, PESCaT, ReCaTsyre, ReCaTsyre with early stop, and reference
images are shown in two representative subjects. White boxes display zoomed-in portions of the images. PESCaT achieves significantly improved image
quality compared to ReCaTgsyrg with early stop that was matched PESCaT in terms of the total reconstruction time. Meanwhile, PESCaT yields similar image

quality to ReCaTsyre and brute-force methods.
denotes the aggregate vector pooling w;s nq across coils and
acquisitions. Assuming w = wjs is the input vector, the
proximal formulation in (6) becomes:

proz (i) = argmin || — ul  + [[ul3. (10)
The solution to (10) is then obtained by projecting [w;s O]T
onto the scaled epigraph set (see Fig. 2a):

. T
epi, = {[u z]" €R"' iz > By lulli}, (A1)

where (3, denotes the epigraph scaling factor for the ¢;-norm.
As demonstrated in Fig. 2a, the closest orthogonal projection
of [wls O]T onto the epigraph set lies on the boundary of
epig;. For the simple case of R? (k = 1), [ws O]T is
Bey |wis|
Bz +1 -
It can be shown that for arbitrary k, the z-intercept is:

projected onto the z = [, |u/ line, yielding z;, =

Bellwisly

= ———. 12

ls /Bglk _|_ 1 ( )

The value of the z-intercept also determines the size of the

respective £1-ball, By, 1o = {u € R* : [|u||1 < €, 15}, as:
t

€0 ls = 2 (13)

' Be,

Therefore, w;, can be computed by finding the projection of

wy, onto the ¢1-ball of size €, ;5. To efficiently implement
this projection, we used a soft-thresholding operation [42]:

wjy, = e 4wis max(jws| — 0;5,0), (14)

where magnitudes of wavelet coefficients are subjected to a
threshold of 6, and phases of coefficients are individually
restored via e’“*is. We propose to determine the value of
0;s given €y, ;5 using an efficient ranking algorithm [43].
The proposed algorithm first sorts the absolute values of the
wavelet coefficients w;s ,q to attain a rank-ordered sequence
{u;}*_, where py > po > ... > pg. This sequence is then

analyzed to find the threshold that approximately yields a

resultant £1-norm of value e, ;, in the thresholded coefficients:
1 J

pis =max{j € {1,2,...,k}: pj — E(Zur — €g,,15) > 0},

r=1
Pls

1
915 = 7(2 Hn — 651,l3)~
Pls el

Note that the determined threshold directly translates to Ay, ;s
in (4) by [44]:

5)

Aoy s = 20;s. (16)

Projections were separately performed for each subband s at
each wavelet decomposition level [ to determine the respective
wj,, and €y, ;5. Since wavelet coefficients were pooled across
coils and acquisitions, parameter selection is performed jointly
across coils and acquisitions. Since the only free parameter
in the proposed method is the epigraph scaling constant 3y, ,
the selection of 3 x L parameters in (5) are transformed into
the selection of a single parameter. Here, the optimal 3,, was
empirically determined in a group of training subjects and then
used to obtain reconstructions in held-out test subjects.

2) Self-tuning TV projection: The TV projections were
implemented using projections onto the epigraph set of the
TV-norm function, applied on image coefficients. Letting
m = myq be the input vector, the proximal formulation in
(6) becomes:

proxry2 () = arg m&n||m — |3+ [|ul[Fy - (17)
The solution to (17) is then obtained by projecting [myq 0] T
onto the scaled epigraph set (see Fig. 2b):

. T
epity: = {[u z] eR*1: 2> Bryllullrv}, (18)

where Opy denotes the epigraph scaling factor for the TV-
norm. Unlike the projection onto the ¢;-norm epigraph, pro-
jection onto generic epigraph sets (including TV-norm epi-
graph) does not have a closed-form solution. As demonstrated
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Fig. 6. Reconstructions of in vivo ToF angiography acquisitions of the brain at R=4. Maximum-intensity projection (MIP) views of brute-force, PESCaT,
ReCaTysyrg, ReCaTgyre with early stop, and reference brain volumes are shown in two representative subjects. White boxes display zoomed-in portions of
the MIPs. PESCaT yields superior depiction of vasculature compared to both ReCaTsygr and ReCaTsygg with early stop. It also maintains similar image

quality to brute-force reconstructions.

in Fig. 2b, PESCaT uses an iterative epigraphical splitting
method to perform the projection efficiently [45]. In the
initial step of this approach, complex-valued m(®) = m, 4
is projected onto the supporting hyperplane of epiry at
[Mnd  Brv||mndllrv]” resulting in m1). The supporting
hyperplane is determined by evaluating the gradient of the
epigraph surface. In the following step, m(!) is projected
onto the level set, Ly = {[u Z]T : z < 0}, by forcing
the last element of m(") to zero. This projection yields the
next estimate m(?. These two projections are iterated. Note
that all steps of the splitting procedure are performed in
complex domain, thereby, regularizing magnitude and phase
channels simultaneously. Previous studies have shown that the
second derivative of distance between the input vector and the
projections on the supporting hyperplanes (||1m,,q—m*1||5)
is negative as the projections approach to the true projection
solution and is positive as the projections deviate from it [41].
Thus, in case of a sign change in the second derivative a
refinement step is performed, where m(%_) is projected onto
the supporting hyperplane at M This heuristic
approach has been shown to converge to the global solution for
TV projections [45]. Note that the projection uniquely specifies
the z-intercept, z, ;. Hence, the size of the corresponding
TV-ball, BTV,nd = {'LL € RF . ||u||TV < GTV,nd}a can be
calculated as:

Znd
Brv

€TV,nd = (19)

Note that it is nontrivial to explicitly express Ary,nq in (4)
in terms of ery,,q in (5). Yet, constraining ery,,q implicitly
enforces a set of regularization parameters Ay, 4.
Projections were separately performed for each acquisition
n and coil d to determine the respective m. ;, and €Ty nq.
Since the only free parameter is the epigraph scaling constant
Brv, the selection of IV x D parameters in (5) is transformed
into the selection of a single parameter. Here, the optimal 57y
was empirically determined in a group of training subjects and
then used to obtain reconstructions in held-out test subjects.

TABLE I
PEAK SIGNAL-TO-NOISE RATIO (PSNR) FOR SIMULATED

PHANTOM

R=2 R=4 R=6
Brute-force  30.29+0.24  28.16+0.27  27.47+0.22
PESCaT 29.56+0.34  26.68+0.24  26.251+0.19
ReCaTsypep  29.444+0.21 25524023  24.7240.16
Early stop 27.67+0.26  24.96+0.23  23.66+0.21
PSNR was measured between the reconstructed im-

age and a fully-sampled reference image. Measurements
were obtained for brute-force, PESCaT, ReCaTsygr and
ReCaTgygre with early stop methods. Results are reported
as mean=std across five cross-sections.

All reconstruction algorithms were executed in MATLAB
(MathWorks, MA). The implementations used libraries from
the SPIRIT toolbox [28]. The PESCaT algorithm is available
for general use at http://github.com/icon-lab/mrirecon.

III. METHODS
A. Alternative reconstructions

To demonstrate the performance of PESCaT, we compared
it against several alternative reconstructions that aim to select
regularization parameters.

a) Self-tuning regularized ReCaT (ReCaTsygg): Our pre-
viously proposed multi-coil multi-acquisition method (ReCaT)
did not include any regularization parameters [33]. We have
implemented a variant of ReCaT incorporating sparsity and
TV regularization terms where the regularization parameters
are automatically selected using the data. This reconstruction
method iteratively synthesizes unacquired data as weighted
combinations of collected data across coils and/or acquisitions.
It uses sparsity and TV projections to enforce image sparsity.
At each iteration, the regularization parameter for the sparsity
term is selected based on the SURE criterion. The regular-
ization parameter for the TV term is selected based on the
local standard deviation of the reconstructed image from the
previous iteration.

An alternating projections onto sets algorithm was used in
ReCaTsygg to solve the reconstruction problem cast in (4).
ReCaTsygg used a single sparsity regularization parameter for
all subbands and levels of wavelet coefficients. The sparsity
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Fig. 7. Convergence behavior of self-tuning reconstructions was assessed on in vivo (a) bSSFP, (b) T1-weighted, and (c¢) ToF acquisitions of the brain.
Mean-squared error (MSE) was calculated between the image reconstructed at each iteration and the fully-sampled reference image. The progression of MSE
across iterations is shown for a representative cross-section reconstructed using PESCaT (solid lines) and ReCaTsygg (dashed lines) at R=2 (left), 4 (middle),
and 6 (right). Reconstructions were stopped once convergence criteria were reached (see Methods). The iterations at which PESCaT converged are indicated
(dashed green lines). In all cases, PESCaT converges in a significantly smaller number of iterations, and it converges to a solution with lower MSE than

ReCaTsyre.

regularization parameter was determined via a line search
over the range [2 x 107°,2 x 10~!]. The TV regularization
parameter was taken as one-third of the median local standard
deviation [46]. All remaining reconstruction parameters were
kept identical to PESCaT.

b) ReCaTsygg with early stop: The projections per-
formed in each iteration of PESCaT do not involve any line
searches, and therefore they are more efficient compared to
ReCaTsyre. To enable a fair comparison, we implemented
a variant of ReCaTgygr that was stopped once the total
reconstruction time reached that of PESCaT. All reconstruction
parameters except the total number of iterations were kept
identical to ReCaTsyrE.

c¢) ReCaT with empirically-tuned parameters
(ReCaTfyeq): To demonstrate the effects of prescribing
separate regularization parameters for different
subbands/levels or coils/acquisitions in PESCaT, we
implemented a variant of ReCaT with a single sparsity
parameter across all subbands/levels and a single TV
parameter across all coils/acquisitions. Similar to PESCaT,
this reconstruction method iteratively synthesizes unacquired
data as weighted combinations of collected data across coils
and/or acquisitions. ReCaTjy¢ was tuned using held-out data.
The sparsity and TV parameters were independently varied
across a broad range [1075,0.5]. Separate reconstructions
were obtained for each parameter set, and reconstruction
quality was taken as peak signal-to-noise ratio (PSNR)
between the reconstructed image and the fully-sampled
reference image. The parameter set that yielded the maximum
PSNR was selected. Sparsity and TV parameters were fixed
across iterations. All remaining reconstruction parameters
were kept identical to PESCaT.

d) Brute-force reconstruction: To evaluate the success
of PESCaT in selecting the optimal parameters, a brute-force
reconstruction was implemented to solve the problem in (4).
The brute-force method used a constant set of regularization

parameters across iterations. The sparsity and TV parameters
were independently varied across the range [10~°,0.5]. Sep-
arate reconstructions were obtained for each parameter set,
and reconstruction quality was taken as PSNR between the
reconstructed image and the fully-sampled reference image.
The parameter set that yielded the maximum PSNR was
selected. All remaining reconstruction parameters were kept
identical to PESCaT.
e) ESPIRIT with PES parameter tuning (PESSPIRIT):

To compare the performance of PESCaT against conventional
parallel imaging, we implemented a variant of ESPIRIT [47]
that included sparsity and TV regularization terms. Similar
to ESPIRIT, this method iteratively reconstructs images based
on coil sensitivities estimated from central calibration data.
In each iteration, the sparsity and TV regularization parame-
ters were tuned using PES. Two other variants, PESSPIRIiT
with only the sparsity regularization (PESSPIRiT,,) and
PESSPIRIT with only the TV regularization (PESSPIRiT7y)
were also implemented. In all variants, the stopping criterion
was identical to PESCaT to enable a fair comparison.

B. Simulations

Simulations were performed using a realistic brain phantom
at 0.5 mm isotropic resolution (http://www.bic.mni.mcgill.ca/
brainweb). Phase-cycled bSSFP signals were assumed with
T1/T2: 3000/1000 ms for cerebrospinal fluid, 1200/250 ms
for blood, 1000/80 ms for white matter, 1300/110 ms for gray
matter, 1400/30 ms for muscle, and 370/130 ms for fat [30].
Single-coil three-dimensional (3D) acquisitions were assumed
with TR/TE=5.0/2.5 ms, flip angle=45°, and phase-cycling
increments A¢=2ww. We used a simulated field inho-
mogeneity distribution corresponding to an off-resonance shift
with zero mean and 62 Hz standard deviation. A bivariate
Gaussian noise was added to simulated acquisitions to attain
signal-to-noise ratio (SNR)=20, where SNR was taken as
the ratio of the mean power in the phantom image to the



TABLE 11
PSNR AND NRMSE FOR IN VIVO BSSFP DATASET

R=2 R=4 R=6
PSNR NRMSE x 103 PSNR NRMSE x 103 PSNR NRMSE x 103
Brute-force 4431£0.72  731£023 40.21£0.78  11.18£045 37.62X£0.61 16.79£0.56
PESCaT 43.93£0.65 8.16£0.27 39.64£0.61 11.9310.43 36.72£0.29 18.36X0.34
ReCaTfyeq 44.11+£0.62  7.57+0.33 39.08+0.47  12.59+0.48 36.51+£0.48  18.454+0.95
ReCaTsyrr 42.2040.78  10.0940.59 37.89+0.76  16.1940.79 35.154£0.59  20.4440.82
Early stop 41.8340.66  10.37+0.52 36.82+0.63  18.18+0.77 34.014£0.32  22.0840.31
PESSPIRIT 43374044  8.8040.35 38.3940.59  14.37+0.84 35.06+0.35  20.5610.71
PESSPIRIiT,,  41.11+0.62  10.8440.62 35.96+0.47  19.36+0.86 33.154£0.55  23.054+1.40
PESSPIRiTyy  42.4140.67  9.6140.59 35.57+£0.68  19.88+1.35 32.2440.61  24.284+1.69

PSNR and NRMSE were measured between the reconstructed image and a fully-sampled reference image.
Measurements were obtained for brute-force, PESCaT, ReCaTsyrge, ReCaTsyre with early stop, ReCaTfyeq, and
variants of PESSPIRIT methods. Results are averaged across three subjects, and reported as mean=+std across five

cross-sections.

noise variance. Data were undersampled by a factor (R) of
2, 4, and 6 in the two phase-encode directions using disjoint,
variable density random undersampling [4] and normalized so
that zero-filled density compensated k-space data had unity
norm [1]. Reconstruction quality was taken as PSNR between
reconstructions and a fully-sampled reference. To prevent bias,
the 98! percentile of image intensities were adjusted to [0, 1].
PSNR values were then averaged across five central axial
cross-sections.

To examine the effect of noise on optimal regularization
parameters, we performed experiments on the simulated brain
phantom where the noise level was systematically varied.
The simulations output single-coil single-acquisition brain
images with SNR varying in the range [5,25]. Data were
undersampled by R=2, 4, and 6 in the two phase-encode
directions using disjoint, variable density random undersam-
pling. Multiple separate reconstructions were obtained for
each undersampled dataset via ReCaTpy4, while /1 and TV
regularization parameters were independently varied in the
range [0.001,0.1]. At each SNR level, fully-sampled data
were used as reference. PSNR was measured between the
reconstructions and the reference. The optimal regularization
parameters were selected according to PSNR.

To examine the reliability of the epigraph scaling param-
eters against noise, reconstructions of the brain phantom
were obtained at three separate levels of SNR = 10, 18, 25.
Meanwhile, 5y, was varied in the range [0.05,0.6] and Srv
was varied in the range [0.1,1]. To examine the reliability of
the epigraph scaling parameters against variations in the level
of detail and spatial resolution, we performed experiments
on a simulated numerical phantom. A circular phantom of
radius 125 voxels (for a 256256 field of view) was designed
with the background resembling muscle tissue and vertical
bright bars of width 12 and height [190, 220, 238, 238,
220, 190] voxels resembling blood vessels (Supp. Fig. 1)'.
Phase-cycled bSSFP signals were assumed with T1/T2: 870/47
ms for muscle, and 1273/259 ms for blood. Three dimen-
sional acquisitions were assumed with TR/TE=4.6/2.3 ms, flip
angle=60°, and phase-cycling increments Agb:?ww. A
simulated field inhomogeneity distribution corresponding to
an off-resonance shift with zero mean and 62 Hz standard
deviation was used. Level of detail was varied from low to

Isupplementary materials are available in the supplementary files /multi-
media tab.

high by incrementally placing [1, 3, 6] vertical bars in the
phantom. Spatial resolution was varied from low to high by
low-pass filtering k-space data to select circular regions of
radius [20, 55, 125] voxels. Reconstructions were obtained
while 8, and Sry were varied in the range [0.05, 0.5].

C. In vivo experiments

Experiments were performed to acquire 3D multi-coil
multi-acquisition phase-cycled bSSFP, and multi-coil single-
acquisition T1-weighted and time-of-flight (ToF) angiography
data in the brain. Data were collected on a 3T Siemens Mag-
netom scanner (maximum gradient strength of 45 mT/m and
slew rate of 200 T/m/s). bSSFP and ToF data were collected
using a 12-channel receive-only head coil that was hardware
compressed to 4 channels. T1-weighted data were collected
using a 12-channel receive-only head coil. Separate bSSFP
datasets were also collected using a 32-channel head coil. Bal-
anced SSFP data were acquired using a bSSFP sequence with
the following parameters: flip angle=30°, TR/TE=8.08/4.04
ms, field-of-view (FOV)=218 mm x 218 mm, matrix size
of 256 x 256 x 96, resolution of 0.9 mm x 0.9 mm
x 0.8 mm, right/left readout direction, and N=8 separate
acquisitions with phase-cycling values in the range [0,2m)
in equispaced intervals. Total acquisition time for the bSSFP
sequence was 20:56. T1-weighted data were acquired using
an MP-RAGE sequence with the parameters: flip angle=9°,
TR/TE=2300/2.98 ms, TI=900 ms, FOV= 256 mm x 240 mm,
matrix size of 256 x 240 x 160, resolution of 1.0 mm Xx
1.0 mm x 1.2 mm, and superior/inferior readout direction.
Total acquisition time for the MP-RAGE sequence was 9:14.
ToF angiograms were acquired using a multiple overlapping
thin-slab acquisition (MOTSA) sequence with parameters: flip
angle=18°, TR/TE=38/3.19 ms, FOV=204 mm x 204 mm,
matrix size of 256 x 256 x 75, isotropic resolution of 0.8 mm,
and anterior/posterior readout direction. Total acquisition time
for the MOTSA sequence was 14:16. The imaging protocols
were approved by the local ethics committee, and all six
participants gave written informed consent.

Phase-cycled bSSFP acquisitions with 4 channels were
retrospectively undersampled at R=2, 4, and 6. Following
phase-cycles were selected: A¢p = 27r[0:1:7]]\\,’_1] for N=2 and 4,
and [0, 3, 3% 7, 3% Tx] for N=6. For this bSSFP dataset, N=R
was used. T1-weighted and ToF acquisitions were retrospec-
tively undersampled at R=2 and 4 (note that in these cases
N=1). Undersampling was performed across the two phase



TABLE III
PSNR AND NRMSE FOR IN VIVO T1-WEIGHTED DATASET
R=2 R=4
PSNR NRMSE x 103 PSNR NRMSE x 103
Brute-force 36.75£0.55 18.25£0.89 32.15£041 23.75%0.85
PESCaT 35.62£0.95 19.86£0.99 31.44£1.09 27.75E1.61
ReCaTjyeq 35.2740.67  20.0240.85 30.894+0.63  29.59+1.31
ReCaTsyrr 35.024+0.93  20.64+0.94 30.674£0.93  30.1041.57
Early stop 34.644+1.03  21.4740.95 30.03+1.06  30.8141.65
PESSPIRIT 35.2140.74  20.14+£1.10 29.9240.63  31.66+1.60
PESSPIRIiT,,  31.75+£0.66  27.37+1.42 27.3940.80 34.3742.72
PESSPIRiTyy  34.93+£0.69  21.04+1.03 29.4840.60  31.83+1.61

PSNR and NRMSE were measured between the reconstructed image and a fully-
sampled reference image. Measurements were obtained for brute-force, PESCaT,
ReCaTsyre, ReCaTsyre with early stop, ReCaTjy,q, and variants of PESSPIRIT
methods. Results are averaged across three subjects, and reported as mean-=std

across five cross-sections.

encode directions: superior/inferior and anterior/posterior for
bSSFP, right/left and anterior/posterior for T1-weighted, supe-
rior/inferior and right/left for ToF. Data were normalized so
that zero-filled density compensated k-space data had unity
norm. Entire volumes were reconstructed, five axial cross-
sections equispaced across the entire brain were selected for
quantitative assessment. PSNR and normalized root mean-
squared error (NRMSE) measurements were averaged across
cross-sections.

To investigate the convergence behavior of PESCaT, we
studied the evolution of the three cost terms in (4) separately
(Supp. Fig. 2). Normalized cost terms associated with calibra-
tion consistency, sparsity, and TV terms at the end of each
iteration were plotted across iterations. In all datasets, all cost
terms diminish smoothly.

To optimize epigraph scaling constants for ¢;- and TV-
norm functions, PESCaT was performed on data acquired
from three subjects reserved for this purpose. Volumetric
reconstructions were performed at R=2, 4, and 6 for bSSFP
datasets, and R=2 and 4 for T1-weighted and ToF datasets.
Separate reconstructions were obtained while 3,, was varied in
the range [0.1, 1], and 57y was varied in the range [0.05, 0.6].
PSNR was measured between the reconstructed and fully-
sampled reference images (Supp. Figs. 3, 4). Consistently
across subjects and different types of datasets, PSNR values
within 95% of the optimum value were maintained in the range
Be, = [0.1,0.3], and Sry = [0.2,0.4]. Near-optimal PSNR
values were attained around Sy, = 0.2 and Bry = 0.3. Thus,
these scaling constants were prescribed for reconstructions
thereafter.

To demonstrate the reconstruction performance of PESCaT
at high acceleration rates, phase-cycled bSSFP acquisitions
with 32 channels were analyzed. This bSSFP dataset was
retrospectively undersampled at R= 8, 10 (where N=8). Entire
volumes were reconstructed, and PSNR and NRMSE measure-
ments were averaged across five axial cross-sections.

IV. RESULTS
A. Simulations

MRI data may show differential noise and structural char-
acteristics for separate coils and acquisitions, or for separate
wavelet subbands and levels. In turn, the optimal regularization
parameters can vary across each of these dimensions. To test
this prediction, we performed experiments on the simulated

brain phantom, where the noise level was systematically varied
and ReCaTj,,, reconstructions were performed. For both ¢,
and TV regularization, the optimal regularization parameters
show a clear increasing trend as SNR is lowered (Supp. Fig.
5). These results suggest that prescribing a fixed parameter
can cause performance loss when a good compromise cannot
be achieved across subbands/levels or coils/acquisitions. It can
also render the reconstruction more susceptible to deviations
from the optimal value of the regularization parameter.

In contrast, PESCaT uses only two global parameters to
control the overall sparsity of the solutions in wavelet domain
(61,) and TV domain (8ry ). Given these scaling parameters,
regularization parameters for individual subbands/levels and
coils/acquisitions are determined adaptively in a data-driven
manner. To examine the reliability of the scaling parameters
against noise, reconstructions were obtained at varying SNR
levels. The PSNR curves as a function of 8y, and 87y demon-
strate substantial flatness, yielding near-optimal performance
across the entire range of values examined (Supp. Fig. 6).
To further examine the reliability of the scaling parameters
against variations in the level of detail and spatial resolution,
reconstructions were obtained at low, medium and high levels
of detail and resolution. Supp. Fig. 7 displays PSNR across
Be, and Supp. Fig. 8 displays PSNR across Sry values.
Again, PSNR curves as a function of 5,, and Sy demonstrate
substantial flatness, yielding near-optimal performance across
the entire range of values examined.

Following these basic demonstrations, PESCaT was per-
formed on bSSFP acquisitions of a simulated brain phantom.
Representative reconstructions and error maps for PESCaT and
ReCaTgsygg with R=6 are shown in Fig. 3. PESCaT yields
reduced error across the FOV compared to ReCaTsygg. This
improvement with PESCaT becomes further noticeable when
ReCaTgygg is stopped early to match its reconstruction time
to PESCaT. Quantitative assessments of image quality at R=2,
4, and 6 are listed in Table I. Among all techniques tested,
PESCaT achieves the most similar performance to the time-
consuming brute-force reconstruction. On average, PESCaT
improves PSNR by 0.87 £ 0.74 dB over ReCaTsygg and by
1.87 £ 0.73 dB over ReCaTgygg with early stop (mean=std.
across five cross-sections, average of R=2, 4, 6). Note that
the proposed method attains near-optimal performance while
enabling improved computational efficiency. The average re-
construction time per slice is 2745 s for ReCaTsygge and only



TABLE IV
PSNR AND NRMSE FOR IN VIVO TOF DATASET
R=2 R=4
PSNR NRMSE x 103 PSNR NRMSE x 103
Brute-force 36.57+1.61 18.61£+0.71 33.08+1.55 22.75+0.97
PESCaT 36.32+1.14 18.79+0.57 31.86t1.21 27.55+1.03
ReCaTfyq 35.864+0.60 19.4140.86 30.5140.60 30.17£1.60
ReCaTsyre 35.554+1.25  19.974+0.94 31.3441.13 28.40+1.57
Early stop 3546+1.12  20.1440.95 27.6941.19 28.714+1.65
PESSPIRIT 35.864+0.57  19.4240.90 30.8340.47 29.724+1.41
PESSPIRIT,, 32.004+0.55 24.89+1.46 27.2240.58 37.844+2.71
PESSPIRiT7y  35.66+0.53  19.72+0.84 30.4140.64 30.42+1.89

PSNR and NRMSE were measured between the reconstructed image and a fully-
sampled reference image. Measurements were obtained for brute-force, PESCaT,
ReCaTsyre, ReCaTgsyge with early stop, ReCaTfy.q, and variants of PESSPIRIT
methods. Results are averaged across three subjects, and reported as mean-std

across five cross-sections.
7+4 s for PESCaT, resulting in a 4-fold gain in efficiency for
the phantom dataset.

B. In vivo experiments

We first examined the evolution of the cost terms during
PESCaT reconstruction of in vivo bSSFP and T1-weighted
datasets (Supp. Figs. 9, 10). Both ¢; and TV cost terms
decrease towards later iterations indicating that the images
better conform to a compressible representation.

Next, PESCaT was demonstrated for in vivo bSSFP, T1-
weighted, and ToF imaging of the brain. Representative re-
constructions with R=6 for bSSFP and R=4 for T1-weighted
and ToF acquisitions are displayed in Figs. 4, 5, and 6.
Representative reconstructions of individual phase cycles in
the bSSFP dataset, and of cross-sections in the ToF dataset
are shown in Supp. Fig. 11. Overall, PESCaT and ReCaTsyre
reconstructions perform similar to the brute-force optimized
reconstructions. Yet, PESCaT yields slightly lower levels of
residual aliasing in comparison to ReCaTsygg, and this differ-
ence is particularly noticeable for visualization of small vessels
in ToF images (Fig. 6). The improvement in reconstruction
quality with PESCaT is more prominent when ReCaTsygg is
stopped early to match its reconstruction time to PESCaT.

Quantitative assessments of the in vivo reconstructions are
listed in Tables II, III, and IV. For all datasets and R, PESCaT
yields the closest performance to the brute-force reconstruction
among alternative self-tuning methods. For bSSFP datasets,
PESCaT improves PSNR by 1.23 +0.29 dB over ReCaTsygre
and by 2.55 £ 0.51 dB over ReCaTsygg with early stop
(mean=std. across three subjects, average of R=2, 4, 6). For
T1-weighted datasets, PESCaT improves PSNR by 0.71+£0.25
dB over ReCaTsyge and by 1.21 4+ 0.43 dB over ReCaTsygre
with early stop (meanztstd. across three subjects, average
of R=2, 4). For ToF datasets, PESCaT improves PSNR by
0.72 £ 0.46 dB over ReCaTsyge and by 0.94 £ 0.51 dB
over ReCaTgsygre with early stop (meandstd. across three
subjects, average of R=2, 4). Compared to empirically-tuned
ReCaTfy.q, PESCaT improves PSNR by 0.20 & 0.37 dB for
bSSFP datasets, by 0.45 & 0.14 dB for T1-weighted datasets,
and by 0.91£0.63 dB for ToF datasets (mean=std. across three
subjects, average of R=2, 4, 6 for bSSFP, average of R=2,
4 for T1-weighted and ToF datasets. Because both methods
were allowed to optimize parameters in training subjects,
these results suggest that selecting different regularization pa-

rameters for each coil/acquisition/subband/level improves re-
construction performance. Compared to PESSPIRIT, PESCaT
improves PSNR by 1.16 + 0.55 dB for bSSFP datasets, by
0.97 £ 0.78 dB for T1-weighted datasets, and by 0.76 + 0.40
dB for ToF datasets (mean=std. across three subjects, average
of R=2, 4, 6 for bSSFP, average of R=2, 4 for T1-weighted
and ToF datasets). Performance enhancement is even more
prominent compared to PESSPIRIT variants that only include
sparsity or TV regularization.

To assess the computational efficiency of self-tuning meth-
ods, representative reconstructions were performed for a single
cross-section of in vivo bSSFP, T1-weighted, and ToF acqui-
sitions. The true MSE between the reconstructed and fully-
sampled reference images were recorded across iterations of
PESCaT and ReCaTgygre. MSE curves across iterations are
displayed in Fig. 7. Compared to ReCaTgsygg, the proposed
method converges to a lower MSE value for all R and datasets.
Furthermore, PESCaT reduces the number of iterations by
43.3% for bSSFP (average over R=2, 4, 6), 74.5% for T1-
weighted (average over R=2, 4) and 53.2% for ToF (average
over R=2, 4) datasets. Note that each iteration of PESCaT
performs more efficient geometric projections without explicit
parameter searches. The reconstruction times for PESCaT and
alternative methods are listed in Supp. Table I. On average,
the reconstruction time of ReCaTgygrr was 1641 £ 45 s for
bSSFP, 1799 + 66 s for T1-weighted, and 565 £ 58 s for
ToF datasets (meanzstd. across five cross-sections, average
over R=2, 4 for T1-weighted and ToF imaging; R=2, 4, 6
for bSSFP imaging). In contrast, the reconstruction time of
PESCaT was merely 164 + 25 s for bSSFP, 196 + 44 s for
T1-weighted, and 159 % 32 s for ToF datasets. These results
suggest that PESCaT offers up to 10-fold gain in efficiency
compared to the alternative self-tuning method ReCaTgygg.
While PESSPIRIT yields similar reconstruction times and
ReCaTjy,, slightly reduces reconstruction times compared to
PESCaT, both methods yield inferior reconstruction quality.

Lastly, reconstruction performance of PESCaT was demon-
strated at higher acceleration rates using the 32-channel
bSSFP datasets (Supp. Fig. 12 and Supp. Table II). The
proposed method improves PSNR by 0.14 + 0.04 compared
to ReCaTfyeq, by 1.59 £ 0.45 compared to ReCaTsygg, by
3.77 £ 0.61 compared to ReCaTgsyge with early stop, and by
4.08+0.55 over PESSPIRIT (mean-tstd. across three subjects,
average of R=8, 10). These results help demonstrate the utility



of PESCaT in enabling higher acceleration factors when using
modern coil arrays.

V. DISCUSSION

In this study, we have proposed a new self-tuning method for
CS reconstruction of single-coil multi-acquisition, multi-coil
single-acquisition, and multi-coil multi-acquisition datasets.
The proposed method performs sparsity projections across
coils and acquisitions to penalize the ¢;-norm of wavelet coef-
ficients, and TV projections to penalize the finite-differences
gradients of image coefficients. Separate sparsity regulariza-
tion parameters are selected at each wavelet subband and level,
and separate TV regularization parameters are selected at each
coil and acquisition. Efficient projections onto the boundary of
the epigraph sets of the ¢1-norm and TV-norm functions are
used to simultaneously calculate the projections themselves
and automatically determine the relevant regularization pa-
rameters. PESCaT does not have any constraints regarding
the number of acquisitions or coils. Therefore, it can be
readily applied to both single-acquisition and multi-acquisition
datasets regardless of the number of coils available. PESCaT
also offers flexibility regarding the inclusion of regularization
terms. Because the algorithm has a modular structure with
respect to individual calibration, sparsity, and TV projections,
it is possible to omit either TV or sparsity regularization. The
proposed method will still work towards a solution at the
intersection of the remaining projection sets.

In a recent study, we proposed a reconstruction for multi-
coil multi-acquisition bSSFP imaging, named ReCaT [46].
Here, we have implemented a self-tuning version of Re-
CaT (ReCaTsygg). Similar to PESCaT, ReCaTgygg uses spar-
sity projections implemented via soft-thresholding and TV
projections implemented via iterative clipping. However, in
ReCaTsyge, the sparsity regularization parameter was selected
via a SURE-based method to minimize the expected recon-
struction error. TV regularization parameter was selected in
a data-driven manner based on the local standard deviations
within the reconstructed image. Since parameter selection in
ReCaTsyge involves line searches over a relevant range of
parameters, it can be computationally expensive. In contrast,
PESCaT leverages highly efficient geometric projections onto
epigraph sets to simultaneously select the optimal parameters
and calculate the projections. Hence, PESCaT enables signif-
icant savings in reconstruction time compared to self-tuning
methods based on line searches. Meanwhile, the main advan-
tage of PESCaT over an empirically-tuned reconstruction that
optimizes regularization parameters on training data is that it
allows for independent selection of regularization parameters
for each coil/acquisition/subband/level. The superior recon-
struction quality of PESCaT compared to ReCaTjy,q confirms
this prediction quantitatively.

The proposed method includes two epigraph scaling con-
stants 3y, and Sy as free parameters. Here we have em-
pirically demonstrated that the optimal scaling constants are
highly consistent across individual subjects, across different
noise levels and across multiple imaging contrasts of the
same anatomy. These observations are also complemented
by prior work that suggests that the solutions of epigraph

sets projections are robust against deviations from optimal
scaling constants [45], [48]. It remains to be demonstrated
whether the scaling constants are also similar across different
anatomies. Still, we expect that PESCaT shows improved
robustness against variability in datasets compared to the
empirically-tuned ReCaTjy4. The optimal regularization pa-
rameters for ReCaTfg.g showed relatively high variability
across the datasets examined in this study (not shown). Thus,
ReCaTyy.y might require more careful tuning of regulariza-
tion parameters, resulting in relatively higher computational
overhead.

Further performance improvements might be attained by ad-
dressing some limitations of the proposed method. For multi-
acquisition datasets, significant motion among acquisitions can
reduce reconstruction quality. A motion-correction projection
can be incorporated into the PESCaT algorithm to mitigate
artifacts due to the residual motion. Second, the proposed
method uses a fully-sampled central region in k-space to
estimate the tensor interpolation kernel. In applications where
the acquisition of calibration data is impractical such as spec-
troscopic and dynamic imaging, calibrationless approaches
could be incorporated for improved performance [49], [50].
Third, although the epigraph scaling constants 3, and Srv
were optimized over a held-out dataset, it might be possible to
automatically select them using parameter selection via SURE
or GCV. This remains an important future research direction
toward fully-automated reconstructions.

Here, the alternating projections onto sets algorithm was
used to find a solution at the intersection point of the sets
corresponding to calibration, sparsity, and TV projections.
Rapid convergence was observed in all examined cases. How-
ever, in situations where the intersection between these sets
is sparsely populated, more sophisticated algorithms such as
alternating direction method of multipliers (ADMM) could
be used for fast and effective optimization [S51]. PESCaT
employs projections onto epigraph sets to concurrently select
regularization parameters and perform projections. As such,
it is non-trivial to efficiently adapt the proposed parameter
selection to an ADMM-based reconstruction. It remains an
important future work to benchmark PESCaT against ADMM
coupled with an appropriate parameter-selection strategy.

Projections onto epigraph sets were used to penalize /-
norm and TV-norm functions in this study. Note that the
projection onto convex sets formulation allows penalization
of any convex function. Thus, the proposed technique could
be generalized to include alternative regularizes such as fil-
tered variation or total generalized variation [52], [53]. These
modifications might allow performance enhancements in ap-
plications where standard TV regularization yields undesirable
block artifacts.

In conclusion, PESCaT enables near-optimal image qual-
ity while automatically selecting regularization parameters
in reconstructions of undersampled MRI datasets. Parameter
selection for ¢;-norm and TV-norm regularizers and projec-
tions onto the ¢; and TV-balls are performed simultaneously.
PESCaT was demonstrated to outperform alternative self-
tuning approaches based on SURE in bSSFP, T1-weighted
and time-of-flight angiographic imaging. The results presented



here demonstrate that PESCaT is a promising method for CS-
MRI in routine practice.
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