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Abstract

Cluster analysis is one of the most widely used exploratory methods for visualization and grouping of gene expression patterns
across multiple samples or treatment groups. Although several existing online tools can annotate clusters with functional terms,
there is no all-in-one webserver to effectively prioritize genes/clusters using gene essentiality as well as congruency of mRNA-
protein expression. Hence, we developed CAP-RNAseq that makes possible (1) upload and clustering of bulk RNA-seq data followed
by identification, annotation and network visualization of all or selected clusters; and (2) prioritization using DepMap gene essentiality
and/or dependency scores as well as the degree of correlation between mRNA and protein levels of genes within an expression cluster.
In addition, CAP-RNAseq has an integrated primer design tool for the prioritized genes. Herein, we showed using comparisons with the
existing tools and multiple case studies that CAP-RNAseq can uniquely aid in the discovery of co-expression clusters enriched with
essential genes and prioritization of novel biomarker genes that exhibit high correlations between their mRNA and protein expression
levels. CAP-RNAseq is applicable to RNA-seq data from different contexts including cancer and available at http://konulabapps.bilkent.
edu.tr:3838/CAPRNAseq/ and the docker image is downloadable from https://hub.docker.com/r/konulab/caprnaseq.
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INTRODUCTION
The recent use of RNA sequencing (RNA-seq) technology has
generated massive amounts of data that can be re-analyzed for
biomarker discovery [1]. Clustering genes with similar expression
patterns [2] has also enabled distinguishing groups with differen-
tial expression in cancer [3], across different brain regions [4] or
in response to environmental stressors [5]. Functional annotation
of clusters can further provide mechanistic leads about the
treatment effects via integration of enrichment analyses of
biological/molecular terms [6, 7] or protein–protein interactions
[8–10].

In the literature, many comprehensive RNA-seq analysis tools
exist, such as GENAVi [11], iDEP [12], DEBrowser [13], RNfuzzy [14],
ToppGene Suite [15], BEAVR [16], WebMeV [17], Omics Playground
[18], 3D RNA-seq [19], FungiExpressZ [20], Clust [21] and DEGUST
[22]. Many of these allow for uploading and clustering RNA-seq

data, yet only a few provide visualizations or enrichment analyses
that are cluster specific [14, 18, 20, 21]. Moreover, techniques
like self-organizing maps are available to help order patterns
of co-expression clusters according to their similarities [23], yet
identification of pairs of clusters with inverse expression patterns
(aka. mirror clusters) has received less attention [24, 25].

Since mRNA and protein levels are only moderately correlated
[26, 27], the use of comprehensive databases, such as Human
Protein Atlas (HPA) [28] and DepMap [29, 30], which contain
cell/tissue- and/or cancer-specific protein expression data, could
be incorporated in the RNA-seq cluster/gene annotation pipelines.
DepMap also provides information on gene essentiality from
CRISPR or RNAi screens, e.g. shinyDepMap [31], potentially further
enhancing the co-expression cluster annotation. However, these
databases have not yet been incorporated in the existing RNA-seq
tools.
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Moreover, it is essential to validate the identified biomarkers
through wet-laboratory experiments. The predominant method
for assessing biomarker expression is quantitative polymerase
chain reaction (qPCR), which necessitates the design of specific
primers. Despite the availability of numerous primer design appli-
cations [32–34], the seamless integration of a primer design tool
into an online RNA-seq analysis pipeline is still lacking.

To fill the abovementioned gaps, we developed an online
tool called CAP-RNAseq, which stands for Cluster, Annotate
and Prioritize-RNA-seq data, that allows the user to (1) upload
inhouse or public bulk RNA-seq gene-level raw count data to
filter, and then generate, visualize and annotate co-expression
clusters; (2) prioritize clusters/genes based on tissue/cell-specific
gene essentiality scores and mRNA-protein expression correlation
data; and (3) generate primers for prioritized genes. CAP-RNAseq
has been developed as an R Shiny [35, 36] application and can
be used within a diverse array of contexts, including cancer
biology.

Methods and demonstration of the
CAP-RNAseq pipeline
CAP-RNAseq is an online application that requires the upload of
gene-level raw bulk RNA-Seq count data, in which each row is
uniquely identified by a human gene name, along with a text
file that contains the phenotype/condition labels corresponding
to each sample using the Dataset tab (Figure 1). In the Clustering
tab, hierarchical and k-means clustering are available, as well
as a heatmap of dissimilarities among clusters (mirror clusters)
(Figure 1). Once co-expression clusters are obtained, three other
main tabs, namely, DGEA-GSEA, Cluster Prioritization, and Gene
Prioritization, are available to visualize and annotate selected
clusters (Figure 1). In the following sections, each tab is explained
in more detail and by using a demo dataset.

Demo datasets integrated into CAP-RNAseq
Examples of these input files and how to upload and visualize
them can be found on the online tutorial page of CAP-RNAseq.
Data can be filtered by CPM thresholds before performing an
ANOVA on raw count data upon applying a variance stabilization
transformation (vst) by the DESeq2 package [37]. The demo
datasets obtained from GEO [38] were generated using Illumina
short-read NGS technology and each had more than two
groups. They were focused on understanding the effects of (1)
overexpression of two variants of NTRK2 gene (TrkB.FL and
TrkB.T1) or GFP (control) in human neuronal stem cells [39]
(GSE136868; Demo 1), (2) silencing of NTRK2 gene in senescent
fibroblasts [40] (GSE190998; Demo 2) and (3) therapy on blood
samples from a breast cancer patient cohort with clinical data
[41] (GSE201085; Demo 3). We filtered the Demo 1 dataset by
vst + ANOVA (P-value <0.05) to reduce the gene number to 2407
before integration into the app and used it to demonstrate the
pipeline (Figure 1; online tutorial).

Platforms integrated into CAP-RNAseq for
prioritization
CAP-RNAseq integrates various datasets from platforms that
help with cluster/gene annotation and/or prioritization (Figure 1).
DepMap, which is from the Cancer Dependency Map (CDP)
housing genetic dependencies of cancer cells [28, 29] based on
large-scale siRNA and CRISPR-based functional screens, has been
integrated using the depmap package [42] in R. It provides access

to TPM (transcripts per million) data on 19177 genes, 1393 cell
lines, encompassing 33 primary diseases, and 38 tissues/lineages
from the 22Q1 CCLE (Cancer Cell Line Encyclopedia) [43]; and
proteomics data (20Q2 quantitative protein profiling via mass
spectrometry from the Gygi lab [44]) on 12399 proteins from 375
cell lines, 24 diseases and 27 lineages. CAP-RNAseq calculates
the Pearson’s correlation coefficient between mRNA and protein
expression for each gene across selected samples along with a
linear regression coefficient, R-squared and adjusted R-squared
values together with the slope, intercept and their associated
P-values.

Project Score database, a component of the CDP [45], where
the target priority score for a gene is based on CRISPR–Cas9
experimental evidence, target dependency and the frequency
of somatic changes in patient tumors, has been integrated into
CAP-RNAseq [30]. The CDP contains 2879 protein-coding genes in
15 different cancer types with therapeutic target scores ranging
from 0 to 100. CAP-RNAseq calculates the number of genes
having priority scores in each cluster and also incorporates the
dependency scores calculated by the shinyDepMap tool [31]
for 15847 genes from 423 cell lines, reporting two parameters:
efficacy and selectivity, respectively measuring the effect of
gene loss on cell growth in a sensitive cell line, and the
variation in gene essentiality between sensitive and resistant cell
lines.

CAP-RNAseq also contains HPA [28], which independently pro-
vides information on protein expression levels for different genes
across different cancer types as well as tissues and cell types. We
used the HPAanalyze package [46] to obtain and visualize these
protein expression data (categorized as ‘high’, ‘medium’, ‘low’ or
‘not detected’) on 20082 proteins, 20 cancer types and 63 normal
tissues.

Clustering types and identification of mirror
clusters
CAP-RNAseq performs hierarchical clustering of expression pro-
files using scaled logCPM values by ‘hclust’ function of R and
allows user-selection of linkage criteria and distance methods
to help determine an optimal number of clusters in addition to
generating silhouette graphs [47] (Figure 1; online tutorial). CAP-
RNAseq employs a k-means algorithm [48] to assign genes to the
selected number of cluster centroids based on the logCPM values
using ‘kmeans’ function of R. The scaled data are visualized in
line or boxplot graphs. The user can vary the number of clusters,
maximum number of iterations and number of random starting
partitions, and view the number of differentially expressed genes
within each cluster for a selected pair of treatments (Figure 1).
Using the 2407 differentially expressed genes in the Demo 1
dataset, we performed hierarchical clustering and then set k to
eight (Supplementary Figure 1A and Figure 2A), and generated
clusters using a maximum of 2000000 iterations and a random set
of 20. We found that clusters 1 and 2 had more genes with high pri-
ority scores in the central nervous system (Supplementary Figure
1B). There were more differentially expressed genes between the
TrkB.FL and TrkB.T1 groups in clusters 4, 7 and 8 (Supplementary
Figure 1C).

The dissimilarity heatmap of Pearson’s correlation coefficients
among cluster centroids enables users to identify clusters whose
expression patterns are the most inversely correlated, also known
as mirror clusters. Based on the lowest correlation scores, a table
is generated to display these mirror clusters (online tutorial). In
the Demo 1 dataset, clusters 1 and 2 exhibited incrementally and
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Figure 1. The workflow of CAP-RNAseq.

steady patterns of increase in expression in the groups overex-
pressing NTRK2 full-length and NTRK2 isoform clones, respec-
tively (Figure 2A). On the other hand, clusters 8 and 6 exhibited
a mirror image of clusters 1 and 2. In cluster 3, the increase by the
full-length protein was higher than that by the isoform; and the
mirror image of this expression pattern was found in cluster 5. We
identified four pairs of mirror clusters that could also be deduced
from the dissimilarity heatmap, marked with yellow rectangles
(Figure 2B).

Cluster prioritization
To prioritize a cluster, multiple paths can be taken in CAP-RNAseq,
e.g. Silhouette plots, MSigDB analysis, enrichment of priority
scores or analyses based on visualization of DepMap.

Silhouette plots
CAP-RNAseq provides the user with the ability to study data
consistency within a cluster using silhouette plots (‘silhouette’
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Figure 2. Clustering analysis of Demo 1 data. (A) K-means clustering result with 8 clusters where red lines highlight the centroids of clusters. (B)
Dissimilarity heatmap where negative values show the lowest similarities which indicate the pairs of mirror clusters, while the positive values indicate
most similar clusters. Rectangles were drawn to highlight mirror clusters. (C) Network visualization of MSigDB terms for clusters 1, 2 and their mirror
clusters 6 and 8. (D) Network visualization of MSigDB terms for clusters 3, 4, 5 and 7. Edge widths show the number of genes overlapping with each
hallmark collection term.
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function of cluster package) [49] by displaying silhouette width
scores in a table. ggplot2-based visualizations of silhouette widths
are presented using factoextra package [50]. As a result, CAP-
RNAseq identifies which clusters contain genes that are likely to
be placed in the wrong cluster; and ranks the clusters based on
their consistency scores (Figure 1; online tutorial).

Functional enrichment by MSigDB and networks of cluster
terms
CAP-RNAseq uses the Molecular Signatures Database (MSigDB),
one of the larger repositories of gene sets [51, 52], which can
be run for all clusters at once using the genes filtered based on
their essentiality (i.e. essential or non-essential) and their mRNA
∼ protein correlation coefficients calculated from DepMap data.
MSigDB sets were retrieved using the msigdbr R package [53].
The user needs to select a gene set collection(s), e.g. the default
selection is set to H, for Hallmark, before CAP-RNAseq performs
an enrichment analysis for each cluster one by one (Figure 1;
online tutorial).

These enrichment results are visualized as a network using
visnetwork R package [54], where nodes represent either clusters or
MSigDB terms, and the edge widths represent the number of genes
overlapping between clusters. In networks, the user can set the q-
value as well as the number of enriched terms to be displayed.
The cluster nodes can be colored based on group comparisons
(i.e. an increase (red) or a decrease (blue) in expression level)
using the scaled and averaged logCPM values used in k-means
clustering. Using the Demo 1 dataset, we used the ‘Hallmarks’
collection from MSigDB; a network of clusters was created for
the top 10 terms, each having a q-value <0.05. The cluster nodes
were colored based on the difference in logCPM values between
the TrkB.T1 isoform (treatment) and full-length TrkB.FL (control)
groups. Genes in cluster 1 and cluster 2, which exhibited increases
by the overexpression of TrkB.T1 or TrkB.FL, were enriched in E2F
and MYC targets, G2M checkpoints, mitotic spindles, glycolysis,
MTORC1 signaling and hypoxia (Figure 2C). Their mirror clusters,
cluster 6 and cluster 8, on the other hand, were enriched in the
P53 pathway, myogenesis, hedgehog signaling and hypoxia. The
remaining clusters did not share terms to the same extent with
each other (Figure 2D).

Moreover, one or more clusters can be prioritized based on the
enrichment of CDP target priority scores of genes in a cancer
type(s) out of 15 in total (Figure 1; online tutorial) using a table
that provides statistics based on the ‘oddsratio’ function from
the epitools package [55] and helps prioritize a cluster with a
higher association score in a cancer type(s) of interest. Using
CAP-RNAseq, the Pearson’s correlation coefficients among sam-
ples within a chosen cluster are also visualized as an interac-
tive heatmap with the heatmaply package [56] (Figure 1; online
tutorial).

Prioritization by essentiality and efficacy/selectivity
statistics of a cluster
CAP-RNAseq can display in a table the mean (+/− std) efficacy
as well as selectivity scores from DepMap along with the total
number and percentage of essential genes observed in each clus-
ter and the associated odds ratios from Fisher’s exact tests. The
efficacy and selectivity scores are shown in a scatter plot, where
observations are colored with blue, to indicate essentiality; or red,
for non-essentiality. This plot can be redrawn using other options,
such as coefficient of variation (CV) on CPM, log2 transformed
average CPM or log2 of range CPM values. Moreover, density
distributions, Kolmogorov–Smirnov test for comparing densities

[57] and the Mann–Whitney U-test to compare medians [58, 59]
are made available (Figure 1).

For the Demo 1 dataset, the mean and standard deviation
values of efficacy and selectivity for each gene in a cluster along
with Fisher’s exact test enrichment statistics were obtained (Sup-
plementary Table 1) and cluster 1 consisted of significantly more
essential genes than random, while cluster 6 was significantly
depleted of essential genes. In cluster 6 (Figure 3A), highly down-
regulated genes (higher CV) had low to moderate expression val-
ues and were likely to be non-essential (Figure 3B). The difference
in the median CVs of essential and non-essential genes in cluster
6 was significant (Figure 3C). Furthermore, cluster 6’s mirror, i.e.
cluster 2, had significantly high number of essential genes whose
expressions were upregulated by both TrkB.T1 and TrkB.FL groups
when compared to control samples (Figure 3D). Interestingly, the
majority of these essential genes showed high levels of expression
yet low CVs (Figure 3E–F).

Cluster-specific differential gene expression
analysis and functional annotations
The user can further perform differential gene expression anal-
ysis (DGEA) for a pair of conditions on a selected cluster’s genes
using DESeq2 [37] or limma-voom [60]. This action provides the
names of genes significantly modulated by a treatment within
the selected cluster and relevant statistical values, such as log2
fold change (logFC), P-value and adjusted P-value for each gene’s
expression.

Moreover, the user can perform functional analysis through
MSigDB in a cluster-specific manner (Figure 1; online tutorial).

Gene prioritization
A section of CAP-RNAseq has been allocated to the prioritization
of genes within a selected cluster and several options were made
available as explained below.

Distance correlation with the cluster’s centroid
A distance correlation measure is calculated between the
expression profile of each gene within a chosen cluster and that
of its cluster centroid using ‘dcor’ function of energy package
of R [61] before ranking the genes (online tutorial). This step
allows for selecting a gene that can be the best representative
of the selected cluster’s average expression profile. In the Demo
1 dataset, the genes modulated by NTRK2 overexpression were
ranked based on different attributes (Supplementary Table 2), e.g.
cluster 6 genes using (1) correlation with the cluster centroid,
(2) the significance of logFC and/or (3) correlation between
mRNA and protein levels. Accordingly, we prioritized the CCND2,
an essential gene with a high efficacy score, with decreased
expression in the overexpressed groups when compared to
the control group. The selectivity of CCND2 was found to be
0.68, which was higher than the average selectivity score of
cluster 6.

Protein expression levels in HPA across diseases and
tissues
The HPA tab incorporates the ‘pathology’ and ‘normal tissue’
datasets of HPA in which protein expression was determined
through IHC staining. CAP-RNAseq displays the protein expres-
sion level of a selected gene when the user enters the names
of cancer and normal tissues from a selection menu using the
stacked bar plots (Figure 1). The protein expression level of CCND2
in the HPA database was low except the thyroid, carcinoid and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad536#supplementary-data
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Figure 3. Analysis of cluster 6 (A–C) and cluster 2 (D–F). (A, B) Cluster visualization of each cluster as a result of k-means clustering. (B, E) Graphs
showing the log2 of Avg CPM in x-axis versus CV of CPM in y-axis of genes in clusters. Point size shows the log2 of range CPM values. (C, F) Graphs
showing the median CV for both essential and non-essential genes based on Mann–Whitney U-test. Avg: average, CV: coefficient of variation, CPM:
counts per million.

cervical cancers, and not found at high levels in normal brain
tissues (Figure 4A and B).

Correlation between mRNA and protein levels based on
DepMap data
Using DepMap [62, 63], CAP-RNAseq can plot TPM values against
protein z-scores, performs robust regression with bisquare
weighting [64], assigns weights to find potential outlier samples
[65], and estimates the intercept and slope values before the

selected gene is used for the primer design module in CAP-
RNAseq (Figure 1; online tutorial). In the Demo 1 dataset, DepMap
mRNA versus protein correlation plot across all lineages showed
a significant correlation for CCND2 (Figure 4C), which is a cell
cycle gene, associated with ERBB2-negative tumors and poor
differentiation [66, 67]; and aberrantly expressed in a variety
of malignancies [68–70]. Moreover, CCND2 expression is low in
normal brain and low-grade gliomas while being significantly
upregulated in GBM [71–73].
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Figure 4. CCND2 gene prioritization revealed in cluster 6. (A) Protein expression of CCND2 in many cancers using the HPA dataset. (B) Protein expression
of CCND2 in normal cells of the hippocampus and cerebral cortex using the HPA dataset. (C) mRNA versus protein correlation plot across all lineages
using DepMap data.

Primer design
For a selected transcript whose exon–intron structural informa-
tion is obtained from Biomart [74, 75], CAP-RNAseq (Figure 1)
designs primers, flanking an intron within randomly selected two
consecutive exons, ten times among all exons of the selected
gene [76]. The primer design module of the scAmpDesign package
[77] utilizing Primer3 [32, 78] is used with specific changes in
the source code, which include updates to the latest version
of the files retrieved from Primer3, adjustments to the num-
ber of returned primer pairs and improvements to the table’s
architecture. CAP-RNAseq confirms whether the forward and
reverse primers are in different exons before presenting the list
of primers in table format and plots an interactive ggplot graph
showing exons and primer pair locations. Primers for CCND2 are
shown with their exon and primer positions in the CCND2 gene
(Supplementary Figure 2A). In addition, CAP-RNAseq provides a
table consisting of various features of the designed primers, e.g.
melting temperature (Tm), GC content values, positions within
the gene sequence, and penalty scores (Supplementary Figure 2B).

Comparisons with the existing tools
We have compared CAP-RNAseq in detail with iDEP [12], a highly
comprehensive expression analysis tool that contains a set of
cluster-specific analysis features (Supplementary Table 3A) and
also across a larger set of RNA-seq tools collected to the best
of our knowledge (Supplementary Table 3B). We have found
that CAP-RNAseq has novel features not present in iDEP or
other tools, which are marked with NA/No. For example, the
vst + ANOVA [37, 79, 80] filtering feature is unique and reduces

data volume for clustering in a supervised manner as opposed
to using an unsupervised approach such as selecting the top
variable genes as in iDEP (Supplementary Figure 3). In CAP-
RNAseq, the user can filter their data using vst + ANOVA upon
uploading any short-read gene-level raw RNA-seq count dataset
with multiple groups (e.g. time-series) that are applicable for
use with other expression analysis methods such as limma and
masigpro [81].

CAP-RNAseq utilizes the k-means algorithm [82], and via hier-
archical clustering helps the user visualize and decide on the
optimal numbers (k) of clusters. Several online tools perform k-
means clustering on normalized RNA-seq data as well [12, 21, 83].
However, they either do not have the ability to test the optimality
of the selected number of clusters or do not perform differential
gene expression analysis and further gene prioritization on clus-
ters (Supplementary Table 3B).

Moreover, CAP-RNAseq uses line or box plots for visualization
of expression patterns, whereas iDEP and WebMeV use heatmaps
and PCA, respectively. Although GENAVi can cluster samples
against each other for all or a selected set of genes, it does
not for the genes of a cluster obtained from k-means method.
On the other hand, CAP-RNAseq can do so and in addition
identifies mirror clusters based on comparing cluster centroids,
a prominent feature of CAP-RNAseq, that is not present in any
other application.

The enrichment analysis of a cluster is performed by only a
few tools (iDEP, RNfuzzy, Omics Playground and FungiExpresZ),
but CAP-RNAseq also provides a bipartite network to visualize
the shared and unique enriched terms among clusters, enhancing
iDEP’s tree-like display (Supplementary Table 3A). CAP-RNAseq

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad536#supplementary-data
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uniquely integrates DepMap datasets and provides a statistical
evaluation of gene essentiality for each co-expression cluster in
a dataset with respect to gene efficacy and selectivity for further
cluster prioritization.

To prioritize genes, the user can sort the gene table with param-
eters unique to CAP-RNAseq, such as gene essentiality and the
degree of mRNA-protein correlation (Supplementary Table 3A).
While HPA is used within RNfuzzy, it is limited to enrichment
analyses unlike CAP-RNAseq that provides a detailed visual rep-
resentation of protein levels in user-selected cancers and tissues.
Moreover, CAP-RNAseq’s interactive and modular nature makes
possible the incorporation of other analysis methods in the future.
Overall, CAP-RNAseq not only distinguishes itself from the cur-
rent RNA-seq applications, but also successfully complements
them for the analysis of both custom and publicly available bulk
RNA-seq data.

Application of CAP-RNAseq on publicly available
RNA-seq datasets
CAP-RNAseq can be applied to any bulk RNA-seq gene-level raw
count data, with each row identified by a unique human gene
symbol and having two or more groups, but it is not recommended
for the analysis of single cell or non-coding RNA-seq data. In
the following sections, we further exemplify the potential use
of CAP-RNAseq in different contexts: (1) cluster comparisons
between complementary datasets (Demo 2 versus Demo 1) and
(2) prioritization of biomarkers in clinical cancer patient datasets
(Demo 3).

Case study 1: cluster comparisons between
complementary datasets
The Demo 2 raw data were obtained from GEO. i.e. GSE190998,
in which proliferating WI-38 fibroblast cells were profiled
using short-read RNA-seq against senescent WI-38 fibroblasts
transfected with a control siRNA or an siRNA against NTRK2 or
BDNF [40] (from which we did not use BDNF samples). Filtering
with vst + ANOVA using a P-value threshold of 0.05 resulted in
10151 significant genes, and to be comparable with the Demo
1 dataset, a more stringent P-value threshold (i.e. < 0.001)
was chosen, resulting in 4412 genes that were assigned to 12
clusters (Supplementary Figure 4). From the table of essential
gene counts in each cluster, under the ‘DepMap: Essentiality’ tab
(Supplementary Table 4), cluster 2 that contained the highest
percentage of essential genes and cluster 5, highly enriched with
non-essential genes, were analyzed further. Cluster 2 showed
that essential genes exhibited a higher CV of CPM and log2 of
range CPM (Figure 5A and B) supported by a Mann–Whitney U-
test (Figure 5C). However, in cluster 5, where the senescent cells
had higher expression levels when compared to proliferating
cells (Figure 5D), the non-essential genes had the highest CV
of CPM (Figure 5E), also supported by Mann–Whitney U-test
(Figure 5F).

The essential genes were upregulated in only one cluster (clus-
ter 10) and were enriched with peroxisome and UV response
terms, while the downregulated essential genes were enriched
with MYC targets, G2M checkpoints, mitotic spindle and E2F
targets and spread out to multiple clusters (Figure 6A). Moreover,
clusters enriched with non-essential genes, e.g. downregulated
clusters 3, 6 and 11 and upregulated clusters 5 and 8, had the
epithelial mesenchymal transition term in common (Figure 6B).
These findings suggested that senescence, regardless of presence
or absence of NTRK2, resulted in downregulation of a subset of

essential genes with importance in cell cycle and MYC and E2F
signaling while non-essential genes were largely upregulated.

In cluster 5 (Supplementary Table 5A), the CCND2 gene ranked
high and was significantly upregulated by senescent siControl
and even further by siNTRK2 treatment when compared to
the proliferation control siRNA. CCND2 exhibited a moderate
expression and the highest CV on CPM (0.91). Hence, CAP-RNAseq
identified a novel association between NTRK2 and CCND2 such
that inhibition of NTRK2 increased and overexpression of NTRK2
decreased the expression of the CCND2 gene, respectively. We
mapped the Demo 2 cluster 5 genes on the Demo 1 clusters using
the ‘Search Gene/Geneset’ box of CAP-RNAseq (Figure 1; online
tutorial) and found that many of them were found in the Demo 1
clusters 6 and 8 (Supplementary Table 5B; Figure 7A). The patterns
of co-expression were reversed between datasets for the searched
gene set (Supplementary Figure 4; Figure 7B-C).

Case study 2: prioritization of novel biomarkers
in clinical cancer patient datasets
GSE201085 [41], an Illumina short-read RNA-seq dataset from
blood samples of breast cancer patients (n = 53 with four groups:
residual disease (n = 23 with or without recurrence); pathologic
complete response (pCR, n = 9); and those who did not receive NAC
(n = 21)), was re-analyzed for the discovery of novel biomarkers
with high correlation coefficients between the mRNA and protein
levels. After filtering at P-value <0.05, 4846 genes were retained
and integrated as Demo 3. For clustering into 8 clusters, we
used the group means and for visualization, we selected the
boxplot option (Figure 8A). The cluster-term network prioritized
three clusters whose genes were upregulated in the pCR group
(Figure 8A; Supplementary Figure 5A). pCR group members had
a heightened immune response and increased activity in apop-
tosis, hypoxia, TP53 and NFKB signaling (Supplementary Figure
5A). Moreover, CAP-RNAseq provided candidate biomarkers of
recurrence, e.g. ENPP5 (cluster 4; Supplementary Figure 5B) whose
upregulation has been demonstrated in triple-negative breast
cancer tumors [84]. In addition, ENPP5 also showed moderate to
high protein expression levels in breast cancers but not in normal
breast tissue, using the HPA module (Figure 8B) and a significantly
positive correlation between its mRNA and protein expression
levels (Figure 8C).

DISCUSSION
The statistical analysis of RNA-seq data is central to better
understand how genes and signaling pathways are modulated
by different perturbations [85–87]. Although there are many tools
for online RNA-seq analysis, CAP-RNAseq provides an all-in-one
novel pipeline starting from filtering/clustering raw count data
to prioritization of co-expression clusters/genes based on gene
essentiality and congruency of mRNA-protein expression levels
and some of its unique features include the annotation of co-
expression clusters as ‘mirror clusters’ and generation of bipartite
cluster-term networks.

CAP-RNAseq prioritizes co-expression clusters using DepMap
[29, 30] and MSigDB [51, 52], and genes by ranking them based
on their correlation between mRNA-protein levels, and/or gene
essentiality scores. Although previous studies [88, 89] and RNA-
seq tools, e.g. iDEP, have utilized MSigDB analysis for enriching
differentially expressed gene sets, CAP-RNAseq also uses DepMap
for enrichment and prioritization of co-expression clusters.

DepMap has already been integrated into apps such as NetCon-
trol4BioMed [90] and shinyDepMap [31], which enable researchers

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad536#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad536#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad536#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad536#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad536#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad536#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad536#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad536#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad536#supplementary-data
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Figure 5. Analysis of cluster 2 (A–C) and cluster 5 (D–F). (A, B) Cluster visualization of each cluster as a result of k-means clustering. (B, E) Graphs
showing the log2 of Avg CPM in x-axis versus CV of CPM in y-axis of genes in clusters. Point size shows the log2 of range CPM values. (C, F) Graphs
showing the median CV for both essential and non-essential genes based on Mann–Whitney U-test. Avg: average, CV: coefficient of variation, CPM:
counts per million.

to identify essential genes and ultimately discover druggable
targets as well as used in other studies focusing on drug resistance
[91] and identification of therapeutic targets [92]. However, CAP-
RNAseq is the only RNA-seq data clustering, annotation and
prioritization tool that incorporates DepMap and hence allows
for the identification of expression patterns associated with the
overrepresentation of essential genes in a given treatment/cluster.
It also enables comparisons between essential and non-essential
genes with respect to mean and variance of their expression levels
in an experiment- or condition-specific manner.

Indeed, the essential genes might have higher expression levels
and lower variance. For instance, in Caulobacter crescentus [93]

and in multiple Escherichia coli species [94], the gene essentiality
and expression levels were positively correlated. DepMap data
were also used to construct predictive models of gene essentiality
based on modifier gene expression variation [95]. The presence of
a transcriptional program conserved across different organisms,
including E. coli, yeast and humans, showed that essential genes
but not non-essential genes needed to be expressed above a
certain threshold mRNA number to maintain cellular functions
[96]. Indeed, many essential genes were transcriptionally and
mutationally robust via use of multiple transcription start
sites within a promoter [97], and hence low transcriptional noise
and low variability of promoters were associated with gene
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Figure 6. MSigDB networks for ‘Hallmark’ terms. Functional network for only essential genes (A) and non-essential genes (B) in clusters including terms
that have q-values <0.05. Edge widths show the number of genes overlapping with each hallmark collection. Cluster nodes indicate the increase or
decrease in the average expression of genes with respect to the proliferating control siRNA and siNTRK2 groups for each cluster.

Figure 7. Comparative analysis of co-expression patterns across datasets. (A) The genes comprising cluster 5 in the Demo 2 dataset were queried using
the ‘Search Gene/Geneset’ tab in the Demo 1 analysis. (B) Expression pattern of cluster 6 in Demo 1 dataset and (C) expression pattern of cluster 8 in
Demo 1 dataset, depicting the co-expression patterns of the identified genes from cluster 5 in Demo 2 dataset.
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Figure 8. Analysis of GSE201085 data. (A) K-means clustering (k = 8) with group means visualized as boxplot. (B) Protein expression of ENPP5 in many
cancers and normal cells (breast and lymph nodes) using the HPA dataset. (C) mRNA versus protein correlation plot across diseases in breast using
DepMap data.

essentiality. A statistical method called CEDA [98] also showed
that the percentage of essential genes increased when gene
expression data were integrated with the CRISPR screen
data.

In the present study, we demonstrated that overexpression/de-
pletion models of NTRK2 led to modulation of subsets of essential
genes, whose ranges of expression as well as degrees of modu-
lation exhibited variability. Indeed, very highly expressed genes,
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regardless of being essential or not, exhibited lower coefficients
of variation across different treatments. The essential genes were
enriched in co-expression clusters in which NTRK2 overexpres-
sion led to increased expression supporting NTRK2’s role as an
oncogene [99], while senescent cells with or without the treatment
with siNTRK2 decreased highly the mRNA expression of a subset
of essential genes [40]. Accordingly, we could demonstrate via
CAP-RNAseq that a subset of essential genes could be highly
significantly modulated in fibroblast senescence and such tests
can be extended to RNA-seq data from other senescent cells
including those of the liver.

Moreover, novel associations discovered by CAP-RNAseq, as
in the case of NTRK2 and CCND2, can be further studied in
silico. Indeed, we also found a negative correlation between
the expression level of CCND2 and that of NTRK2 in the lower
grade glioma patient dataset of TCGA (TCGA-LGG) (r = −0.17,
P = 8.005e−5), although not in higher grade glioblastoma patients
(TCGA-GBM) (r = 0.02, P = 0.777) based on cbioportal.org [100–
102]. By using the ‘Search Gene/Geneset’ module, we found other
cluster 5 genes expressed like CCND2 (Supplementary Table 5B),
which can be further tested in other TCGA or clinical cohorts.

In addition, CAP-RNAseq offers the ability to prioritize genes
for future validation [103, 104]. While mRNA expression lev-
els are highly informative in cancer diagnosis and classification
[105, 106], true causative agents in the cell are most likely the
levels and interactions of proteins [107]. Since the correlation
between mRNA and protein expression levels is not always high
due to post-transcriptional regulation [108] and/or the basal levels
of protein abundance [109], the discovery of genes, e.g. ENPP5,
which exhibit high mRNA-protein level correlation, could provide
more reliable mRNA biomarkers in clinic to test by RT-qPCR
primers that could be generated by CAP-RNAseq.

CONCLUSIONS
CAP-RNAseq serves as an invaluable tool for the annotation and
prioritization of co-expression clusters using custom or publicly
available bulk RNA-seq data, as it facilitates a deeper understand-
ing of the patterns and relationships within and between datasets.
It also allows for biomarker discovery and gene prioritization and
can be applied across a wide range of research contexts that
includes cancer. The tool offers unique features and capabilities
that distinguish it from other similar applications and is avail-
able at http://konulabapps.bilkent.edu.tr:3838/CAPRNAseq/ and
the docker image is downloadable from https://hub.docker.com/
r/konulab/caprnaseq.

Key Points

• CAP-RNAseq is the first all-in-one R Shiny application
on which users can filter gene-level RNA-seq raw count
data by vst + ANOVA and prioritize co-expression clus-
ters/genes based on gene essentiality and the degree of
congruence between the mRNA-protein levels.

• CAP-RNAseq utilizes the k-means algorithm to clus-
ter expression profiles, and effectively identifies mirror
clusters expressed inversely of each other, and generates
cluster-term networks.

• CAP-RNAseq uniquely integrates key databases and
applications such as DepMap, Human Protein Atlas,

MSigDB and Primer3 using relevant R packages and
employs them for RNA-seq expression data analysis.
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